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Externally pressurized gas-lubricated bearings have been used successfully to support

the shaft of a miniature, high-speed expansion turbine.

cavities to suppress whirl at high speeds.
detail.

1. Introduction

In the field of gas liquefaction and low temperature
refrigeration, small high-speed expansion turbines
are often employed as the source of refrigeration. In
the smaller sizes of machines however, the life and
speed of conventional bearings are limited, and con-
sequently a lower limit is set to the practical size of
such machines. This limitation may be alleviated
by the use of gas-lubricated bearings to support the
shaft. The bearings may be lubricated with process
gas, thus eliminating the risk of contamination with
oil. Since there is no solid friction, there should be
no wear and consequently the life of the bearings
should be of indefinite duration.

In the operation of a gas-lubricated bearing, the
surface of the shaft must never touch the surface of
the bearing, since at the high-surface speeds usually
employed, such contact may result in seizure and
the consequent destruction of the bearing, Under
normal operating conditions the shaft should be
supported by forces due to pressure in the gas film
between the shaft and the bearing and these forces
must be such that the shaft is maintained in a
position of stable equilibrium.

In certain types of gas-lubricated bearings, a form
of instability known as whirl is sometimes observed,
particularly at high speeds of operation. If the
speed of the shaft 1s increased above a critical value,
the center of the shaft orbits about the center of the
bearing at a speed approximately one-half the speed
of the shaft—commonly known as half-speed whirl.

Whirl may be stable or unstable: Stable whirl is
characterized by the center of the shaft moving in
a closed orbit about its former position of equilibrium.
This 1s illustrated in figure 1. Unstable whirl (fig.
2) is characterized by the center of the shaft moving
along a spiral orbit of increasing amplitude. The
extent of the increase in amplitude 1s, of course,
limited to the extent of the radial clearance between
the shaft and the bearing.

The bearings incorporate stabilizing

The theory of the bearing design is presented in

The bearing described below has been specially
designed to ensure stability even at the highest
speeds of operation with helium gas as the pressur-
izing medium. The theory of this bearing was pre-
sented at the First International Symposium on Gas
Lubricated Bearings [Sixsmith, 1959b]. 1In the pres-
ent paper, the theory has been extended and applied
to the design of the bearings of a helium-expansion
turbine [Birmingham, Sixsmith, Wilson, 1962]. The

@

Frcure 1. Whirl: constant amplitude.

FiGcure 2.

Wharl: increasing amplitude.
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theoretical approach used in this particular design
and construction is outlined in the following detailed
analysis.

2. Shaft Whirl

In the diagram shown in ficure 2, it is assumed
that the shaft is vertical so that the only forces
acting on the shaft are those due to pressure in the
surrounding gas. At a given instant of time, the
centers of the bearing and the shaft are situated at
O and O’. The radial displacement O 0’ is repre-
sented by e. The shaft is moving to the left along
a spiral orbit. The resultant of all the forces due
to gas pressure is represented by the force vector

Fx. The instant center of the orbit of 0 is situated
at 0’”7. The line 0’ 0" bisects the angle between

Fx and the radius 0’ 0.

It will be assumed that, over a restricted range,
the force Fx varies directly as the radius O 0, and,
hence, behaves like a spring. The force Fx may be
resolved into three components.

Fx cos? 6=Y(0 0)
which pulls the shaft toward the bearing center,
Fx sin ¢

which accelerates the shaft center along the orbit,
and a component

Fx cos 6 sin 6

which provides the energy required to stretch the
“spring”’.

The angular velocity w of O about O is given by
the equation

me?(0 0)=Y(0 0')=Ye

Y

w=— —

m

where m is the effective mass of the shaft in the
plane of the bearing.

The linear velocity (0’ O’) of the center of the
shaft may be resolved into a tangential component

or

w(0" 0) cos =uwe
and a radial component
w(0’ 0) sin §=we tan 6.
Thus the line of centers may be regarded as rotating
about the center O with an angular velocity w, while
the radial distance e expands as it rotates. The rate

of expansion is given by the equation

62606“’[ tan §

where ¢ is the value of the eccentricity when ¢=0.
Thus if the direction of the resultant force lies ahead

Ficure 3. Wharl: decreasing amplitude.

of the line of centers (0 positive), the diagram ex-
pands exponentially with time; conversely if the
direction of the resultant force lies behind the line
of centers (0 negative) as shown in figure 3, the dia-
gram shrinks in toward the origin and the bearing
should be stable, even though the force Fx may be
quite small.

In practice, the forces due to the film of gas may
be far from linear, and at a certain speed of the
shaft, if the eccentricity is increased from zero, the
sign of the angle § may change from positive to nega-
tive at some critical value of the eccentricity. Under
these conditions the diagram should expand asymp-
totically toward the critical value of the eccentricity
and whirling of stable amplitude should occur. This
is often observed in practice.

3. Fluent Film Lubrication
The action of a simple sleeve bearing is illustrated

in figure 4. A shaft of radius » is surrounded by a
sleeve of radius 7+, the interspace being filled with

PRESSURE
INCREASED

X

PRESSURE
REDUCED

Ficure 4. Hydrodynamic pressure distribution.
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a continuous film of lubricant. The center of the
shaft O is displaced from the center O of the sleeve
by a small distance e.. If the shaft rotates counter-
clockwise, the film of lubricant is carried into a con-
verging channel on the upper right-hand side of the
diagram, and out of a diverging channel on the lower
left-hand side of the diagram. Thus the pressure is
increased on the upper 11011( hand side and reduced
on the lower left-hand side. The resultant force due
to the pressure distribution is at right angles to the
eccentricity. This is true, however, only for very
small values of the eccentricity where compressibil-
ity effects can be neglected; at larger values of the
eccentricity, compressibility effects introduce an
asymmetry and a component of force directed
toward the center of the bearing is generated.
Suppose the eccentric (hspla(,enwnt of the shaft
from the center of the bearing is maintained at a
fixed value by means of a short link free to rotate
about 0. The forces exerted by the film of gas on
the shaft will cause the shaft to whirl about the
center 0. The whirling velocity « will be the veloc-
ity at which the gas film is carried into the conver-

gent channel, i.e., -‘)i where w, is the angular velocity
of rotation of the shaft.
Thus

w="¢. (1)

This phenomenon which is known as “half-speed
whirl” is often encountered in the bearings of high-
speed spindles, particularly under conditions of light
loading.

