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Theory of Mirror Spectrographs 

1. Astigmatic Illumination of Plane Gratings and Prisms 
KIa us D. Mielenz 

(July 15, 1964) 

By a pplicat ion of a n cikonnl t hC'o ry, the image fonnin p; properti es of plane gral ings a nd 
pri~ms n rc s hown to be qu ite similar. Wi th un co ll imatccl illumin nt ion, t he as tigmaLis m of 
bo t h vanishes [ 0 1' a n in -pla ne mOlln t in g at t he minim.um of dcv iat io n . Bot h produce pc- rfpcl 
images if illuminated with pl' rfectl.v coll imated (parallel) light. In mirror Rpcctrographs, 
where l his req llirC' men t cann ot be fulfilled, },ber-rations are minimi zed if pa ra llel ism of rays 
is achieved in t he cross section normal to t he gratin g grooves, or pris m e dge. 

1. Introduction 

Neither plane gratings nor prisms cause image 
aberrations when used in perfecLly collimated light. 
Parallel light b etween collimator and camera, there
fore, is standard practice in designing spectrographs. 
Concaye collimatin g mirrors, how ever , produce 
astigmatic pencils of lig ht and, thus, cannot pr0"ide 
the desired perfect collimation . The result ing 
aberrations of the grating or prism will b e examin ed 
in this paper. The conditions to minimize these 
aberrations will be deriv ed. 

An eikonal theory will be applied to both plane 
grating and prism. In principle, this method was 
already used in H. A. Rowland's [1]1 and C. Runge's 
[2] work on plane and concave gratings. Its modern 
form is due to P. Zernicke [3] and has subsequently 
proved to be the most fruitful way to analyze 
concave gratings [4, 5]. 

The plane grating has been sparingly treated only . 
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FIG VRE 1. Plane )'ejlectance grating , 

2. Plane Grating 

2.1. Characteristic Function 

s 

Usually, parallel illumination is assumed [1 , 4]. 
M. V. Murty [6] has studied the plane grating in 
convergent and divergent light. Astigmatic illu
mination, however, has apparently nm'er been 
consider ed . 

An eikonal theory of the prism does not appear to 
exist at all. Yet, it will be shown here to proyide a 
closed t heory of image formation by the latter, also. 
It also leads to interesting analogies between gratin gs 
and prisms. 

Consider a plane reflectance grating illuminated by 
a point SOUl' ce S, as in figUl'e 1. The grating produces 
a virtual image, S' , of the source, and S ' is a pm:fe?t 
image of S if, for an arbitrary r ay, the characten stIc 
function (eikonal) 

1 Figures in brac kels indicate the literature references at the en d of this pa per 

V =[SP[-[PS' [+pl-tAjd (1) 

is independent of the point, P, at which the ray 
intersects the grating (P. Zernicke [3]). Here, P IS 
the coordinate of P in the direction perpendicular to 
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the grating grooyes, !l the spectral order, A the 
wayelength of the diffracted beam, and d the grating 
constant. As usual in geometrical optics, the \~irtual 
path, IPS' I, is counted as negati,~e . . 

Introduce b ase Yectors, N, T , and k, wIth the 
origin at the grating center 0 so that N is the grating 
normal, and T and k arc the grating tangents per
pendicular and parallel to the grooves. Let 

S= - sE= -s(A, B, C), (2) 

S' = - s'E' = -s' (A', B', C' ) (3) 

---> 

be the point vectors OS and OS' , E and E' being 
unity v~ctors along the principal rays incident and 
diffracted at 0 , and let 

p = (O, p , q) 

be the point \-ector, OP, of P. Thus, 

SP= - S+ P , PS ' = S' - P , 

and, for the characteristic function (1), 

v = ,1(S- P)Z- ,1(S' - P)2+ p)J.A/d 

=v-v' + p)J.A/d. 

