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Fringe Pattern of an Oscillating Fabry-Perot
Interferometer
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The dependence of the fringe pattern of an oscillating Fabry-Perot interferometer upon
the vibration amplitude is discussed experimentally and theoretically. If the fringes of the
stationary interferometer are wide, the fringe pattern tends to disappear at certain values
of the amplitude. If the stationary fringes are narrow, a splitting of fringes oceurs at certain
amplitudes. In both cases, the stationary pattern reappears, with reduced contrast, at
intermediate amplitudes.

The practicability of using these effects for the measurement of vibration amplitudes is
discussed.

1. Introduction

In a recent paper [1],' a photoelectric spectrum analyzer was described that consisted of
a Fabry-Perot etalon with a piezoelectric ceramic tube incorporated into the spacer. If an
a-c voltage of circular frequency w is applied to the ceramic, the length of the etalon, d, varies
with time, ¢, according to

d=dy+d; cos wt. (1)

The static length of the etalon, d,, was 10 em in one experiment, S mm in another. The
vibration amplitude, d;, is of the order of a few wavelengths. It is proportional to the peak
voltage applied, V;; the ratio was, in both cases, d,/V;=1.5 mu/v. A 60-cycle a-c voltage
was used. For both experiments, the green line of Hg 198 was chosen to illuminate the
interferometer.

The visual observation of the Haidinger fringe patterns of these oscillating interferometers
reveals a peculiar behavior:

As the vibration amplitude increases, the fringe pattern of the 10-cm etalon almost dis-
appears at certain discrete values of the amplitude and reappears at intermediate values;
figure 1. »

With the 8-mm etalon, on the other hand, the pattern also reappears at certain amplitudes
but, instead of vanishing at intermediate amplitudes, it appears as a double pattern; i.e., with
each fringe split into two, figure 2.

The contrast of the pattern in both cases gradually decreases as the amplitude increases.

Fringe disappearance, as in the first case, is well known from oscillating two-beam inter-
ferometers. Described by Osterberg more than 30 years ago [2], it is now the basis of an estab-
lished technique of measuring small vibration amplitudes [3].

As of this writing, the obviously more complex behavior of the oscillating multiple-beam
Fabry-Perot interferometer, however, has not yet been explained.

2. Theory

Consider an etalon of length d, and let 7" and R be the transmission and reflection coeffi-
cients of the etalon plates. Its transmission is

Ay, d, 1)=T*(1+R*—2R cos ¢)7}, (2)

with
o=, (3)
B= (4m/c)d cos 1, (4)

c=speed of light,
v=frequency,
,=angle of observation.

—

1 Pigures in brackets indicate the literature references at the end of this paper.
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Ficure 1. Fringe pallern of oscillating 10-cm etalon, for Vi=0, 68, 110, 154, and 201 v.
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F1GURE 2. Fringe pattern of oscillating 8-mm etalon, for Vi=0, 46, 96, 148, and 178 v.
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Let
D(u):(je—a?(u—uo)?:Oe_<a/5)2(¢_¢)z &

be the Doppler distribution of the illuminating light, », being its principal frequency. Here,

C, a=constants, (6)
&= PB.

Monochromatie light, of frequency v, is then observed in a given direction 7 with the intensity
1,(d, 1)=D) Ay, d, 7).

The total intensity observed in that direction is

I(d, )= fo "L, ), @)

which, upon substitution of (1), yields the instantaneous intensity distribution in the fringe
pattern of the oscillating etalon. The actually observed time average, then, is

<I(dy, dy, 7)>=(1/2r) f O (8)

It is probably impossible to solve this integral in a closed form. A solution can be obtained,
however, by expanding the integrand into a Fourier series as follows.