If the shaft is of mass m, then there will be a
centufusml force mw’e due to the whirling which
acts in the direction 01 the (\((011[11('11\* The
pressure in the film of lubricant can only exert
forces at right angles to this (hw(tlon, and ‘if half-
speed whnl is ocecurring, this pressure is zero;
consequently, if the short link is removed, the shaft
will move outward along a spiral orbit until it comes
into contact with the sleeve. As it moves out,
however, compressibility and other effects cause
the pressure distribution to become asymmetrical.
Under these conditions, the new pressure distribution
provides a force which can be resolved into a tangen-
tial component and an inwardly directed radial
component. In practical bearings, small deviations
from perfection, such as variations in the film
thickness, may introduce such a radial component
even when the shaft is at the center of the bearing.
At moderate speeds this radial component may be
sufficient to balance the centrifugal force due to
whirl.

As the speed is increased, however, the radial
component of the force due to the film increases
as the first power of the speed, while the centrifugal
force due to whirl increases as the square of the speed
Thus it is evident that at some critical speed the
centrifugal force should become equal to the radial
restoring force, and at this speed the shaft should

become unstable. This phenomenon is often ob-
served in practice.

In a perfectly constructed bearing, however, it
is evident that a whirl of small amplitude should
commence even at a very low shaft speed. This
prediction has been verified experimentally by
Boeker and Sternlicht  [1956].

The tangential force /y which is generated in a
bearing of radius », of radial clearance 6 and of
length L, is given by the equation

Ly n,> (2)

o A2murtle 2 ,<,w~_
B 24n)a—nd)2\ 2~ “

where

w 1s the viscosity of the gas in Ib-sec/in.?
e 1s the eccentricity in inches

n 18 the eccentricity ratio

w, 18 the rotational velocity

w is the angular velocity of whirl and

L .

/(—; n ) is the end leakage factor which depends on
,
N

L
o and n.

The first, second, and fourth terms on the right-
hand side of eq (2) are taken from a paper by Ford,
Harris, and Pantall [1957]. The third term, accord-
ing to Barwell [1956], is introduced in order to
account for the effects of whirl. Equation (2)
holds only where compressibility effects can be ne-
elected so that the pressure distribution is symmetrical
about the line of centers.

The value of the end leakage factor has been de-
termined experimentally by Ford, Harris, and
Pantall [1957].  According to the curves in figure 18
of their paper, the value of the end leakage factor
in bearings whose length is less than twice the di-
ameter is approximately

I\ 1L
J 7>~’e.o'7»’

(3)
and for small values of n, the leakage factor is
independent of the eccentricity ratio.

Thus, at small values of the eccentricity ratio, the
tangential force in a sleeve bearing whose lonwth is
less than twice the diameter is given dpp]O\]I]ldl(‘lV
by the equation

3 . 2murtl?
Fy=Ege 282 < w) 4)
where I/ 1s the tangential “‘spring” modulus.
Equation (4) may be written
L LA, 2
Fy=EgenT L et (1 w“’) ()

The force Fy can be either positive or negative
depending on the value of w. In fact, Fz=0 when
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. [BR & .
w is exactly equal to —- There is no pressure acting

2
on the shaft due to the gas film under this condition.
The force Fy acts at right angles to the displacement

¢, and when w<%; then Fy acts in the direction of
shaft rotation and whirl is accelerated; conversely,
when w>%; then Fy acts in the opposite direction

to shaft rotation and whirl is retarded.

An appreciation of the magnitude of the tangential
force in a simple sleeve bearing at an eccentricity e
may be obtained from the following example.

Erxample 1

Radius of shaft 0.437 in.
Radial clearance 1.50 X 1073 in.
Length of bearing 0.281 in.

Viscosity of gas
Angular velocity of shaft
Angular velocity of whirl

2.97 X 107° Ib-sec/in.?
1.88 X 10* radians/s
Zero

3,14 2.973X 107X (0.437)2 (0.281)2X 1.88 X 10*
(1.5X107%)?
(6)

Ey=784 1b/in. (7)

EH:

Thus at an eccentricity of 0.000393 in. (0.001 ¢m)
the tangential force is approximately 0.308 1b weight.

It is evident that in order to insure stability at
finite speeds of the shaft, the bearing must be de-
signed so that a radial restoring (centering) force
Fr is generated. If this force is proportional to the
eccentricity, it behaves like a spring, and it may be
expressed as

Ye=Fy (8)

where Y is the modulus of the “spring” and e is the
eccentricity. An appreciation of the radial spring
modulus required in one of the bearings of the
miniature turbine may be obtained from the follow-
ing example.

FExample 2

The effective mass of the shaft in the plane of the
most heavily loaded bearing is 0.775 lb, and the
designed rotational speed is 3,000 rps. The corre-
sponding half-speed whirl velocity is 1,500 rps=9430
radians/s. Inserting these values in the equation
Ye=muw’e we get

Y'=0.775>9430%/32.3 X 12 (9)

(10)

At an eccentricity of 0.00039 in., the centrifugal
force would be approximately 69. 5 1b weight.