2.2. Series Expansion 

From (2) and (4), 

v= s[l + 2(Bp+ Cq) /s+ (J) 2+ q2) /S2P/2 

= s[l + (Bp + Cq)/S+ H p2+ q2) /S2 

- HBp + Cq) 2/S2_ Hp2+ q2) (Bp + Cq)/S3 

(4) 

(5) 

+ ~ (Bp+ Cq) 3/83], 

where fourth-order terms are neglected. 
Hence, with the corresponding expression for v', 

V = (s-s') + (B- B' + )J.A/d)p+(C- C')q 

+ Hp2+ q2) (1/s - 1/s') 

- mBp+ Cq) 2/S- (B'p+ C' q) 2/S'] 

- Hp2+ qZ)[(Bp+ Cq)/S2- (B'p + C'q)/S'Z] 

+ mBp+ Cq)3/S2- (B'p + C'q)3/S' 2]. (6) 

2.3. Focus Condition 

The first foUl' terms of (6) yanish, and V is of 
second-order dependence upon p and q only, if 

s= s', 

B - B' + )J.A/cl= O, 

C= C'. 

(7) 

(8) 

(9) 

These equations describe the location of the virtual 
image in space. 
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FIG U RE 2 . The two princi pal cross sections of the gm/ing. 

For the N, T-pl!tne (fig. 2ai , (8) is r educed to 
the familiar, two-dimensional grating equation, 

sin <t> + sin <p' = )J.A/d, (8a) .j 

(8b) 

(8c) 

where <p and <p' are the !tngles which the projections 
of the principal ray enclose with the grating normal. 
In accordance with com-ention, rJ> is here always 
taken as positiYe, and <p' as positive or negative 
depending on whether incident and diffracted ray 
lie on the same or on different sides of the normal. 

Equation (9) constitutes the reflection law, 

f = v/, (9a) 

for the N,k-plane (fig. 2b) , where the grating simply 
acts as a mirror. For it is , with B = B' = O, 

C' = E'·k = cos (90 o + f') = - sin f' , 

(9b) 

(9c) 

where f and f' (both positive) are the angles which 
the projections of the principal ray enclose with the 
normal. 

V vanishes altogether if, furthermore , 

s = ro . (10) 

I 
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Used in p erfectly collimated ligh t, the gnLting pro
duces no 11 berrations. 

2.4. Second-Orde r Aberrations, Minimum of 
Deviation 

With (7), (8) , and (9) , tlte second-order le l"ln of V 
becomes 

E xcept {OJ" B = B' (zero-o rder reflecLioJl from the 
grating) <tHe! for 8= 00 (parallel illumination), it 
Yt1llisltes fur 

B'=-B, 0 = 0, (11) 

which is tlic case of the grating used in autocollima
tion; i.e. , of ,1.n in-plane mounting fLt the m inimum 
of del"ia tion. The astigmatism of the gmting, 
therefore, ",wishes for this mountillg. 

2.5. Highe r-Order A berrations, Astigmatic 
Illumination 

Thl'oughou t the /1.boye di scussion, iIlu mination of 
the gra ting with a spheric,tl or pLtne wa,'e fnll1t was 
assu med by considering objcct ancl image as IllMhe
m atic<tl points so that the focal ciisttLJlces 8 and 8 ' a r C 
the same in ,Lll cross sections of th e g m tillg. If t he 
gr ating is ltowel'er illurniwLtecl with an astigmatic 
p encil of nL~rs; i .e., ,t cylindric,tl wttl"e front, difl"erent 
focal dista.nces must be ,LSSU med for different cross 
sections. 

Eq uation (l0) call then no longer b e satis fLCd 
since an astig nH1. tic pencil contain s, at bes t, pamllel 
r ays in one cross sectioll only. TL mu st be deter
mined, therefore, how t hi s (TOSS sedion luts to be htid 
in order that the ttbcrnLtion s of Lhe gmLill g ,Lre at 
ImLst minimi zed. The two principal cross section s 
of the gr ating will be consider ed sep anLtcly for this 
purpose. 

N, T -Plane : With q= O and 8= S' =SII, t lte third
order term of (6) is 

~[(B3-B'3)_ (B - B')]p 3MJ' 

Except for B;= B and B ;.3=-HB ±.v4- 3B2)/ i t 
v'1.nis hes for 

(12) 

only, when 11 will b e iden tically zero in the N, T 
p lane , Parallel illumination is t herefore essential 
in this cross section. 

N, k-Plane: With p= O, O= e' , and s=s '= sv, the 
characteristic function 11 is identically zero for all 
choices of Sv . P,Lr,1.11el illumillation, therefore, is not 
req uired in this cross section at all. 

