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A Laser With a Multihole Diaphragm

Tadashi Morokuma*

(October 21, 1963)

The properties of a laser with a multihole diaphragm were both theoretically and

experimentally examined.

This laser may be called a multibeam laser.

Laser action was

observed in the optical paths which were defined by the position of the holes and the cavity

configuration.

length dependent interaction among the beams was observed. It
wavelength of a beam can be stabilized by the intensities of the other beams.

method will be proposed for the stabilization.

1. Introduction

In order to use continuous wave lasers for inter-
ferometric length measurement, their wavelengths
should be stable enough to secure the required
accuracy. The stability of a helium-neon laser has
been intensively studied by Javan et al., [1, 2].!
They have obtained short-term stability to better
than two parts in 10% by isolating their lasers
from mechanical vibration, and, they were able to
reset the wavelength with an accuracy of one part

in 10°%  Gould [3] proposed to use the pulling
effect. for stabilization. A different approach has

been pursued in this laboratory by placing a multi-
hole diaphragm inside the confocal cavity of a
laser.

The interesting phenomena found in the beams
of the laser and also a possible method for stabili-
zation will be described. The laser is provided with
a diaphragm containing five circular holes; four of
them are symmetrically located around a central
one. The diaphragm is placed inside the cavity
and in front of the one of the cavity mirrors. [t
is possible to obtain laser action so that one beam
travels back and forth through the central hole
on the axis of the cavity. The other two beams
travel diagonally through the top and bottom holes,
and the two side holes, respectively. Five bright
round spots have been observed on the mirror that
is covered with the diaphragm and a larger spot
with interference fringes on the other mirror.

This laser essentially consists of three sublasers
with common cavity mirrors. Their wavelengths
are determined by the effective cavity spacings
corresponding to the optical paths for one transit of
ach beam in the cavity. According to the resonance
condition of a confocal cavity [4], it is possible for the
oscillation in each beam to take place at several
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Interference fringes were observed on one of the cavity mirrors.

A wave-
that the
A possible

is believed

discrete wavelengths separated by a mode spacing
of the cavity. Fabry-Perot rings, however, show
interaction among the beams so that the oscillation
at certain wavelengths is suppressed. Therefore,
the wavelength relation is more complicated than
expected.

[t was possible for the laser to satisfy the necessary
conditions for the wavelength stabilization by the
use of a suitable diaphragm, and by the adjustment
of its position and the excitation power.

2. Modes of Oscillation

The 1-m laser used in this laboratory is composed
of an S80-cm discharge tube and a multihole dia-
phragm that 1s located close to one of the cavity
mirrors. The discharge tube contains a mixture of
I mm Hg of helium and 0.1 mm Hg of neon. The
maximum gain of the tube is about 5 percent per pass
at 1.152 pu.

The schematic diagram of the laser and a photo-
araph of the diaphragm are shown in figures 1a and b.
The beam is elliptical in shape, approximately 10
mm along one axis and 8 mm along the other. This
distortion is due to an aberration mn the Brewster’s
angle windows. The central hole was purposely
made smaller than the outer holes so that the larger
diffraction loss due to the smaller opening would
compensate for the larger gain of the central beam.
Thus, each of the three beams can be operated in a
single mode with the intensities almost equal to each
other. The diameter of the holes and spacings should
be determined by several factors, such as the gain,
the diameter of a discharge tube, the aberration of
windows or mirrors, etec. The modes of oscillations
are shown schematically in figure 2. The frequencies
of the beams are given by
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Ficure la. Schematic diagram of a laser with a multihole

diaphragm, D.

FiGure 1b. Photograph of the diaphragm.
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Frcure 2. Modes of oscillation.
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for beam 2
¢N,

J2 4,

(3)

for beam 3

where N, N, and N, are order numbers (integers),
dy, dy, and d, are optical paths between the cavity
mirrors, and ¢ is the velocity of light.

The modes of outer beams 2 and 3 will be called
even modes when N, and N, are even and odd modes
when they are odd. In case of an ideal confocal
avity, the optical paths d,, ,, and d, are all the
same so that /; and /, are equal and the frequencies
of the even modes of the outer beams are equal to
those of the central beam. If there is an aberration
within the cavity, however, the three frequencies
may be slightly different from each other. This will
play an important role in the discussion of the wave-
length relation, as is described later.

3. Mode Pattern

Since a diaphragm is placed in front of only one of
the cavity mirrors, symmetrical intensity distribu-
tion, as described in Fox and Li’s theory, [5] cannot be
expected. In other words, five bright spots are
observed on the same mirror, and a large spot with
interference patterns is observed on the other mirror.
The five spots are shown in ficure 3. The inter-
ference patterns are shown in figures 6, 7, and S.