=178,200 lb/in.

4. External Pressurization

The necessary restoring force may be generated
by means of external pressurization. The sleeve is
provided with a number of equally spaced injector
holes, as shown in figure 5. Compressed gas is
supplied to the injector “holes and flows radially out-
ward in the clearance space between the shaft and
the sleeve. The shaft is found to float centrally in
the sleeve, a well-known effect.

The reason for this effect becomes evident from an
examination of a plane circular bearing as shown in
the insert of figure 6. 1In this figure the relationship
between the mean pressure between the plates and
the plate separation is shown for various supply
pressures. The graphs in figure 6 show the variation
of pressure with the separation of the plates for
plates of % in. diameter. In order to find the
corresponding variation of pressure for plates of
any diameter, the scaling relationship A*~D is used
in conjunction with a constant orifice to pad diameter
ratio. Accordingly, the graphs shown in figure 7
are drawn for pads 3% in. diameter and a plate
separation of 0.00165 in., which corresponds to a
plate separation of 0.0015 in. with plates s in.
diameter.

As shown in figure 5, the pads in this bearing are
not circular but have a rectangular configuration, as
shown. It will be assumed that each pad is equiva-
lent to a circular pad %s in. diameter. The mean
pressure in the dearance space between a pair of
diametrically opposed pads [Sixsmith, Wilson, Bir-
mingham, 1961] 1s shown in ficure 7. Curves a and
b show the variation of mean pressure with clearance
on the right-hand and left-hand sides of the shaft.
Curve ¢ shows the variation of differential pressure
with the eccentric displacement of the shaft. Over

JeL
&%%@@”

I
|| |

JL‘ |

Frcure 5. Conventional gas-bearing arrangement.
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Frcure 6. Load versus plale separalion curve.

a restricted range the differential pressure (curve c)
may be assumed to be linear, thus the corresponding
restoring force is also linear, and is directly propor-
tional to the displacement.

If the direction of the radial displacement makes
an angle v with a diameter through the center of a
pair of diametrically opposed pads, the component
of the deflection with respect to the pads is e cos v.
Similarly, the component of the force generated by
the pair of diametrically opposed pads in the direc-
tion of the displacement is also proportional to cos v.
Thus the total restoring force along any radius is
given by

)

10P

Ve=g s, Are[cost vl

or
7 >
)/’GZ%AI%{—E (11)

where } is the “spring’”” modulus of the gas film, N

is the number of pads, A, is the area of a pad, and
1 0P
2 Oe
as shown in figure 7.

is the differential pressure due to a single pad

FErample 3.

In the present bearing there are eicht pads, and
for this particular number of pads,

80

60

n
o

o

\_ Differential
\Pressure c

PRESSURE , psi

T

312"
40—

80 |— 16

.0010 0
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Ficure 7. Mean pressure on gas-bearing pads.

The effective area A, of a pad is 0.076 in.2, and the
slope of curve ¢ at 200 psig supply pressure is 44,000
Ib/m.?)in.  Putting these values in (13) we obtain
the value of ¥. Thus

Y'=23<0.076 %< 44,000

=6,700 Ib/in. (14)
At an eccentric displacement of 0.00039 in., the
radial restoring force is 2.61 lb. This is less than
the corresponding centrifugal force (example 2) by
a factor of 27. Thus it is evident that the radial
restoring force, although quite large, is insufficient
to prevent the shaft from spiralling outward until
it touches the bearing. It is then necessary to devise
a method whereby the centrifugal force can be
reduced to a value below the available radial restor-
ing force in order to obtain a stable bearing. This
can be accomplished by reducing the shaft whirl
speed. The method used to reduce whirl speed is
presented in sec. 6.

5. Analysis of Turbine Rotor Instabilty

In an early design of a turbine [Sixsmith, 1959a]
in which the turbine was mounted on a flexible shaft,
it was discovered that a hydrodynamic execiting-
force can be generated by the turbine rotor. At a
certain critical pressure of the gas supply, a whirling
of the shaft would commence. The shaft could be

2 0 ___ ¢
2 [cos® vl =4 e made to whirl even when it was prevented from
and (11) becomes rotating. In order to suppress the whirl it was
Ye—2A, or . (13) hecessary to provide damping in the form of oil-filled
" e dash-pots.
105
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h= 8 + € cos

43

Y

Ficure 8. Force distribution on turbine rotor.

An explanation of this phenomenon is as follows.
The effect appears to be due to forces which are
generated by the variation of blade-tip leakage with
rotor eccentricity. Consider the turbine rotor shown
in figure 8. If the rotor is displaced downwards as
shown, the tip leakage is reduced around the lower
half of the rotor and correspondingly increased
around the upper half. Around the lower half of the
rotor the tip leakage is less, hence an increased
thrust is developed on the blades. This force is to
the right for counterclockwise rotation. Around the
top half, tip leakage increases and the thrust on the
blades is reduced. This can also be regarded as an
added component of force to the right. Conse-
quently there is a net force to the right acting on the
rotor as a whole. This force is at right angles to
the displacement, and therefore, it is in the same
direction as the hydrodynamic force which is gen-
erated in a simple sleeve bearing.