The aberrations of ,I. g rating in astigmatic illumi
nation will thus be minimized if parallelism of rays 
is only accomplish ed in th e N, T-plane. 

2 HIls again the ~r ivi :::.l case of zero-order rcflrction irom tho grating. R~ yields 
ilTlaginary val (]8S of ¢'. The remain ing solution 115, t hough real, is not compati
ble with (11) :1Jld thcrrforc of no s ignific3l1Cl; since there' is 110 poi nt in removing 
third-order aberm!.ions wllCn second-order ones ronu'.in nn corcrctctJ. 

e --

FIGURI, 3 . L ittrow pri8m. 

3 . Prism 

3.1. Characteristic Function 

s 

Consider a LillrolV pri sm in air iIlUilliil<1.led by a 
point source S, as ill fi g ure:3. The pris m produces 
l1. \ 'irtll<LI image, S' , wlticll is a perfect illllLge if, for 
,Lll a rbi tmry l"t"y, L1le dmnLcteris Lie funcLio.tl 

V=[SRI+n(I RPI+IPR' I)-IR'S' 1 (1:3) 

is independent of the point, P , '1.t whicll the my 
ill te rsects t lte bade face of t he prism. Here, H ancl 
H' ,Lre tlte points ,Lt Wlliclt Lite ray is refracted at 
the front LLce, ancl n is tile refmctiYe index of t h ~ 
pris m m ateri a l. Tlte virtua l p ,1th , IR'S' I, is counted 
,1.S :neg'1.Live. 

Introduce b ase Yectors, i, j , and k , with th e origin 
() on t he pris m edge , so thnL i is no r nu Ll to tlte back 
face and k extends ;1.long the edge. L eL a be the 
,wgle between t he two prism faces, so tluLt 

N = (cosa, -sin a,O) (14) 

I S t he normal of the front face and 

T = (sin a , cos a, 0) (15) 

is the tang en t perpendicular to the edge. 
Let 

S= -sE, (16a) 

R= S+ ISR le, (16b) 

P = (O, p, q) = R+I RPlr= R' - IPR' lr ', (16c) 

R' = S' + IR'S' le' , (16d) 

S' = -s'E' (16e) 
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be the point yectors OS, OR, OP , OR' , and OS', 
where E and E' are the directions of the incident 
and emerging ray at 0, e and r the directions of 
the incident an d refracted ray at R, and r ' and e ' 
the directions of the incident and emerging ray at 
R'. 

Thus, as R and R ' li e on the front face, 

and 

R · N = 0 = -sE· N + ISR le . N, 

P . N=-p sin a = IRP lr.N=-IPR' lr ' .N, 

R ' .N = O=-s'E ' .N + IR'S' le' ·N, 

ISR I=sE.N/e . N=sU, 

IRPI= -p sin a/r·N, 

IPR' I=p sin a/r'·N, 

IR 'S' I=s 'E' . N/e ' .N=s'U' . 

The r efraction law [7] requires 
n (r - r . NN)= e- e.NN, 

or, 

(17a) 

(17b) 

(17c) 

(17d) 

(18) 

where the negative sign was taken as, m (17b), 
the leng th IRP I must be positive. 

Likewise, 

n(r' - r' · NN)= e' - e' · NN, (18' ) 

and hence, for the char acteristic function (13), 

v = (sU +n2p sin a/liV) - (s 'U' _n2p sin a/W ') 

= v-v'. 

3.2. Series Expansion 

From (16) through (19), 

S =-sUe- IRPlr + P , 

E = (U + p sin a/sW )e 

-sin aU + e . N/W ) Np/s- (0, pis, q/s) . 

Writing, 

(20) 

(21) 

E·N= A, E · T = B , E·k=C, (22a) 

e · N= A jU, p/s= x, q/s=y, (22b) 

(e · T)Z+ (e · k)2= 1-(e · N )2= 1-A2jU2, (22c) 

W = .Jn2- 1+ A 2/U2 , (22d) 

we ob tain, by scalar multiplication of (21) by T and 
k, squaring, and adding, 

(U+x sin a/W )2(1- A 2/U2) 

-(B +x cos a)Z-(0+ y)2= 0, (23) 

as an implicit representation of U = U(x, y) . 

