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Theory of Mirror Spectrographs

I. Astigmatic Illumination of Plane Gratings and Prisms
Klaus D. Mielenz

(July 15, 1964)

By application of an eikonal theory, the image forming properties of plane gratings and

prisms are shown to be quite similar.

With uncollimated illumination, the astigmatism of
both vanishes for an in-plane mounting at the minimum of deviation.
images if illuminated with perfectly collimated (parallel) light.

Both produce perfect
In mirror spectrographs,

where this requirement cannot be fulfilled, aberrations are minimized if parallelism of rays
is achieved in the eross section normal to the grating grooves, or prism edge.

1. Introduction

Neither plane gratings nor prisms cause image
aberrations when used in perfectly collimated light.
Parallel light between collimator and camera, there-
fore, is standard practice in designing spectrographs.
Concave collimating mirrors, however, produce
astigmatic pencils of light and, thus, cannot provide
the desired perfect collimation. The resulting
aberrations of the grating or prism will be examined
in this paper. The conditions to minimize these
aberrations will be derived.

An eikonal theory will be applied to both plane
grating and prism. In principle, this method was
already used in H. A. Rowland’s [1] ! and C. Runge’s
[2] work on plane and concave gratings. Its modern
form is due to P. Zernicke [3] and has subsequently
proved to be the most fruitful way to analyze
concave gratings [4, 5].

The plane grating has been sparingly treated only.
Usually, parallel illumination is assumed [1, 4].
M. V. Murty [6] has studied the plane grating in
convergent and divergent light. Astigmatic illu-
mination, however, has apparently mnever been
considered.

An eikonal theory of the prism does not appear to
exist at all.  Yet, it will be shown here to provide a
closed theory of image formation by the latter, also.
It also leads to interesting analogies between gratings
and prisms.

I Figures in brackets indicate the literature references at the end of this paper
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Ficure 1. Plane reflectance grating.

2. Plane Grating

2.1. Characteristic Function

Consider a plane reflectance grating illuminated by
a point source S, as in figure 1. The grating produces
a virtual image, S’, of the source, and S” is a perfect
image of S if, for an arbitrary ray, the characteristic
function (eikonal)

V=|SP|—|PS’|+pu\d 1)
is independent of the point, P, at which the ray

intersects the grating (P. Zernicke [3]). Here, p 18
the coordinate of P in the direction perpendicular to
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the grating grooves, p the spectral order, N\ the
wavelength of the diffracted beam, and 4 the grating
constant. As usual in geometrical optics, the virtual
path, |2S’|, is counted as negative.

Introduce base vectors, N, T, and k, with the
origin at the grating center () so that N is the grating
normal, and T and k are the grating tangeats per-

pendicular and parallel to the grooves. Let
S=—sE=—s(4, B, (), (2) |
S'=—s'E'=—s"(A’, B/, (") (3) |

be the point vectors OS and OS’, E and E’ being
unity vaetors along the principal rays incident and
diffracted at O, and let

P=(0,p, @ (4)

be the point vector, OF, of P. Thus,

SP——S+P, PS' =S’ —

and, for the characteristic function (1),

V=+(S—P)*—+/(S"—P)’+pu\/d

=v—1" 4+ puN/d.
2.2. Series Expansion
From (2) and (4),
v=s[1+2(Bp+C s+ (p*-+ ¢3) ]
=s[1+ (Bp+Cq)/s+5(p*+¢*)/s*
—3(Bp+C9)*s*—1(p*+¢*) (Bp+Cq)/s*
+3(Bp+C)Ysl,

where fourth-order terms are neglected.
Hence, with the corresponding expression for »’,
=(s—s") +(B—B'+uNd) p+(C—C")q
+3(p*+¢»)(1/s—1/s")
—3(Bp+Cq)*/s—(B'p+C"g)*/s']
— 3P+ A Bp+Cq)/s*— (B'p+C"q)/s'?]
+3(Bp+Cg)*fs*— (B'p+C')*/s"?).

[$"—
2.3. Focus Condition
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(6)

The first four terms of (6) vanish, and V is of
second-order dependence upon p and ¢ only, if

g=g" (7
— B+ uNd=0, ®)
o= (9)

These equations describe the location of the virtual
image in space.

(a)

(b)

Ficure 2. The two principal cross sections of the grating.