An estimate of its magnitude may be made if we
assume that the loss of torque due to tip leakage is
directly proportional to the tip clearance, i.e.,

Tdg [1_ 2riho, )] 5

=
2 w0 (ri—

where

dT=element of torque acting on the blades
between ¢ and ¢-+d¢

T=total torque acting on the rotor—in. Ib

r;=tip radius—inches

r,=ro00t radius—inches

h=mean tip clearance between ¢ and 7-+do—
inches

»y=axial component of velocity of
the tip clearance in./s

v,==axial component of velocity of gas through

the annulus—in./s between », and 7,.

gas through

If the rotor is deflected downwards a distance e
the tip clearance £ at a point which makes an angle
¢ with the direction of the displacement is given by

h=6-+¢€ cos ¢. (16)

The horizontal force dF to the right which acts on
the small segment of blading lying between ¢ and

¢+de is given by
dF= A cos ¢

m

where 7,,=mean radius of rotor blades. Thus

,T de

277,

271'71/)11

Substituting (6+€ cos ¢) for b we have

dF=

Tde

T

21”15’1

= =

=

(6-+€ cos ¢>):| COS ¢.

On integrating between O and 27, all terms will
vanish e\(‘ept the one containing cos®> ¢. thus we
have
2r10;

. Te
! GRS

27r,l”l

(Lsi AN
5 SIn ¢ Cos ¢ 9 ¢)0

 Terp 1,1 . i
_7rl‘m(l‘f—l'§)€2< §¢+1 =i 2¢>0

Terin
P (rF—73) 0,

which may be written as

F=FkTe (17)

where
I
'm (,‘? -

=

Bey

Thus it appears that the whirl-inducing force is
proportional to the product of the tOIque and the
eccentricity, but is independent of tip clearance as
long as the assumption that the blade passage
eﬂi(*lenc\ is inversely proportional to tip clearance is
valid. Since for a given eccentricity it is propor-
tional to the torque, it is capable of inducing a
whirl even when the shaft is prevented fIOlIlIOtd,tlIlO‘

In the miniature turbine the value of the torque
at 3000 rps and 3 kw of power is 1.406 lb-in. The
values of 7y, 7, and 7, are 0.436, 0.397, and 0.36 in.
Since the blade outlet angle is 30°, the value of

-Z—lis 2, approximately. Putting these values in (17)
2

we have

o 1.4060.436 X2 ¢
~0.397(0.436°—0.360°)

or

F=51.15¢1b. (18)
Thus at an eccentricity of 0.00039 in. the tangential
force is 0.02 1b “eloht
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CAVITIES OF
CAPACITY C

FI1GURE 9.

Gas bearing with stabilizing cavities.

6. The Analysis of a Method of Stabilizing
a Gas-Lubricated Bearing

In order to ensure stability, it is necessary to reduce
the angular velocity of whirl until the centrifugal
force becomes less than the radial restoring force.
A reduction in the angular velocity of whirl may be
effected if the bearing is designed to generate a force
which acts in the opposite direction to the hydro-
dynamic exciting forces due to the bearing and the
turbine rotor.

A bearing designed to produce this stabilizing
force is shown in figure 9. In addition to the injector
holes, as shown in figure 5, the shaft is surrounded
by a number of pneumatic phase shift networks
which are spaced midway between the injector holes.
Each network consists of a cavity which acts as a
pneumatic capacitor and a leak orifice which acts
as a pneumatic resistor. A stream of gas flows into
each cavity from the adjacent injector holes, and
escapes from the cavity via the leak orifice. The
pressure in the cavity is determined by the flow rate
and the resistance of the orifice. In the event of a
whirling of the shaft, the flow of gas into each cavity
is modulated, the modulation being in phase with
the eccentricity vector. As a consequence of the
modulated inflow, the pressure in the cavity is like-
wise modulated, but by virtue of the finite volume
of the cavity, the phase of the pressure is lagging
with respect to the phase of the current and the
eccentricity. The force on the area of shaft facing

the cavity, being in phase with the pressure, is like-
wise lageing with respect to the current and eccen-
tricity vectors. This force can be resolved into
components whose directions are radial and tan-
gential with respect to the eccentricity vector.
The tangential component acts in the opposite
direction to the hydrodynamic force due to the
bearing and the turbine rotor. By suitable design
of the bearing, the tangential component of force
:an be made to exceed the exciting forces so that
the net tangential force is opposed to the tangential
motion of whirl, and consequently, the whirling
motion should be damped out.

The radial component acts in the opposite direc-
tion to the centering force due to the injector holes,
and therefore it reduces the load carrying capacity
of the bearing. This is inherent in the design and
:annot be avoided.

As shown in figure 9, a shaft of radius » is sur-
rounded by a sleeve of internal radius 7-+46. Gas from
eight injector holes each of radius r;, equally dis-
placed around the circumference of the sleeve, flows
into eight cavities each of capacity €. The ma-
jority of the gas escapes from each cavity through a
leak orifice of resistance . The remainder escapes
at the ends of the bearing, but it will be assumed that
this portion is negligible. Each cavity and leak

(”'j

0

I cos (wt+p)

'

FIG. 10 FIG. 11

FIG. 12 D A FIG.13

FIG.14

Freures 10-15 (inc.) Veclor diagrams tllustrating the action
of a stabilizing cavily.
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behaves like an electrical resistance-capacity net-
work: the capacity of a cavity being defined by the
equation

Ol bp P _OP

and the resistance of a leak by
L1, 1bjs (20)

where V is the volume of the cavity, pis the density of
the gas in the cavity, P is the pressure in the cavity,
I, is the current of gas accumulating in the cavity,
and [, is the current flowing through the leak: ¢ is
time.

A cavity receives its gas supply from both of the
adjacent injector holes. Suppose now that the
shaft is whirling with an eccentricity e and a counter-
clockwise angular velocity . The motion of the
center of the shaft may be represented by a complex
vector e rotating counterclockwise with the same

angular veloeity (ﬁo 10).