3.1. Central Beam
Figure 4 shows the beam on mirror M, when the

outer holes are blocked. This photograph was taken
with a low excitation power so that higher order

M,

mirror with

2

Figure 3. Cross section of the beams on

diaphragm as shown in figure

2 The patterns which are seen in the photograph are prodvced in the image
converter used in this experiment. They are not inherent in the beam.



F1GURE 4.

Cross section of the central beam on mirror M., with

diaphragm as shown in figure 5.

modes did not appear. The cross section of the
elliptical beam is about 4.8 mm along one axis and
2.9 mm along the other. This cross section is much
larger than that of the central beam in ficure 3,
which measures 0.9 mm in diameter. In ficure 4, of
course, no fringe pattern is observed.?

These spot sizes can be calculated with a theory
similar to Fox and Li’s [5

3.2. Outer Beams

Consideration will be ¢iven first to the case of two
holes and then to the case of four holes. The ob-
served fringe patterns can be explained as the result
of interference between two or four spherical wave
fronts.

a. Two Holes

When the central and the two side holes are
blocked, two beams are observed coming out of the
laser in different directions, as shown in figure 5.
Figure 6 shows interference fringes observed on M,
when the excitation power is decreased until single
mode operation is achieved. The spacing, s, of the
fringes is given by s=d\a, where a is the distance
between the holes, d the mirror separation and \
the wavelength. In the case d=1m, A=1.15p,
and a=3.1 mm, the spacing is 0.37 mm. This agrees
with the spacing measured on figure 6. It is to be
noted that a bright fringe is observed on the axis of
the cavity for an even mode and a dark fringe for an
odd mode. Since the phase difference between the
two beams is 7V, on mirror M, from eq (2), it
becomes 2nr radians for an even mode (N,=even)
and (2n-+1) 7 radians for an odd mode (N,=odd).
[n this case n is an integer. These two fringe pat-
terns intermesh with each other. Consequently, no
fringes will be observed when even and odd modes
are coexistent and their intensities are exactly equal.
Figure 7 shows the intermeshed fringe patterns
observed in the case of multimode operation.
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Ficure 5. Optics of a two-beam laser.

Ficure 6. Fringes observed on mirror M., with diaphragm as

shown in figure 5.

FrGure 7.

Intermeshed fringe patterns.



FiGure 8. Fringes observed on mirror Ms, with diaphragm as shown in figure 9.
(a) Fringes between beams 1 and 2,
(b) fringes between beams 3 and 4,
(e) superposition of (a) upon (b).

b. Four Holes—The Superposition and the Interference of Two
Sets of Fringes

One of the interference patterns is shown in figure
Sc. It 1s obtained by superimposing the fringe pat-
tern of figure Sa on the one of ficure Sb.  The pattern
in ficure S8a 1s the same as that in figure 6.  Another
pattern that has been observed is composed of bright
spots. This pattern is very unstable and remains
stationary for only a few seconds. (See the discus-
sion pertaining to ficure 11.) The intensity distri-
bution of these patterns can be easily explained by
assuming that the wave fronts of the four beams are
replaced by plane wave fronts propagating in the
directions connecting the center of curvature of
mirror M; and the centers of the holes, as shown in
ficure 9. In the a-y plane, which is tangential to
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mirror M,, with the origin of the coordinates on the
optical axis, the four beams can be represented in the
following forms:

A;=exp 1(wt—Fkar/2d,) for beam 1.

As=-exp t(ot+kax/2d,+ o) for beam 2.
A;=C exp 1(wst—kyby/2d;+7) for beam

3
Ay=C exp i(wit-+koby/2dy+~v+B) for beam 4.

Here k, and k, are given by k,=2x/\ and k,=2w/\,
where A\ and A\, are wavelengths; o, and w, are angular
frequencies; @ and b, the spacings between holes;
a and B, the phase differences between beams 1 and 2,
and beams 3 and 4, respectively. ('is the amplitude
ratio between A, and A;. The origin of time, £, 1s
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Ficure 9.