For the N,T-plane (fig. 2a), (8) is reduced to
the familiar, two-dimensional grating equation,

sin ¢+sin ¢'=puN/d, (Sa)

since we have, here, ('=("=0, and
B=E-T=cos (90°+¢)=—sin ¢, (Sb)
B'=E’-T=cos (90°—¢’)=sin ¢/, (8c¢)

where ¢ and ¢’ are the angles which the projections
of the principal ray enclose with the grating normal.
In accordance with convention, ¢ 1s here always
taken as positive, and ¢’ as positive or negative
depending on whether incident and diffracted ray
lie on the same or on different sides of the normal.
Equation (9) constitutes the reflection law,

¢:¢/) (9?):)
for the N, k-plane (figz. 2b), where the grating simply
acts as a mirror. For it 1s, with B=B8'=0,

(C=E-k=cos (90°+¢)=—sin ¢, (9b)

(9¢)

where ¢ and ¢’ (both positive) are the angles which
the projections of the principal ray enc lose with the
normal.

V vanishes

C’'=E’"-k=cos (90°+4¢’) = —sin ¢/,

altogether if, furthermore,
(10)

§=o,
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Used in perfectly collimated light, the grating pro-
duces no aberrations.

2.4. Second-Order Aberrations, Minimum of
Deviation

With (7), (8), and (9), the second-order term of V/
becomes

—[3(B*—B")p+(B—B")Cq|p/s-

Except for B=B'" (zero-order reflection from the
erating) and for s=e (parallel illumination), it
vanishes for

(11)

which is the case of the grating used in autocollima-
tion; i.e., of an in-plane mounting at the minimum
of deviation. The astigmatism of the grating,
therefore, vanishes for this mounting.

B'=—B, 0=0,

2.5. Higher-Order Aberrations, Astigmatic
[llumination

Throughout the above discussion, illumination of
the grating with a spherical or plane wave front was
assumed by considering object and image as mathe-
matical points so that the focal distances s and s” are
the same 10 all cross sections of the grating. If the
erating 1s however illuminated with an astigmatic
pencil of rays; i.e., a cylindrical wave front, different
focal distances must be assumed for different cross
sections.

Equation (10) can then no longer be satisfied
since an astigmatic pencil contains, at best, parallel
rays in one cross section only. It must be deter-
mined, therefore, how this cross section has to be laid
ia order that the aberrations of the grating are at
least minimized. The two prinecipal cross sections
of the grating will be considered separately for this
purpose.

N, T-Plane: With ¢=0 and s=s"=s,, the third-
order term of (6) is

H(B'—B™)—(B—B)Ip*lsi

vanishes for

SH= @, (12)
only, whea V" will be identically zero in the N,T-
plane. Parallel illumination is therefore essential
in this cross section.

N, k-Plane: With p=0, ('=(", and s=s"=sy, the
characteristic function V' is identically zero for all
choices of s,.  Parallel illumination, therefore, is not
required in this cross section at all.

The aberrations of a grating in astigmatic illumi-
nation will thus be minimized if parallelism of rays
is only accomplished in the N, T-plane.

2 p3{ is again the trivial case of zero-order reflection from the grating. Bj yields
imaginary values of ¢’. The remaining solution B4, though real, is not compati-
ble with (11) and therefore of no significance since there is no point in removing
third-order aberrations when second-order ones remain uncorrected.

Fraure 3.

Littrow prism.

3. Prism

3.1. Characteristic Function

Consider a Littrow prism in air illuminated by a
point source S, as in figure 3. The prism produces
a virtual image, S’, which is a perfect image if, for
an arbitrary ray, the characteristic function

V=ISR|+n(|RP|+|PR'|)—|R’S’

(13)

is independent of the poiat, /2, at which the ray
intersects the back face of the prism. Here, 2 and
¢ are the points at which the ray is refracted at
the front face, and n is the refractive index of tho
prism material. The virtual path, [R’S’[, is counted
as negative.

[ntroduce base vectors, i, j, and k, with the origin
() on the prism edge, so that i is normal to the back
face and k extends along the edge. lLet « be the
angle between the two prism faces, so that

N=(cos a, —sin a, 0) (14)
is the normal of the front face and
T=(sin a, cos «, 0)

(15)

is the tangent perpendicular to the edge.
Let

S=—sE, (16a)
R=S+|SRle, (16b)
P=(0,p, =R+ |RPr=R'—|PR'[r’, (16¢)
R'=S'+|R'S|e, (16d)
S'=—s'E’ (16¢)
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= — mty e —_—
be the point vectors OS, OR, OP, OR’, and 0S8,
where E and E’ are the directions of the incident
and emerging ray at O, e and r the directions of
the iacident and refracted ray at R, and r’ and e’
the directions of the incident and emerging ray at
R
Thus, as R and R’ lie on the front face,