Refenmg; again to figure 9, it will be seen that

the current of gas I entering cav1t_\' 1 will be given by

I=1/2I+1/21,

=7uTr;Vpy (h1+h2) (2] )

where » is the velocity of the gas at the edges of the
injector holes and p, is its density. The values of
the clearance at the injector holes adjacent to cavity
1 are given by

hi=06-+¢€ cos (wt—%)

and
™
}02:6+€ CcOS wt—{—ﬁ
¥
where N is the number of cavities.
The time ¢ is assumed to be zero when e is pointing

vertically downward through the center of cavity 1.
Equation (21) may now be written

I=nrpp < 6+e€ cos <wf—1>+6+e cos <wl‘+£7>1
N N/ j
r ™
:m'jz,*pli25+2e cos wt cos W}- (22)

The current flowing into cavity 1 thus consists of
a steady component [, which is given by
[()2271'7']'17[)15 (23)

and an alternating component /; which rotates in
phase with the eccentricity vector e and whose

instantaneous value is given by

1; cos wt=2ar;vpe Cos wl cOS %, (24)

In the above analysis, the effects of shaft rotation
and whirl have been neglected. These effects influ-
ence the flow rate into the cavity. Referring to
figure 9, 1t is seen that the clearance between the
shaft and the bearing on the right-hand side of the
cavity is greater than the clearance on the left-hand
side. As a consequence of the rotation of the shaft,
more gas is carried out of the cavity on the noht—
hand side than is carried in on the left-hand side.
Thus there is a net flow of gas out of the cavity. An
estimate of the value of this component of current
may be made if it is assumed that the principle of
superposition may be applied; i.e., that the velocity
of the gas at any point in the film is the vector sum
of the radial velocity from the injector holes and the
tangential velocity due to hydrodynamic action.

The instantaneous value of the hydrodynamic
component of current 7, is given by

I, sin wt=

o Larpa(ho—hi)

:% Lcl‘pg{ |:6+e cos <wt—l—%>]
—I:B+e cos <wt—%>:|}

’ o T e
=—w,L,pse Sin wt sin - (25)

N

where 1, 1s the alternating flow of current, «, is the
angular speed of the shaft, 7is the radius of the shaft,
L, is the effective length of the cavity, and p, is the
density of the gas in the clearance space.

Referring again to figure 9, it is seen that as a
consequence of the whirling motion, the shaft is
approaching the cavity and therefore the volume of
the cavity is decreasing. This may be regarded as a
current Iy flowing into the cavity, the volume of
the cavity being rog-urded as constant. The in-
stantaneous value of the current is given by the
equation

Tw sin wt=2wL,rpse sin wt sin r (26)

N

where [ is the alternating flow of current and o is
the angular velocity of whirl.

Thus the resultant current /; due to the effects ot
shaft rotation and whirl is given by the equation

. . 2 . .
Iy sin wt =— L, rpsew, <1_7°}i> SIn wi sin

s

™
N (27

This current may be represented by the vector Ix
(fig. 11) which rotates 90° ahead of the eccentricity
vector e.
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The resultant current flowing into the cavity is
represented by the vector I'. It is seen that
I'=1,; sec B. (28)
The direct current 7, flowing into the cavity may
be represented by vertical line OA, ficure 11, and
the instantaneous value of the alternating current
by the vertical line OB. 'This is the projection on a
diameter through cavity 1 of the alternating current
I’ which rotates ahead of the eccentricity vector e
with a phase angle B.
The value of 8is given by

Iﬁ' [‘rrp:zix
L, 2mrpp;

tan B= (29)

2(,0 m
1I——— Jtan <
(L}s> m AT

The steady current 7, flowing through the resist-

ance [ generates a pressure given by

18 =I /s, (30)

This is represented by the vertical line OD, figure 12.

The alternating current generates an alternating
pressure component

M‘f" B o [jll’ sec B

VI GEOPRE ~x”l +tan? (a+¥35
(31)

where 7 is"the impedance of the resistance-capacity
network. With respect to the alternating component
of current, the capacity and resistance are effectively
in parallel and, consequently, the phase of the
pressure lags behind that of the current and the
eccentricity. The phase angle « is given by

tan (a+B8) =whRC.

P'=I'Z=I,7Z sec f=

The currents due to the alternating pressure P’
are represented vectorially in figure 13.  The vector
Ir represents the alternating current flowing in the
resistance R, and the vector I¢ represents the alter-
nating current flowing in the capacity. The values
of Iz and I¢ are given by the equations

Pl
=% (33)
and
1,—P’wC=P’V Zﬁ (34)

The resultant of these two currents must be equal
to and in phase with the alternating current 7’
flowing into the cavity.

The pressures P, and P’ acting on the effective!
area A, of the shaft, which forms one wall of the
cavity, generate forces

v():A’hl)n

and

F'=A,P’. (36)
These forces may be represented by the vertical
vector OG (fig. 14) and the alternating vector OJ,
respectively. The alternating vector F’ may be
resolved into a component F’ cos « which is in
phase with the eccentricity and a component F’ sin
a which is lagging 90° behind the eccentricity (fig. 15).

These forces are generated by a single cavity and
act along the radius from the center of the shaft
through the center of that cavity. With a sym-
metrical array of cavities, the resultant of the steady
forces F, will be zero; this, however, is not true of the
alternating components.

The resultant force on the shaft at any instant is
found by adding vectorially the instantaneous values
of the forces due to each of the cavities.

The instantaneous value of the force due to cavity
11s

F’ cos (wt—a). (37)
This is the projection of the alternating vector F’
along a diameter through the center of the cavity.
At a given instant it is represented in magnitude and
direction by the vertical line ON as shown in figure
14.

The polar diagram of the force due to each of the
eight cavities is shown in figure 16. At an instant
of time ¢, the vectors numbered 1 to 8 represent the
forces due to the corresponding cavities.