Optics of a four-beam laser.

chosen so that the phase angle of beam 1 is equal to
zero at t=0. The initial phase angle of beam 3 is
then given by v at y=0. It is to be noted that «
and B should be 2n7 or (2n-+1) = radians, as previ-
ously described, corresponding to even or odd modes.
The intensity distribution is

I(x,y)oc {cos? (kyax/2d,+ a/2)

+ C? cos® {kyby/2d>+B/2)}

when \ 7\, and
I(.l‘, ’/)0( cos? (A"(l.l‘/?(ll —+—a/2)
O cost (kby/2dy-+B/2)
420 cos (kax/2d,+ a/2) cos (kby/2d,
+8/2) cos (a/2—B/2—7)}

when N =XN=NX\, and F=27/\. Spacings d, and d,
are almost ecual to the spacing d, on the axis and the
difference is less than \/2. Therefore, they can be
replaced by d, in the above equations. Then

I(x, ) { cos? (kyax/2dy+ a/2)

+C? cos? (koby/2dy+B/2)}  (4)
when \;#\; and
I(x,y)oc { cos® (kax/2d,+ a/2)
+C? cos® (kby/2d,+B/2)
120 cos (kax/2dy+ «/2) cos (kby/2d,
+B/2) cos (¢/2—B/2—7)} (5)

when N=N=A\. Figure 10 shows the intensity
distribution calculated from eq (4) for N=1.152 g,
d=1m,a=3.1mm,b=4.1 mm,and C=1. The max-
imum intensity is normalized to 1.0 in the drawing.
This is the case where the two patterns are simply
overlapped without interference between themn.
When A, is exactly equal to \,, two kinds of pat-
terns have been observed. One pattern has the
same distribution as shown in figure 10 and is given
by eq (5) when cos (a/2—8/2—y)=0. The theoret-
ical distribution of another pattern is shown in
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Fraure 10.

Theoretical intensity distribution of fringes when

£

N# N\ or cos (a B/2—v)=0 at \y=M..

figure 11. This pattern is composed of bright spots
and dark lines. They are obtained when cos («/2
—B/2—y)==+11n eq (5).

A possible explanation for this is as follows: In
the volume that beams occupy in common, they
interact with each other. In other words, the
photon in one pair of beams stimulate the laser
oscillation in another pair of beams. Therefore, the
phase difference would be zero, on the assumption
that stimulated radiation is in phase with the incident
radiation. When both pairs of beams are either in
even or in odd modes, the cosine term is equal to
unity; that is, cos (a/2-8/2—)=41. If one pair of
beams is in an even mode and another pair in an odd
mode, the term vanishes; thatis, cos (a/2-8/2-y)=0
The experimental results are not sufficient to prove
the validity of the above statements and further
investigation is necessary.

4. Wavelength Relation

A wavelength dependent interaction of one beam
on the others has been found by means of a Fabry-
Perot etalon. Although the diameter of the central
hole was purposely made smaller than the outer
holes, the central beam is more intense than the
other beams. The even modes of the outer beams



Theoretical intensity distribution of fringes when
M=DX\e and cos (a/2—B/2—v)=1.

Frcure 11.

could not be observed at low excitation power. Since
every beam passes a common space at one end of the
cavity, the gain for the modes becomes lower than
the threshold due to the high density of photons in
the central beam. Hence at low excitation level,
it is possible for outer beams to have only odd modes
separated by 150 Me/s for a (-m confocal cavity.
Also interaction between outer beams results in the
suppression of some odd modes in one beam by
another.

4.1. Expsrimental Arrangement

In order to study the wavelength relation among
the beams, Fabry-Perot etalons are used as shown in
ficure 12. The first lens L,, is focused on mirror
M,. A spherical wave front from a point source on
M, becomes a plane wave front, passing through
either a 1-m or a 50-cm Fabry-Perot etalon, then
through the second lens, L,. Haidinger fringes are
formed on its focal plane, and the surface of mirror
M, is also imaged on the same plane. Therefore,
the Haidinger fringes are modulated by the image
of a pattern on M,. A given set of fringes identifies
the location of the beams. either by a visual or a
photographic method. For example, if a set of
fringes is composed of continuous rings with even
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FABRY-PEROT ETALON
50 CM or 100 CM

L,: f=30cm Lp: =130 cm
I IMAGE CONVERTER

Ficure 12. Optical arrangement to the

relation.

study wavelength

distribution of intensity, these fringes are formed by
the central beam. If fringes are broken vertically
with dark parallel lines equally spaced, these fringes
are formed by the side beams.

No attempt was made to eliminate the feedback
of photons from the etalon to the laser.

4.2. Experimental Results

When a 1-m Fabry-Perot etalon is used, the
Haidinger fringes of all the even modes, having
approximately the same diameters, appear to be
superimposed on each other. Those of the odd
modes are similarly superimposed with their bright
fringes between the bright fringes of the even modes.

a. Interaction

When the laser tube is excited with low energy, the
central beam can suppress oscillation in the even
modes of the outer beams, as previously described.
Figure 13a shows fringes obtained when only the top
and bottom holes are open. Both even and odd
modes are clearly seen in figure 13a, which shows the
phase shift equal to = radians between them.

