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Let § be a complex Hilbert space. If T is a completely continuous operator on § then (7*T)/2
is also completely continuous and nonnegative. If Aj, A2, . . . represent all the nonzero eigenvalues
of (T*T)'2—each eigenvalue repeated in the sequence the number of times equal to its multiplicity —
we may form the sum 3;\; which we denote by 7(T). By definition, the trace-class (rc) consists of all
those operators T for which #(7) is finite. (rc) forms a linear space and 7(T) defines there a norm. The
resulting normed linear space turns out to be complete, and the operators of finite rank form a dense

set in (7¢).

It is of significance to observe that for operators T of finite rank, 7(T) may be also expressed via

concepts meaningful in a perfectly general Banach space.

This observation permits then to carry

over to perfectly general Banach spaces the concept of a trace-class of operators: One considers the

linear space of all the operators T of finite rank on the given Banach space.
via the concepts meaningful in general Banach spaces.

There one defines 7(7)

The customary metric completion of the so

resulting normed linear space furnishes then the desired trace-class of operators.

1. Introduction

Let § be a complex Hilbert space. If T is a com-
pletely continuous operator on 9, then (T*7)"2 is not
only completely continuous but also nonnegative
(hence Hermitean). If Ay, A2, . . . represent all the
nonzero eigenvalues of (T*7)Y2—each eigenvalue
repeated in the sequence the number of times equal
to its multiplicity —we may form the sum 2;\; which—
to indicate its dependence on the operator T —will
be also denoted by 7(T). By definition, the trace-
class (rc) consists of all those operators T for which
7(T) is finite. It is not a simple argument to prove
that (rc¢) forms a linear space and that 7(T) defines
there a norm. Incidentally, the resulting normed
linear space turns out to be complete, that is, forms a
Banach space. It is also true that the operators of
finite rank form a dense set in (7¢).

We remark that for an operator T, the above defini-
tion of 7(T) involves notions which are meaningful
only in linear spaces with an inner product. It is of
interest—and in fact of significance —to observe that
for operators T of finite rank, 7(7) may be also ex-
pressed via concepts meaningful in a perfectly general
Banach space. This means, for operators 7 on § of
finite rank, we have two versions for 7(T). While
one immediately carries over to arbitrary Banach
spaces, the other does not yield to a straightforward
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generalization. This observation permits one to carry
over to perfectly general Banach spaces the concept
of a trace-class of operators. To define the last, one
simply proceeds as follows: One considers the linear
space of all the operators T of finite rank on the given
Banach space. There one defines 7(T) via the concepts
The customary
metric completion of the resulting normed linear space
furnishes then the desired trace-class of operators.

It remains thus to sketch how, for operators T of
finite rank, 7(7) may be expressed via concepts mean-
ingful 'in any Banach space. The argument follows:
If fi, ... fuand g, . .-, g are elements in O, then

Tg: 2 (g9 gl)ﬁ
1=1

represents an operator T of finite rank which we shall

meaningful in general Banach spaces.

also denote symbolically by if, ®gi. The converse
=1

is also true, that is, every operator 7 of finite rank
admits many such representations of the form

m
2 ©i® x;j: the number of terms m will vary of course
=

with the representation of 7. It can be shown that

n(D)=inf 3 lleil Ixll
Jj=1

where the above infimum extends over the set of all
sums corresponding to all possible representations
of the operator T of finite rank.

The details of all that was said above form the
main goal of this exposition.
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2. The Greatest Crossnorm

The last formula expresses (1) in a language mean-
ingful for any Banach space. This suggests the desir-
ability of investigating the above infimum for general
normed linear spaces (not necessarily inner product
spaces.) The details follow:

Let 4 and -4 stand for any two normed linear spaces
and 7*, .9* represent their conjugate spaces, that is,
the correspondmg spaces of additive and bounded
that is, continuous, linear functionals on % and -
respectlvely

For a fixed pair of elements Goe-
expression

9% and fie/, the

Tg = Golg)fo

defines an operator of rank 1 from 7 into #. More
generally, if Gy, . . ., Gy are in -9* and fi, . . ., f, are
in %, then

Te= Y, Gilal

4 into 7 of rank at
The last operator we shall also denote by

Efi ® Gi; one calls then iﬁ ® G; a representation of

represents an operator from
most n.

the operator T. It is not difficult to see that con-
versely, every operator T from - into 7 of finite
rank has many such representations. With each

n =
representation zfii® Gi of a given operator T of finite

=i
n

rank, one associates the number Y [|f] [|Gi| and then
i

defines

yD=inf 3 1Al 6]

where the infimum extends over the set of numbers
corresponding to all possible representations of T.
We prove below that the so defined y(T) is a norm on
the linear space of all operators from ¥ into 7 of finite
rank. The metric completion of the above normed
linear space is then defined as the trace-class of
operators from -7 into #.

As was already pointed out in the Introduction, one
of our objectives is to show, that for the special case
when both % and -7 represent a Hilbert space §, then
Y(T)=7(T) for every operator T on § of finite rank.

Similarly, if fi, . . ., f. are in% and g1,. . .,&gnarein

.
4, the expression Efi@gi represents an operator " of
=

finite rank from * into ¥ whose defining equation is
given by T(G)—E G(gifi.

T of finite rank from 4* into 4 has many such
representations. )
At this stage one should ask the following question:

Moreover, every operator

Assume that fi, . . ., fy are in 7 and g, .- - &narein

9. Assume also that f{, . . ., fnarein#andg}, . . .,
n

When do the expressions 2 fi®g; and

i=1

gmare in 9.

E f’®g represent the same operator of finite rank
i=

T Uk %. To answer this question observe
(writing /i®g1+ . . . +£,8g, instead of Zl £i®g)) that
[i®a+£Rz+. . . +£Rg,
=fir®eu+fr®g+. . .+ [ @gw (1)

wherenl’, 2', ., n' is any permutation of the 1, 2,
[ ®g+8)+Bs+ . . . +/8sn

=/ B+ 88+ 18+ . . . +/,.8s. (2a)
G+ B +,Bg+. . .+,

=£®g + /8 +£®z+. . .+, