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Theory of Mirror Spectrographs

II. General Theory of Focal Surfaces and Slit Curvatures
Klaus D. Mielenz
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The focus conditions for Czerny-Turner type,

beam path are derived.

two-mirror spectrographs with spatial

It is shown that, in general, the focal surface of the speetrograph
is intermediate between the tangential and sagittal focus.

A method is developed to calculate

the three-dimensional focal surface, as well as to find the curvature of long monochromator

slits.

1. Introduction

The first to build a mirror spectroscope with anti—
symmetrical beam path was H. Ebert in 1889 [1].
He had also suggested substitution of a ])]l()l()(’l.l])hl(‘
plate for the eyepiece, but H. Kayser [2] thought this
was “entirely impractical,” and the design was not
carried out as a spectrograph at the time.

In 1930, M. Czerny and A. F. Turner [3] discovered
the aberration corrective properties of antisym-
metrical two-mirror spectrographs.  Their work was
realized in the subsequent construction of many two-
mirror monochromators but had little impact on
spectrograph design. Spectrographs, at that time,
were mainly prism ones, which are usually better
built with lens rather than mirror optics [4].

In 1952, W. G. Fastie [5] reinvented Ebert’s one-
mirror system as a simplified version of the Czerny-
Turner monochromator. As the trend went to
larger and, thus, grating spectrographs, Fastie also
sugeested the Ebert system for a large plane-grating
spectrograph. In this “Ebert-Fastie spv('lr()gl':L])h,”
which was first built in 1955 by R. Jarrell [6],
Ebert’s original in-plane (side- bv—slde) <l]l«lll(’(’lllel](
of slit, (’I(Ltlll(_’,, and spectrum was replaced by an
off- pl(me (vertical) arrangement so that a longel
spectrum could be obtained.

In 1956, W. Leo [7] further improved the corrective
properties of the two-mirror system by using different
focal lengths for collimator and camera.

The Czerny-Turner system is still of great practical
interest; the one-mirror mounting for its simplicity,
and the two-mirror one because of a still better
definition of the spectrum.

Yet, theory is still incomplete. Usually, a two-
dimensional analysis is made, where an horizontal
cross section is substituted for the spectrograph
itself, and the corresponding focal curve for its
actual focal surface. H. Kaiser, F. Rosendahl, and
this author [8], and later S. A. Khrshanovskii [9] and
0. Vierle [10], have treated Ebert and Ebert-Fastie
systems in this manner. Kikonal theories that
included two-mirror systems were worked out by
K. Kudo [11] and this author [12] but, again, any

1 Figures in brackets indicate the literature references at the end of this paper.

appreciable deviation from a plane system was not
accounted for.

In a two-dimensional analysis, no distinetion can
be made between in-plane and off-plane systems.
[t may easily be seen, however, that a significant
distinetion does exist.

In the in-plane Ebert spectrograph of figure 1la,
for illh((ll]((“ slit and spectrum lines extend perpen-
dicular to a tangential plane of the system. The
optimal focus of the spectrograph 1is therefore
simply the tangential focus of the mirror.
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Ficure 1. End-on views of (a) Ebert spectrograph and (b)
Ebert-Fastie spectrograph.
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In the off-plane Ebert-Fastie spectrograph of
ficure 1b, however, a common tangential plane
exists only for the slit and the central line of the
spectrum. Both lie in this plane and, so, must be
at the sagittal foci of the mirror. All other spec-
trum lines form an angle ¢ with the respective
tangential planes of the spectrograph and must
therefore be at an intermediate position between
the two astigmatic foci, depending upon the value
of ¢’. For the extreme ends of the spectrum, o
approaches zero so that these must be at, or near,
the tangential focus of the mirror. Existing theory
surmises the focus to be tangential throughout the
spectrum.

A two-dimensional analysis will also fail to
determine the curvature of monochromator slits,
even for in-plane systems. Fastie [5, 13] has con-
sidered an additional vertical cross section through
the spectrograph to solve the problem, but a three-
dimensional analysis may be expected to give still
more insight.