The polar diagram represents a field of force ro-
tating with the angular velocity of whirl. This is
illustrated in figure 17, which shows the values of
the eight forces due to the cavities when ¢ has in-
creased to t--At.  These forces can be combined into
a resultant which by symmetry will lie along OJ.
The magnitude of this force may be written as Fjs

w(t+at)

€
S
FIG.16 F16.17
Ficures 16 and 17. Polar diagrams of force generated by

stabilizing cavities.

1 Experimental testing has shown A/2 to be a conservative estimate for the
value of A, as illustrated in figure 20.
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and is given by
AT
, N
]'5*7)* Flo

(38)

Substituting from (36), (31), (29), and (24) this

becomes
Fs=NrAyr;vp,Ze cos % sec B (39)
or
Fs=GZe (40)
where
G=NmrAyrvp; cos % sec . (41)

@ is a constant which depends on the design of the
bearing and the speed of the shaft. The alternating
vector GZe may be resolved into components GZe
cos a 1n phase with the eccentricity vector or GZe
sin a lagging 90° behind the eccentricity vector.
The component of force GZe cos a due to the stabi-
lizing cavities is in the same direction as the centrif-
ugal force due to whirl and in the opposite direction
to the centering force due to the injector holes
defined in (11). Consequently, the centering force
is reduced to Ye—GZe cos a. Whirl can set in at
an angular velocity given by

mo?e=Ye— GZe cos a; (42)
Le.,
= }—iGéfOSi”)'? (43)
o

These forces are represented as vectors in figure 18.

RESULTANT

CENTER OF BEARING

+

Ficure 18. [llustration of forces on shaft.

The component GZe sin « provides a force at
right angles to the eccentricity vector and acts in
the opposite direction to the forces due to hydro-
dynamic action or excitation in the bearing and the
turbine rotor F (17). 'This is the damping force
which is required to provide stability. Provided it
is greater than the sum of the bearing and turbine
rotor excitations, the direction of the resultant of
all the forces lies behind the line of centers, and any
whirl, such as might be excited by an external
shock, is attenuated until its amplitude becomes
zZero.

An estimate of the magnitude of the hydrodynamic
force due to the bearing may be made as follows.
The bearing is regarded as a simple sleeve bearing
in which the shaft rotates with an angular velocity
w, and a whirl velocity w. The value of the whirl
velocity « is given by (43). The hyvdrodynamic
force which is generated at an eccentricity e can be
calculated with the aid of (5). The force thus
calculated may be expressed in the form

for small values of the eccentricity ratio €/6. Fy is

a constant whose value depends on the design of the
bearing. In the above calculation no account is
taken of the disturbance in the flow pattern due to
the various holes and slots in the surface of the
bearing. These have the effect of reducing the
pressures due to hydrodynamic action and therefore
the calculated value of the hydrodynamic force Fye
is an overestimate. Thus it errs on the safe side.
The force Eyeis represented vectorially in figure 18.

The rotor excitation k7 is given by (17). This
applies however to the force in plane of the rotor;
hence, the value must be multiplied by some factor
ki, depending on the overhang, in order to give the
force in the plane of the bearing. This force may
thus be expressed in the form

Fr=Fk'Te (45)
where

k' =kik. (46)
This force is shown vectorially in figure 18. The

term k’T can be regarded as the rotor excitation
reduced to the plane of the bearing. Referring to
ficure 19, it i1s seen that the excitation due to the
rotor is greater in the inner bearing than it is in
the outer bearing. For the inner bearing the value

of k, is given by
Ls
b ('LZ+L4 '

The stabilizing force GZe sin @ which is generated
by the bearing must be greater than the sum of the
two excitations outlined above if the shaft is to be
stable.

The condition required for dynamic stability is
thus given by

(47)

GZe sin a >k’ Te+ Eye. (48)
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Ficure 19. Shaft resonant system.

Provided this condition is satisfied, the magnitude of
e will progressively decrease to zero and the vector
diagram 1in figure 18 will shrink into the origin.
Ou the other hand, if the sum of the excitation is
greater than the damping term, the vector diagram
will progressively expand until € becomes equal to
the radial clearance —at which point the bearing
may be destroyed.

In the above analysis the conditions which deter-
mine the dynamic stability of the bearing have been
outlined. However, the bearing must also possess
static stability, i.e., it must be capable of supporting
a radial load, such as the weight of the shaft if it
were horizontally supported. In this case, w becomes
zero and if w, is also zero then g is zero, and since tan
(a+B)=wCR, the phase angle « also takes the value
of zero. The stabilizing force GZe sin « thus reduces
to zero, and the decentering force GZe cos a reduces
to the value GRe. 'The centering force now becomes

F,=(Y—GR)e, (49)
and it is evident that GR should be less than ) in
order to ensure static stability. If GR should be
greater than 1 the shaft will be pushed to one side
of the bearing. It is evident that the value of the
leak resistance must be carefully chosen; it must be
large enough to ensure dynamic stability; if it is
made too large, however, the shaft will not float.

If we write
_Gl.’:B

=B, (50)
then the static stability condition will be satisfied if
B is less than one. The static centering force may
now be written

"w=Ye(1—B). (51)
The value of the leak resistance is given by
P’ BYe
== t'2
R=T.= "G (52)
Substituting for @ from (41) we get
e (53)
NrAyrvp, cos N see B

In the present bearing, B was chosen to be 0.75,
and consequently, the static load carrying capacity
18 0.25 Ye. The area of the shaft A, which faces each
cavity is estimated to be as shown in figure 20. The
value of 8 is given by (29). Asa first approximation
it may be assumed that =0 and sec 8=1. The
flow velocity » is assumed to be sonic at the throat
formed by the annulus 277,6; i.e., the discharge
coefficient is assumed to be unity. The diameter of
the leak orifices may be calculated with the aid of
this equation. The discharge coeflicient for a
circular orifice is approximately 0.6.