From here , the partial derivatives of U, 

Ux=(oU/ox)o 

= B cosa-(l-A2) sin a /W o, 

Uxx = (02U/OX2)o 

= 1-U;-n2 sin2 a /T1'6, 

etc., t aken at 

(24a) 

(24b) 

(24c) 

can be ob tained by repeated implicit differentiation . 
Then, 

(24d) 

whenc~, by substitution into (22d) and further 
expanSiOn, 

1/W = 1/Wo+ A2(Uxx+ Uuy)/w g+ ... , (24e) 

and, from (2O), 

v=s+(W o sin a+ B cos a)sx+Osy+ . ... (24£) 

Similarly, 

(U' -x' sin a/W' )2(1- A'2/U' 2) 

-(B' +x' cOSQ:)2-(C' + y' )2= 0, (23' ) 
with 

E' · N= A' , E'·T = B' , E ' ·k= O' , (22a ' ) 

pis' =x' , q/s' = y'. (22b' ) 
H ence, 

U~,=B' cos a-(1- A'2) sin a /W~, (24a ' ) 

U~'x, = 1 -U~7-n2 sin2 a /W~2, (24b' ) 
with 

W~= + .Jn2- 1 +A' 2, (22d' ) 

and, eventually, 

v' =s' -(W~ sin a- B' cos a)s' x' +0' s'y' + .. . . 

(24f') 

In t he manner thus outlined one obtains by tediou s 
but straigh tforward calculation, as a third-order 
approximation for V, 
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I 

V =v-v' = V o+ V1p + V 2q+ V 3P2+ V 4pq 

+ V 5q2+ V 6p3+ V 7p2q+ V Spq2+ V gq3, (25) 
with 

Vo=s-s', (25a) 

(25b) 

V 2= 0-O' , (25c) 

V 3= M(l - UD/s- (1 - U~7)/S '] 

- tn2 sill a [(Wo sin O' - 2A2Ux)/Wgs 

- ( W~ sin O' + 2A' 2 U~,) /H1~3s'], (25d) 

V 4 = - (UxO/s- U~,O' Is') 

+ n 2 sin a(NO/Wgs+A'20' /W~3S ' ), (25e) 

(251') 

V S= -HUXUXX/S2- U~,U~' x , /S ' 2) 

+tn2 sin O'[A2( Uxx-3(n2 - 1) U~/Tl'g) /Wgs2 

+A'2( U~'x, -3(n2- 1 ) U~7/VV~2) /HT~3S ' 2], (25g) 

V 7 = -t[(Uxx - 2 U; ) 0 /S2- (U~'x,-2 U~7)O' /S '2] 

- n 2 sin O'[A2Ux(1+3(n2- 1)/ Wg) /TVgs2 

+ A'2U~, (1 +3 (n2- 1) /w g) /W~3S ' 2], (25h) 

V s= - ~[Ux(l-3G") /S2- U~, (1-30'2) /S'2] 

+~n2 sin O'[N(1 -02-3(n2- 1)Q2/W~) /wgs2 

+ A'2(1- 0 '2-3 (n2- 1) O'2/W~2) / W~3S'2], (25i) 

(25j) 

3.3 . Focus Condition 

The first three terms in (25) vanish, and V is of 
second-order dependence upon p and q, only if 

(b) 

N 

(0) 

FIG U R 8 4. The two p j'incipal cross secti ons oj the pr ism. 

(The ray shown is parallel to t ile ra y through 0 in fi g. 3.) 

where cf> and cf>' (both positive) are the <wgles of 
incidence and emergence in t his pla.ne. Thus, from 
(24c, c') and (27), 

With 
sin cf> = n sin p, sin cf>' = n sin p' , (27e) 

where p and p' are the angles of retraction pertain
ing to cf> and cf>', this may be written as 

s=s', (26) n[sin (O'- p)+sin (O'- p')] = O, 

(Wo+ W~) sin O' + (B-B') cos 0'= 0 

0 = 0'. 

(27) which is satisfied if 

(28) 

:rhese equations describe the location of the virtual 
llllage. 