If the central hole is opened, without changing
other conditions, one set of the broken fringes of even
modes changes into a set of continuous fringes but
another set remains broken as shown in figure 13b.
This result shows the suppression of oscillation in the
even modes of the outer beams by the central beam.
In other words, the gain for these modes reduces below
the threshold because neon atoms are partly used to
emit the photons of the central beam. Interaction
between the two pairs of outer beams is not so distinet
as is that between the central beam and the outer
beam. It may be useful to evalute the intensity of
the beams in order to understand the interaction.
In case of a single beam laser, intensity is approxi-
mately proportional to the value @— ¢, Here G and
g are the gain per pass before and after laser action.
Therefore, gain ¢ can be written in the form g=
G—hlI,where hisa constant and [ the intensity of the
beam inside the cavity. In case of a three-beam
laser, the following assumption may be made for a
sinple treatment.

In portion A, of the tube in figure 14, the three
beams have common volume and interaction takes
place. Beams 2 and 3 are degenerate in frequency
and intensity. In portion B, they take different
paths, therefore no interaction occurs.



Ficure 13. Haidinger fringes with a 1-m Fabry-Perot etalox. |

In (a), the top and bottom holes are open and in (b), the central hole is also open
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Fraure 14, Volumes A and B, with and without interaction of |
beams, in a three-beam laser. |
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If lhv lengths of portions A and B are given by
al and (1—a)l, respectively, [ being the total length
of the lulw the gain for beam 1 is given by

= (1—a)(G
(x /II,

/l/| )¥ Qg (1"‘/)(]] *"2[3)
2ah[,.

Here « will be called a coupling constant. Subscript
I denotes the central beam; subscript 2 denotes the
nulm beams.
For beams 2 and 3, the gain is given by

o= G—ahl,— (14 a)hl,.

Now assume that laser oscillation takes place in
all of the beams. Gains g, and ¢, will decrease as
intensities /; and Z, increase. They will become
equal to the total energy losses L, and L, respectively,
after the oscillation reaches equilibrium, that is

Li=G
L,=G

hI,—2ahl,
ahl,— (1+a)hl,

for beam 1

for beams 2 and :

Solving the above intensities 7/, and

[, are given by

equations,

I (1
Ir=(J5

Fa)di—2ads} /(1
aty)

a)(l14+2«)

a)(l1+2a)

where J,=(G—L,)/h,
tensity is positive,

and J,=(G—L1L,)/h. Since in-
the following relation should be

held
| /a I, /s >2a/(1+ )
or
l/a>(G— L)/ (G— L) >2a/(1+a).
When (G—1,)/(G— 1,) > 1/a, the laser action takes

pl.uv only in the central beam, with the intensity
eiven by

/q) h.

On the other hand, the action takes place in outer
beams 2 and 3, with the intensity given by

when (G— /.]) '((1'* /,-_)Jgfzv (1+«).
the criteria given by the above inequalities.
lation takes

Figure 15 shows
Oscil-
place only in the central beam when
J1/J, falls in l'(‘_‘_"i()ll (a). It takes place in all the
beams when J,//, falls in region (b), and in beams 2
and 3 when J,/./J, falls in region (c).

The value of a is approximately 0.6 for the laser
used in this experiment. Therefore, (G—L1,)/(G— L)
should be larger than 1.67 in order to make .J,/.J,
fall in region (a) and thus suppress oscillation in
the outer beams by the central beam. In the case
of a five beam laser, similar treatment may be ap-
plied by using different values of « for each pair of
beams, also by using different values of J. If the
coupling constants are all the same, the intensities



Ficure 15.  Range of J1/Js versus coupling constant .
In the region (a) only the central beam exists; in (b) the central and all cuter
beams exist; and in (¢) only the outer beams exist.

of the beams are given by

[]: (l fi%&)JIA?aJ_,*ZaJ(;/(l 4&)(1 +4(1)
L={QRa+1)J;—2ads—aJ;}/(1—a)(1+4a)

Here, the subscripts 2 and 3 represent the top and
bottom beams and the side beams respectively.
From the above equations, the following condition
is necessary to suppress the oscillation in the outer
beams:

1 /a Sﬁzr]l/(z]-g + e]g) .
b. Wavelength Relation

[t is possible to adjust a five-beam laser so that
single mode operation is achieved in each beam when
the wavelength of the central beam lies approxi-
mately at the center of Doppler distribution. Figure
16 shows the Haidinger fringes obtained with a 50-cm
Fabry-Perot etalon arranged similarly to the optical
system in figure 12. The wavelengths are all differ-
ent and the central beam is located between the
outer beams. The wavelength separation between
adjacent fringes is found to be approximately
2.5<107% em~! equal to the mode separation of the
outer beams. Figure 17 shows the mode relation
between beams and the gain distribution of the laser
tube with respect to wavelength, X.