In the usual derivation of the Airy formula (2), the complex amplitude of the wave trans-
mitted by the etalon is obtained as [4]

P=T737 Rie~ e,
7
The intensity is

A=PP*=T* 3 RIR*¢~eets
Jok

:TZ <i [{Qn_*_i (eiTL:p_{__e—in(p) i Ifn+2m>
n=1 m=0

n=0

—T21—R?) (142 é R cos mp)- )

Thus,

I(d, iy=CT(1—R?) [fm o~ e glg) + 237 f
0 n= JO

©

(/)2 (o—)2
e~ @B =9 0og mo (1(<P/5):|-
@ O < .
Since ¢~ @@ ig essentially zero for — o <z<—¢, we have

o« +CD
1y 2 2 . _ 2,2
f ¢ @B e=0" cosne dp=cosnge f ¢~ @B cosnx dr
0 J—

+m
. _ 22 . - U
—sin ne f e~ @B gin nx de=cos ne(vrB/a)e = "820"—0,
J=c

Therefore,
I(d,1)=K (H—? i Rre— 8202 (0 714’)’ (10)
n=1
with
K=+r/a-CT?(1—R?). (11)
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For the oscillating etalon,

o= (4mvo/c) (dy+d, cos wt) cos 1
= ¢yt ¢, cos wt, (12)

and
B/2a= 27 jac) (dy+d, cos wt) cos 1. (13)

Neglecting the time as well as the angular dependence of the exponential function, we obtain
Tldo, diy i) =1, 00 = | 1233 72054029 cos (u+-ny cos o) | (14)
n=1

where ¢, determines the static pattern, and ¢, describes the vibration amplitude. This is the
Fourier expansion of the integrand in (8).
Hence,

2x © o2
<I (g, b)) >=(K/2r) [ f d(wt)+23° Rre~@nig/ac? f e ) (l(wt)]-
J O n=1 Jo
With

2

fﬂr cos(ngy+ne, cos wt) d(wt)=cos ng, f
JO

cos(neg, cos wt) d(wt)
JO

27
—sin ng, f sin(ne, cos wt) d(wt)=2m cosngeS(ne,)-+0,
JO
where J; is the Bessel function of zero order, we finally obtain
<A (o, ¢1)>:K[1 L Z R"e—@nxiyac)?cosng, Ju(11¢1)]' (15)
n=1

This is the desired time-average of the intensity distribution in the fringe pattern of the
oscillating etalon.
3. Discussion

3.1. Calculation of 27d,/ac

For the experiments described in this paper, the green line of He 198 was used. Its
) t=) ks
half-width is, approximately, 2(y—ry) ;=8 -10% sec™'.  Thus, from (5
) J ) ) )
(g—u3(4-10* sec‘l)?:%’
16 - 10" sec2=0.7,
a=2.1-107"? sec,

and
2mdyJac=d,- 107, (16)

with d, in em.
3.2. The Long Etalon: Fringe Disappearance

For the experiment of figure 1, the data of the etalon were d,=10 em and #=0.8. Thus,
from (15) and (16),

<[(¢(),¢1)>:K [1 +2 il (().N)"{'ﬁ-‘nz ('OSN¢(D J()(’I/(t!l)]'

This series converges very fast. To obtain < (¢, ¢;) >>/<1(0, 0) > to better than four decimals,
it suffices to consider the first two terms of the sum only; n <2.
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A plot of </>> versus ¢; is shown in figure 3 for ¢,=2m= (bright stationary fringes),

v=(2m+1)r (dark stationary fringes), and ¢y=02m-+3)7; m=0, +1, +2,. ... The
first two curves show maxima, or minima, at ¢;,=0, 3.9, 7.1, . . . .  TFor intermediate ampli-
tudes, ¢;=2.4, 5.5, . . ., the three curves practically cross each other in one point.

The intensity distribution in the fringe pattern (</> versus ¢,) is shown in figure 4 for
these significant values of ¢,. The pattern practically disappears for ¢;—=2.4 and 5.5. It re-
appears as a ‘negative’” (dark fringes instead of bright ones) for ¢;=3.9, and as a “positive”
(fringes in their original positions) for ¢;=7.1. As ¢, increases, the contrast decreases.