For the N, T-plane (fig. 4a), we have 0 0 ' = 0 
and, therefore, 

A = E · N = cos (J80o - cf» = -cos cf>, 

A'= E' ·N = cos cf>', 

B = E ·T = cos (90 o- cf» = -sin cf>, 

B' = E' ·T = cos {90 o - cf>') = sin cf>', 

(27a) 

(27b) 

(27c) 

(27d) 

(27f) 

Equations (27f and g) are the familiar relations that 
describe the passage of a ray through this cross 
section of the prism. 

Equation (28) constitu tes the reflection law, 

1{/ = 1{/ ', (28a) 

for the N , k-plane (fig.4b ), where the prism simply 
acts as a mirror. For it is, with B = B' = 0, 

O= Wk= cos (90 o + 1{/)=-sin 1{/, (28b) 

C' = E'·k=cos (90 o +1{/')=-sin 1{/', (28c) 
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who l'O 1/; and 1/;' (both positive) are the n,ngles of 
ineiclollce and emergence in this cross section. 

17 YI1nis hes altogether if 

s=OJ . (29) 

Illuminated with perfectly collim n,ted ligh t, the prism 
causes no aberrations. 

3.4. Second-Order Aberrations, Minimum of 
Deviation 

When the prism is used in n,u tocollimation; i .e., 
in an in-plane mounting at the minimum of de\'ia
t ion, its astigmn,tism becomes zero. For one has, in 
this cn,se, 

A'=-A, B'=-B, 0' = 0= 0, (30) 

and, wi th (24n" a', c, n,nd c'), 

so that, from (25d, e, f) and (26), 

V3 = 174 = 175= 0, 

for n,rbi tr ary values of s. 

3 .5 . Higher-Order Aberrations, Astigmatic 
III umina tion 

W ith astigmn,tic illu mil1<1tion , eq (29) can b e 
satisfied in one cross section of the prism , only, and 
th e two principal cr oss sections of the prism must 
therefore be considered separately. 

N , T-Plane: , Vith q= O n,nd S= S' = SH, th e ch n,l' ftc
tel'istic function (25) is seen to yanish for 

(31) 

only. T o eliminn,te high er-order aberrations in this 
cr oss section of th e prism, parallel illumination must 
b e used. 

N, k-Plane: W ith p= O, 0 = 0', n,nd s= s'=sv, th e 
characteristic function (25) is identically zero for all 
ch oices of sv. Pn,rallel illumination is ther efore not 
required in this cross section of the prism. 

H ence, the aberrations of the prism will be mini
mized if par allel illumination is at least provided for 
the N, T-plane. 
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4 . Conclusions 

Tha above tren,tment or plane reflectance gratings 
and L ittrow prisms in a like fashion shows that the 
two dispersive elements act alike in the following 
respects: 

(a) Dispersion tn,kes pln,ce in the cross section 
normal to the grating groO\'es, or prism edge, only. 
In the cross section containing t he grooves, or edge, 
the grating n,nd the prism act as plane mirrors. 

(b) In an in-plane mounting at the minimum of 
deviation; i.e ., in autocollimation, the astignmtism of 
th e grn,ting, or prism, is zero regardless of illumination. 

(c) In perfectly collimated light, the grn,ting and 
the prism form perfect images. 

(d) Illuminn,tion with n,stigmatic light requires 
pn,rn,llel rays in the cross section normal to the 
grating grOO\Tes, or prism edge, in ord~r that n,b.er.m
tions are minimized . In t he cross sectlOn contammg 
the groo\'es, or edge, deviations from parallelism are 
permissible. . 

As reflection from a phme mirror does not at all 
cause n,berrn,tions, the same, or corresponding, re
sul ts will be obtained by a comparison of transmission 
gratings and prisms. 

While similarities between pln,ne gmtings n,nd 
prisms h n,ve baen pointed out before [8], it is believed 
that the n,bo l'e ones are of n, less utificial alld more 
intrinsic nn,tul'e, for th ey allow the design of gmting 
and prism spectrogmphs from common principles . 

It will be shown in a su cceeding pn,pel' thn,t the 
abo\'e r esults lmye n,ll irnpor tn,llt influence on th e 
I'ocn,l surfftces of mirror spectrographs with either a 
gmting or n, prism n,s th e dispersive elemellt. 
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