R-N=0O=—sE-N+|SRle-N,
P.N=—psin a=|RPr-N=—|PR’[r"-N,
R'"N=0=—¢'E""N+|R'S’|e’-N,

and

|SR|=sE-N/e-N=sU, (17a)
|RP|=—p sin a/r-N, (17h)
|PR'|=p sin a/r’-N, (17¢)
|R'S'|=s'E'-NJ/e’.N=s'U". (17d)

The refraction law [7] requires
n(r—r-NN)=e—e-NN, (18)

or, -
nr-N=—+n’—1+4(e-N)*=—W<<0, (19)

where the negative sign was taken as, in (17h),
the length || must be positive.

Likewise,
n(r’—r’- NN)=e’—e’- NN, (187)
nr’ - N=-+n’—1+(e’-N?=4+W'">0, (19)
and hence, for the characteristic function (13),

V=_(U4n*p sin o/W)—(s’U’—n?*p sin o/ W")

=p—v’. (20)
3.2. Series Expansion
From (16) through (19),

S=—sUe—|RP|r+P,

E=(U+ p sin o/sW)e
—sin a(l4-e- N/W)Np/s— (0, p/s, q/s). (21)

Writing,

E-N=A4,E-T=B E -k=C, (22a)
e-N=A/U, p/s=z, q/s=vy, (22b)
(e-T)*+(e-k)*>=1—(e-N)*=1—A4A%U? (22¢)
W=yn*—1+A4*U?, (22d)

we obtain, by scalar multiplication of (21) by T and
k, squaring, and adding,

(U sin o/W)*(1— AU?)

—(B+x cos a)’—(C+y)°=0, (23)
as an implicit representation of U=U(z,1).
From here, the partial derivatives of U,
U,=(oU/oz),
=B cos a—(1—A2) sin a/W,, (24a)
Usa=(0*U/02%),
=1—-Uj;—n?sin? o /W, (24b)
ete., taken at
e=y=0,Uy=1, W=+ yn>—1+42, (24c)

can be obtained by repeated implicit differentiation.
Then,
U=1+Ux+Uy+ .. ., (24d)

whence, by substitution into (22d) and further
expansion,

1W=1/Wo+A*Ux+U,y)/Wi+ ..., (24e)
and, from (20),
v=s-+ (W sin a+B cos a)se+Csy+ . ... (24f)
Similarly,
(U’ —2a’ sin o/W’)2(1—A"2/U"?)
— (B’ +2a" cos a)’—(C'+y")2=0, (23')
with
E'"N=A" E -T=B,E -k=0C’, (22a)
pls’'=2', qfs" =y’ (22b7)
Hence,
Uz =B' cos a—(1—A"?) sin /W), (24a’)
Usro=1—Ug3—n?sin? a/W2, (24b7)
with
Wo=-+yn?—14+A4"2, (22d")
and, eventually,
v'=s"—(Wqsin a— B’ cos a)s’a’ +C's"y' + . . ..
(2417)

In the manner thus outlined one obtains by tedious
but straightforward calculation, as a third-order
approximation for V,
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V=0—0"'=Vo+ Vip+ Vg + Visp’+ Vipg
+ Vi +Vep! +VapPq+ Vapg® +Viog?,  (25)

with
V():S_S,7 (2;’)21)
Vie (Wo+W2) sin a+ (B—B) cos a, (25b)
Vi=0—C", 25¢)
Vi=3l(0—U3) [s— (A—U;))/s']
—In?sin of (W, sin a—2A4%2U,) /W s
(W} sin a-24720.) /Wes],  (25d)

Vi=—(U,Cfs— UL.C"[s")

+n? sin a(A20/Wis-+A2C"[Wi3s’),  (25e)
Vi=3(1—0)[s— (1—=C")[s], (251)

‘76: - %(l]'r[,];x/.\‘z*‘ (/Y;/ l];/f//z\'/:z)

+ 102 sin o[ A2 (U,,—3(n2—1) U2/ W3) [Wis?
F AUl —3 2 —1) UZ/WD [Wis™,  (252)
Vi=—3{(Un—2UD O = (Uprar—2U) C'js"]

—n?sin o[ A2U,(1+3(n2—1)/W3) | Wis?
+A2U,, (143 m*—1)/W3) [ Weis’?, (25h)
Vi=—1U.,(1—30C?/s*— U, (1—3C"%)[s"4]
+1n? sin af[A2(1— C*—3(n*—1)C*/W3) | Wis?
+ A1 —C0"%—3m*—1)0"2/W2) | Wds'?