The peak voltages V; at which these conditions were actually observed are listed in table 1;
the corresponding vibration amplitudes d; are proportional to these voltages. As must be
expected from (12) if the theory is correct, the ratio ¢,/V/ is a constant, here equal to 0.035 v71.
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Fraure 3. <I>versus ¢1 for ¢po=2mmr, (2m—+1%)x, and (2m—+1)x.
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0=cm etalon.
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Ficure 4. Theoretical intensity distribution in
Jringe pattern of 10-cm etalon, for ¢1=0, 2.4,
3.9, 5.5, and 7.1.
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TasrLe 1. Significant amplitudes, ¢, and peak voltages, V;,
for 10-cm etalon

Pattern b1 Vi ! &1/ V1
Volts ‘ Volt—1
Disappeared____ 2.4 68 | 0.035
Negative 3.9 110 . 036
Disappeared__ - 5.5 154
Positive . 7.1 201 . 035

3.3. The Short Etalon: Fringe Splitting

For figure 2, an etalon of 8 mm length and, again, 80 percent reflectivity was used. There-
fore, from (15) and (16),

<1(¢y, 1) >=K l:l—l—? i} (0-8)"¢=6n%.107% cosng, Jo(nqﬁq)}

n=1

The convergence of this expansion is rather poor. It takes 10 terms of the sum; n <10, to
obtain < (¢, ;) >/<1(0,0) >to about two decimals. This accuracy, however, is sufficient for
our purpose.

The plot of </> versus ¢;, again for ¢=2m=x, 2m-+1)x, and (2m-})m, is shown in
figure 5. Quite contrary to the corresponding graph in figure 3, the three curves cross each
other in no single point. The fringe pattern can therefore no longer be expected to disappear
at certain vibration amplitudes. The curves for ¢y=2mm and (2m-1)=x are no longer mirror
images of each other; they have maxima at ¢;=0, 6.4, . . ., and ¢,=3.4, . . ., respectively.
The curve for ¢,= (2m - %), practically a straight horizontal line in figure 3, now has pronounced
peaks also; at ¢,=1.7, 4.9, .
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Figure 5. <I>versus ¢, for pp=2mmr, (2m-+%)r, and (2m+1) .

8=mm etalon.
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Ficure 6. Theoretical intensity distribution in
fringe pattern of 8-mm etalon, for ¢ =0, 1.7, 3.4,
4.9, and 6./.

Figure 6 shows < 1> versus ¢, the intensity distribution in the fringe pattern. One sees,
as in figure 2, (a), the stationary pattern at ¢,=0, (b), the split ‘“positive” pattern at ¢;=1.7,
(c), the “negative” pattern at ¢,=3.4, (d), the split “‘negative’’ pattern at ¢,=4.9, and (e), the
reappearance of a “positive’” pattern at ¢,=6.4. Again, the overall contrast decreases as
¢, Increases.

The peak voltages V; at which the photographs in figure 2 were taken are compared to
these ¢,-values in table 2.  Again, the agreement between experiment and theory is satisfactory
as ¢,/V; turns out to be the same constant as in table 1.

TaBLE 2. Significant amplitudes, ¢1, and peak voltages, Vi,
for 8-mm etalon

Pattern ‘ 1 ‘ Vi ‘ &1/ V1

Volts Volt-1

Split 1.7 46 0. 037
Neg: 3.4 96 . 035
4.9 148 . 033

6.4 178 . 036

4. Conclusions

The fringe pattern of oscillating Fabry-Perot etalons, as shown in figures 1 and 2, are fully
explained by the above theory. Fringe disappearance, such as also obtained with an oscillating
two-beam interferometer, is observed when the fringes in the stationary pattern are broad.
Fringe splitting is found when they are narrow. The vibration amplitudes significant for
fringe reappearance, and disappearance or splitting, are different in the two cases.

The behavior of the pattern, thus, depends entirely upon experimental circumstances
such as, the length of the etalon, the reflectance of the etalon plates, and the width of the
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spectrum line used for illumination. Mathematically, these factors determine the rate of
convergence of the series expansion (15) and, thus, the distinction between the two border cases.

For an oscillating two-beam interferometer, no such dependence upon experimental
circumstances exists.  For the measurement of vibration amplitudes, therefore, an oscillating
multiple-beam interferometer appears to be less practicable than a two-beam interferometer.
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