Thus, a theory is presented in this paper that
takes into account the actual solid geometry of the
spectrograph. Based upon the most general case
of a three-dimensional two-mirror system, it com-
prises all known types of antisymmetrical mirror
spectrographs, with either one or two mirrors,
in-plane or off-plane, and with either plane reflectance
gratings or Littrow prisms as dispersive elements
(though gratings, only, will be explicitly treated in
the following). The theory permits calculation of
focal surfaces as well as slit curvatures.

An outline of the theory, only, is given. Applica-
tions to specific types of spectrographs will be
published subsequently.

2. Basic Geometry of the Spectrograph
Figure 2 shows the beam path in the spectrograph,

where S is a point of the slit and S’ its image. The
principal ray from S to S’ intersects the grating
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FiGuURE 2.

Two-mirror spectrograph.

center O and strikes the spherical collimator and
camera mirrors at P and P’ respectively. M and
M’ are the centers of curvature of the two mirrors,
r and 7’ their radii.

Let, on the slit side, s, m, p, and q be the vectors

MS, MO, OP, and PS; s, m, p, and ¢ their absolute
values. Write
D= —])E, (1)

where E is the unity vector in the direction of the
principal ray incident upon the grating.

If, then, w is the distance LP, where L is the foot
of the perpendicular from M on to OF, we have

w=r cos i=E- (pE—m)=p—m . E, (2)

ML*=r? sin? i=[EX (pE—m)]’=(m X E)? (3)

where 1= ZSPM= ZMP0 is the angle of incidence
and reflection at . Hence,

w*=r’— ML*=r’—(m XE)?, (4)

=w-+m-E. (5)

The directions of incidence and reflection, —E

and q/¢, and the normal at P, (pE—m)/r, obey the
law of reflection [14]; i.e.,

q/¢g=—E-+2[E
or, with (2),

(pE—m)/r](pE—m)/r,

q/¢=—E+2(w/r*)(pE—m). (6)
Hence, from figure 2,
s=m—pE-4q
=—q¢E—(1—2qw/r*) (pE—m). (7)
The corresponding primed expression,
. S,:(llEl+(1—2q/w,/7',2>(]),E,er,), (8)
with
W' =r"— (m' XE)?, 9)
p'=w'—m’-E’, (10)
is obtained for the point vector, s’:f\l_@, of the

image point S’. Here, p’ and ¢’ are the distances
OP' and P'S’, E’ is the unity vector in the direction
of the diffracted principal ray, and m’ is the vector
M'O.

Let, finally, N, T, and k be mutually orthogonal
unity vectors attached to the grating center O so
that N is the grating normal and T and k are the
tangents perpendicular and parallel to the grooves.
E and E’ are then related to each other by the
grating equations [15],

T.-(E—E’) +u)/d=0, (11)
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k-(E—E’)=0, (12)
where u 1s the spectral order, N the wavelength of
the diffracted beam, and ¢ the grating constant.

3. Focal Distances of Slit and Slit Images

The focal distances of S and S’; ¢ and ¢’, are still
undetermined in eqs (7) and (8). They may be ob-
tained as follows.

The usual design goal, perfectly collimated light
between collimator and camera so that the grating or
prism ? does not cause aberrations, cannot be accom-
plished in the mirror spectrograph. The collimating
mirror produces an astigmatic pencil of rays which,
at best, contains parallel rays in one cross section
only.  While the aberrations of the grating can no
longer be completely eliminated under these circum-
stances, they will be minimized if parallelism of rays
is at least accomplished in the horizontal cross section
of the grating [15].

In the mirror spectrograph, this requirement, too,
an be met only approximately. The collimating
mirror can produce perfectly parallel rays only in a
tangential cross section if the slit is arranged at the
focal distance
(13)

Q=37 COS 1=3%W,

or in a sagittal cross section if the focal distance is

2

qs=7/(2 cos 1) =r%/(2w); (14)
cf. reference [16] and eq (2), and neither of these will
in general coincide with the horizontal cross section
of the grating.