L, and L, are, respectively, the total energy losses
in the central and outer beams. In the central
region, A, the net gain, G—L,, of the central beam
is much higher than those of the outer beams, so
that oscillation cannot take place in these beams.

In the region, B, no mode exists in the central beam
and interaction is observed only between the outer
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Frcure 16.

Haidinger fringes showing single-mode operation
in each beam.

T
\ 1\
1
CENTRAL BEAM

SIDE BEAMS
TOP & BOTTOM BEAMS

Ficure 17. Mode relation and gain distribution with respect
to the wavelength corresponding to the fringes in figure 16.
The region A corresponds to the mode of the central beam and the even modes

of the outer beams. The regions B and C correspond to the odd modes of the
outer beams.

beams. If J5/ > (ans+ 1)/205, the oscillation in the
top and bottom beams is suppressed by the side
beams. Here J, and J; are defined in the same way
as in the previous section and ay is the coupling
constant between the two outer beams. The situa-
tion is reversed in the region (' and oscillation takes
place only in the top and bottom beams. When the
effective cavity spacing changes due to, for example,
the heat developed inside the tube, the wavelength
relation changes as shown in figure 18. Here two
modes are seen in the central beam and the modes
of the outer beams lie in between, with approxi-
mately the same wavelength. The wavelength
relation between these modes and the gain distribu-
tion are shown in figure 19. In region A, the ratio
of J3/eJ; is nearly equal to unity, so that both modes

exist. In regions B and C only the central beam
exists.



Figure 18.

Haidinger fringes showing two-mode operation in
the central beam.

Bm\c
| L
CENTRAL BEAM

SIDE BEAMS
TOP & BOTTOM BEAMS

o

Ficure 19.  Mode relation and gain distribution corresponding
to fringes in figure 18.
The region A corresponds to the odd modes of the outer beams. The region
B and C correspond to the modes of the central beam and the even modes of
the outer beams.

5. Wavelength Stabilization

It is possible for the laser to satisfy the following
conditions by the use of a suitable diaphragm, and
by the adjustment of both the position of the dia-
phragm and of the excitation energy for the laser
medium.

1. The threshold value for the central beam must
be low enough to supress the oscillation in the outer
beams at the wavelengths almost equal to those of
the outer beams.

2. This threshold value must be high enough so
that single mode operation is attained when one of
the modes is located approximately at the center of
the laser line.

3. The outer beams must be kept in single modes,
regardless of the change in the cavity spacing at
least up to half a wavelength.
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F1GURE Intensity variation versus cavity spacing.

(b)

Ficure 20b. Mode relations at the spacings marked in (a).

4. The intensities of the outer beams must not
vanish at the same time.

These conditions are necessary to enable the outer
beams to stabilize the wavelength of the central
beam.

When the wavelength from a five-beam laser, with
each beam in single mode, are located as shown in
ficure 17, the intensity of the side beams (3) in
figcure 2 increases and that of the top and bottom
beams (2) decreases with a slicht increase of the
cavity spacing. They will change in a reverse
manner with a slight decrease of the spacing.
Figure 20a schematically shows the intensity varia-
tions with respect to the spacing, d.

This variation may be understood from figure 20b
which shows the relations among the wavelengths,
the gain distribution, and the threshold value, L, for
the outer beams, at various spacings marked in figure
20a. Both intensities become equal at A and D.
Between A and 12, one of them is more intense than
the other and this relation is reversed in the region
between ) and @. This effect can therefore be used
to keep the spacing at A or G by means of a negative
feedback. Thus the wavelength of the central beam
can be kept approximately at the center of the gain
distribution, if the spacing of the cavity is controlled



to be held at A. A phase plate can be inserted within
the cavity, instead ol making use of aberration in the
Brewster’s angle windows, in order to produce the
mode relation shown in figure 20b. 1In this case, it 1s
possible to bring the wavelength to the center of the
Doppler distribution with either optical or electronic
means. The reproducibility of the wavelength
depends mainly upon the intensities of the beams.
In this respect, a further experiment is to be carried
out.

The author expresses his sincere thanks to K. F.
Nefflen for his technical assistance throughout these
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experiments and for reviewing this paper and to
K. D. Mielenz for helpful discussions.
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