Since the shaft is supported on two bearings, each
of which behaves like a spring, it has two principal
modes and frequencies of whirl. The calculation of
the modes and frequencies of such a resonant system
is described in standard textbooks on mechanical
vibrations. However, for the convenience of the
reader, the procedure in this specific application is
outlined below.

The shaft of the miniature turbine and its supports
are shown schematically in figure 19, where the
following symbols and the corresponding values are
used.

m= Mass of shaft—Ib mass

r,— Radius of gyration of shaft about the center of
eravity—in.

Y,=Stiffness of gas film in outer bearing—Ib/in.

Y,=Stiffness of gas film in inner bearing—1b/in.

L,=Distance of outer bearing from center of
gravity—in.
L,=Distance of inner bearing from center of

gravity—in.

[t is assumed that the two radial spring constants
are equal, i.e.,
Y,=Y,=Y—GZ cos . (54)

In this equation, a value for « which should

provide the optimum damping is required. This
ralue is given by the equation
90°—8

=2 (55)

where

Iy

tan B= 7 (56)
i

Effective area facing cavity.

Fraure 20.
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as shown in figure 11. But /5 cannot be evaluated
until the value of « is known, and this depends on
the value of cos .

This difficulty may be circumvented if it is as-
sumed as a first approximation that the angle g is
zero and the angle « is 45°.  With these values of

a and B, Z becomes equal to 11’/\5 and (54) becomes

Y,=Y,=Y—: GR.

1
5 (57)

In the present calculation the value of R is
arbitrarily chosen so that

7, (58)

The two frequencies of oscillation are given by
the equations

si—1 (ato) +\/ @—o+(2) o9
and
1 1 . <
=3 (a,+c)—\/ ; (a—c)2+<§> (60)
where
Y, +Y,
T m
AR
m

_ LY+ LY,
'mrj

Equations (59) and (60) are approximate and do
not clude the gyroscopic effects associated with
rotation of the shaft. However, such effects can be
ignored for the case considered here.

The distances of the nodes from the center of
gravity are given by the equations

Lg:wl_a, (61)
b ;
R — (62)

The positions of the two nodes are illustrated in
figure 19. FKFrom the positions of the nodes it is
seen that the predominant amplitudes of whirl in
the inner and outer bearings occur at the lower and
higher frequencies of whirl.

These values of @, and w, may now be elnplm ed
in (31) and (54) in order to find more precise values
of Y, and Y,. From the revised values of Y, and
Y., a more lolme(l calculation of the values of o,
and w, may be made. However, in view of the many

uncertainties in the computation, the first approxi-
mation is usually sufficiently accurate for practical
purposes.

The value of the phase angle g may now be
calculated with the aid of (29). The optimum value
of the phase angle « is given by (55).

The values of the stabilizing cavities may now be
calculated. We have

oVpR

tan (a+p)=wCR= P (63)
or
tan (a+B)P
Wa= Ry A (64)
and
sztam (o)L (65)

wzpll)

where «, and w, are the whirl angular velocities of
the outer and inner bearings, V; and V, are the
corresponding volumes of the stabilizing cavities, and
p is the density of the gas at P units of pressure.

Referring to figures 12 and 11, it is seen that the
vectors of pressure and current are given by the
equations

=11 (66)
and
I’'=1,; sec B. (67)
The value of Z is given by the equation
7 r (68)

{14tan® (atB) }

The value of the force F’, figure 14, due to a
single cavity is given by the equation
= AP’ (69)

where A, is the effective area of the shaft (fig. 20)
which forms part of the walls of the cavity. The

value of the force GZe (fig. 18) is given by the
equation
GZGZ%T P (70)
Thus the value of GZe is given by
o A?\ri‘lgll)[j sec B
Gaes 2 1+tan® (a+p) } 172 ()
The corresponding tangential and radial com-

ponents of force are Ze sin « and GZe cos a.
The condition for dynamic stability is given by
(48); i.e.,
GZe sin a >k' Te-+ Eye. (72)
Provided this condition is satisfied, the direction of
the resultant of all the forces acting on the shaft
lies behind the line of centers as shown in figure 18.
Thus the orbit of the center of the shaft should be
a spiral of decreasing amplitude as shown in figure 3.
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Vector diagram of forces illustrating design
procedure.

Ficure 21.

Consequently, the bearing should be stable. This
was proved experimentally in the bearings of the
miniature turbine which is described by Birmingham,
Sixsmith, Wilson [1962]

The design procedure and the relationship between
the various forces may be illustrated with the aid
of the geometrical construction shown in figure 21.
The angle g is preferably chosen to be less than
20°, assuming zero whirl velocity, and the diameter
of the injector holes is calculated according to (29)
to satisfy this condition.

In figure 21 we have:

0/S=IBiYee (73)
O0'D=DBYesec B8 (74)
AN=1/2BYesec 8 (75)

O'H=AN—0O'A sin B
=1/2BYesec B(1—sin B).  (76)

Thus the stabilizing force O’H may be expressed
directly in terms of the centering force Ye. The
condition for dynamic stability may now be expressed
as

1/2BYesec B(1—sin B) >k’ Te+ Lye. (77)

In a trial design the number of pads and the
radial clearance are adjusted until the above sta-
bility condition is satisfied. Then the diameter of
the leak orifices and the volume of the stabilizing
cavities may be calculated as follows.