Vi=—3(1— )0~ (1

(251)

— 0[5, (25)

3.3. Focus Condition

The first three terms in (25) vanish, and V is of
second-order dependence upon p and ¢, only if

s=s’, (26)
(Wo+Ws) sin a+ (B—B’) cos a=—0 (27)
= (28)

These equations describe the location of the virtual
image.

For the N, T-plane (fig. 4a), we have O=(C"=0
and, therefore,
A=E -N=cos (180°—¢)=—cos ¢, (27a)
A'=E’-N=cos ¢/, (27b)
B=E-T=cos (90°—¢)=—sin ¢, (27¢)
B'=E’-T=cos (90°—¢’) =sin ¢’, (27d)

Fraure 4.

The two principal cross sections of the prism.

(The ray shown is parallel to the ray through O in fig. 3.)

where ¢ and ¢’ (both positive) are the angles of
incidence and emergence in this plane. Thus, from
(24¢, ¢’) and (27),

sin a(yn2—sin¢p++/n2—sin?¢) —cos a(sinp-+sing’) =

With

SIn ¢=mn sin p, sin ¢’=mn sin p’, (27e)
where p and p’ are the angles of refraction pertain-
ing to ¢ and ¢’, this may be written as

n[sin (a—p)+sin (a—p’)]=0,
which is satisfied if

p+p' =2a. (271)
Equations (27 and g) are the familiar relations that
describe the passage of a ray through this cross
section of the prism.
Equation (28) constitutes the reflection law,

Y=y,

for the N, k-plane (fig. 4b), where the prism simply
acts as a mirror. For it is, with B=B"=0

(28a)

C=E-k=cos (90°+¢)=—sin y,
{'=E'-k=cos (90°+¢’) = —sin ¢/,

(28b)
(28¢)



where ¢ and ¢’ (both positive) are the angles of |
incidence and emergence 1n this cross section.
V" vanishes altogether if
§=o, (29)
Tlluminated with perfectly collimated light, the prism
causes no aberrations.

3.4. Second-Order Aberrations, Minimum of
Deviation

When the prism is used in autocollimation; i.e.,
in an in-plane mounting at the minimum of devia-
tion, its astigmatism becomes zero. For one has, in
this case,

i =g B (30)

and, with (24a, a’, ¢, and ¢’),
U, =—U, We=W,,
so that, from (25d, e, f) and (26),
Vo= V= V=0,
for arbitrary values of s.

3.5. Higher-Order Aberrations, Astigmatic
Illumination

With astigmatic illumination, eq (29) can be
satisfied 1a one cross section of the prism, only, and
the two principal cross sections of the prism must
therefore be considered separately.

N, T-Plane: With ¢=0 and s=s'=s, the charac-
teristic function (25) 1s seen to vanish for

(31)

only. To eliminate higher-order aberrations in this
cross section of the prism, parallel illumination must
be used.

N, k-Plane: With p=0, =", and s=s’=sy, the
characteristic function (25) is identically zero for all
choices of sy.  Parallel illumination is therefore not
required in this cross section of the prism.

Hence, the aberrations of the prism will be mini-
mized if parallel illumination is at least provided for
the N, T-plane.

,\'H:oo,
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4. Conclusions

The above treatment of plane reflectance gratings
and Littrow prisms in a like fashion shows that the
two dispersive elements act alike in the following
respects:

(a) Dispersion takes place in the cross section
normal to the grating grooves, or prism edge, only.
In the cross section containing the grooves, or edge,
the grating and the prism act as plane mirrors.

(b) In an in-plane mounting at the minimum of
deviation;i.e., in autocollimation, the astigmatism of
the grating, or prism, is zero regardless of illumination.

(¢) In perfectly collimated light, the grating and
the prism form perfect images.

(d) Mumination with astigmatic light requires
parallel rays in the cross section normal to the
erating grooves, or prism edge, in order that aberra-
tions are minimized. In the cross section containing
the grooves, or edge, deviations from parallelism are
permissible. .

As reflection from a plane mirror does not at all
cause aberrations, the same, or correspoading, re-
sults will be obtained by a comparison of transmission
eratings and prisms.

While similarities between plane gratings and
prisms have been pointed out before [8], it is believed
that the above ones are of a less artificial and more
intrinsic nature, for they allow the design of grating
and prism spectrographs from common principles.

It will be shown 1n a succeeding paper that the
above results have an important influence on the
focal surfaces of mirror spectrographs with either a
grating or a prism as the dispersive element.
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