There is no intermediate focal distance at which
perfectly parallel licht is produced in an intermediate
cross section. Rays will however bs as nearly parallel
as possible in a cross section that encloses an angle
o with the tangential plane if the focal distance is

q=q,+ (g.—q,) sin® o

=3iw+ (mXE)? (sin? ¢)/(2w); (15)
cf. reference [17] and eq (4). In the spectrograph, the
angle ¢ between the tangzntial plane of the collimat-
ing mirror (MOP-plane) and the horizontal cross
section of the grating (N, T-plane) is given by
sin? o=k X (mXE)]?/(m<E)? (16)

since (m < E) and k are normal to the two planes.
The focal distance, ¢, at which the slit must be
located in order that the aberrations of the grating
are minimized is then obtained from (15) and (16) as

g=3w-+[kX(mXxE)]?/(2w). (17)

2 Anywhere in this chapter, “prism’ may be substituted for “‘grating’ [15].
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The corresponding primed expression
- )

¢'=3w'+[k X (m’' X E")]Y(2u), (18)

- holds for the focal distance, ¢’, of S’.
4. Focal Surfaces

Upon introduction of (17) and (18) into (7) and
(8), the focal surfaces of the spectrograph are fully
determined. Equations (7) and (8) coastitute mu-
tually independent formulas that express the point
vectors, s and s’, of a slit point S and its images S’
as functions of the directions, E aand E’, of the
principal rays incident upon and diffracted by the
erating.  Aay point on the focal surface, s, of the
collimator can therefore be imaged into any point
on the focal surface, s, of the camera provided that
the grating establishes the necessary relationship
between E and E’.

5. Focal Curves of Spectrographs

For spectrographs, where long slits are rarely used,
it usually suffices to consider a point-by-point imag-
ing of shit centers into line centers.

Thus, let a given point vector s, 1.e., a given
principal ray E, represent the slit center S, on the
tocal surface of the collimator mirror. The grating
equations, (11) and (12), will then provide the
directions, E), of the diffracted rays and, thus, fully
determine the location of the line centers, S;, as a
curve s, on the focal surface of the camera mirror.

The full focal surfaces of a spectrograph have to
be calculated to such an extent, only, as to establish
how slit and photographic plate have to be arranged
as tangents to these surfaces so that best possible
line definition will be obtained.

6. Monochromator Slit Curves

FFor monochromators with long slits, the above
theory is yet incomplete. It is still necessary to find
the curves on the two focal surfaces along which
e trance and exit slit must extead in order to remain
images of each other when the grating is rotated
about its vertical axis (direction of k) to scan the
desired wavelength range.

Let the position of the grating for which the two
slits are mirror (zero-order) images of each other be
eiven by

INES R TE (19)

so that i, j, and k are base vectors that do not rotate
with th2 grating. Then, let a curve s(E) on the
focal surface of the collimator mirror represent the
entrance slit. The exit slit, as the white-light
image, is then given as a curve s’(E’) on the focal
surface of the camera mirror for which the reflection
law [14] postulates

E—E —2(E-iji. (20)
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If, now, the grating is rotated by aa arbitrary
angle, so that eqs (19) no longer hold, the same curve
s’ must become a spectral image of the curve s. The
orating equation (11), which because of (20) is now

reduced to
2(E-i) (T i) +uNd=0,

must then apply to all slit points and therefore to
the slit center as well;

2(Eo-1) (T-) + un/d=0.

Hence, as the direction of T is arbitrary,

E.-i=E,-i (21)
With
E.-k=E, -k-+5, (22)
the third direction cosine of E,
E.j=vI— (B ) (B K (23)

is also expressed as a function of E, and .

Upon introduction of (21), (22), and (23) into (7)
the point vector, s, of an arbitrary point of the
entrance slit is obtained as

S=s8, | As, (24)
where s,, as before, denotes the slit center and As is a
function of the coordinates of s, and the running
parameter 8. The shape of the entrance slit is thus
fully determined.

From (20) and (21),

E.i=—FE,-i, (25)
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and from (12) and (22),

E’-k=E,- k43, (26)

whence we may determine the exit slit in a like
manner.

The author is indebted to O. N. Stavroudis,
NBS, for suggesting the vector notation used
throughout this paper, which has resulted in a
considerable simplification of all formulas.
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