720-591—64—4

The values of Y, and Y, according to (57) are
eiven more simply by the equation

Y, —Y,—Y <1—-% B), (78)

and then the values of the whirl angular velocities
may be calculated with the aid of (59) and (60).
The diameter of the leak orifices may be calculated
according to (53). Then the values of the stabilizing
avities may be calculated according to (64) and
(65). 'This completes the design.

In the theory outlined above, it is assumed that
the leakage along the shaft from the stabilizing
avities 1s negligible.  Such leakage introduces a
phase shift which tends to promote instability.
Conversely, a leakage along the shaft and into the
stabilizing cavities tends to promote stability.
Consequently, it is desirable that the pressure at
the ends of the bearing should be equal to or greater
than the static pressure in the stabilizing cavities.

7. Conclusion

It is possible and quite practical to provide stable,
externally pressurized gas-lubricated bearings for
high-speed shaft operation. The stabilizing cavities
employed in this design are a definite asset to a
bearing system of this type and have been shown
by actual tests to suppress shaft whirl inherent in
externally pressurized bearings.

The bearing described here is adaptable to small
shafts (one inch diameter and smaller) which are
lichtly loaded and require speeds well beyond the
allowable operating range of rolling contact bearings.
For miniature applications, the size of the bearing
and shaft system is limited only by practical fabri-
cation techniques.

This type of bearing is particularly advantageous
for miniature turbine expanders used in cryogenic
refrigerator systems, where the process gas can be
used as the bearing gas medium. In this arrange-
ment, the problem of contaminating the process gas
from the bearing lubricant is eliminated. It also
eliminates a mechanical seal between the bearings
and the process expansion system.

A prototype turbine expander, incorporating ex-
ternally pressurized gas-lubricated bearings, was
fabricated and tested with helium gas as the operat-
ing medium. The bearings were designed using the
criterion described in this manuscript. The tests
showed that the bearings were reliable and performed
quite satisfactorily. No detectable shaft whirl was
encountered up to the design speed of the turbine
shaft.

8. Summary of Nomenclature
A;=Area of pad—in.? )
A,=Effective area of shaft surface facing

cavity—in.?

B=Constant defined in eq (50)
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O'=Capacity of cavity
D=Diameter of pad—in.
Fy=Tangential “‘spring”” modulus—Ib/in.
F=Horizontal force on blading—Ib
F,=Static centering force—Ib
Fy=Force due to gas pressure on shaft—Ib
w=Tangential force—Ib
»=Radial restoring force—Ib
Fy,=Steady force—lb
I = Alternating vector of force—Ib
Fs=Vector sum of forces due to N cavities—I1b
G—=Constant defined in eq (41)
h=Mean tip clearance between ¢ and ¢+d¢p—
in.

1
1:Clea‘rances between shaft and bearing.
}1/2} See figure 9—in.
I.=Alternating component of current flowing
in cavity—Ib/s
1, =Current through leak—Ib/s
I=Flow of gas into cavity—Ib/s
I,=Steady component of flow into cavity—

Ib/s

I;=Alternating component of flow into cav-
ity—Ib/s

I,=Alternating flow due to shaft rotation (eq
25)

Iyy=Alternating flow due to shaft whirl
I ;= Alternating flow due to the combined effects
of shaft rotation and whirl
1" =Alternating flow into cavity
k=Constant defined in eq (17)
f;=Correction for overhang of rotor
k'’ =Constant defined in eq (46)
L=Length of bearing—in.
L.=Effective length of stabilizing cavity—in.
L,
L,
L;)=See figure 19
4
L;
m=DMass of shaft in plane of bearing—Ib
N=Number of pads in bearing

€ . . o
n=y= Eceentricity ratio

O=Center of bearing

0’ =Center of shaft (see fig. 1)

0"’ =Instant center of orbit of shaft (see fig. 2)
P =Pressure in cavity—psi

Py=Steady component of pressure in cavity—

_ psi
P’ =Alternating component of pressure in
cavity

R=Resistance of leak orifice
r=Radius of shaft—in.
r;="Turbine rotor tip radius—in.

r,="Turbine rotor root radius—in.

r,,— Turbine rotor mean radius—in.
r,—=Radius of gyration of shaft about its

center of gravity—in.

T'="Total torque acting on turbine rotor—in.-Ib

t=time—sec

sec/in.?

V=Volume of stabilizing cavity (see eq (19))—
in.?
Vi=Volume of stabilizing
bearing—in.?
V,=Volume of stabilizing
bearing—in.?
v=Velocity of gas at edge of injector hole—fps
»,=Axial component of velocity of gas through
rotor tip clearance—fps

v,=Axial component of velocity of gas through
the annulus between », and r,—fps

Y =Radial spring modulus—Ib/in.

7,="Spring” modulus of gas film in outer
bearing—Ib/in.

Y,="Spring” modulus of gas film in inner
bearing—1b/in.

Z=Impedance of resistance capacitance net-

work
Greck

a=Phase angle between complex pressure
vector and eccentricity e
B=Phase angle between resultant current 7’
and eccentricity e
v=Angle between e and a diameter through the
center of a pair of diametrically opposed
pads
s=Radial clearance—in.
e=>Shaft eccentricity—in.
6=See figure 2
p=Viscosity of gas—Ilb-sec/in.?
p=Density of gas in cavity—Ib/ft?
pi=Density of gas at edge of injector hole—
Ib/ft?
po=Density of gas in clearance space between
shaft and bearing—Ib/ft?
¢=>See figure 8
w=Angular velocity of whirl—radians/s
w,=Angular velocity of whirl in outer bearing—
radians/s
wy,=Angular velocity of whirl in inner bearing—
radians/s
w,=Angular speed of shaft—radians/s

‘avities in outer

ravities 1n  Inner
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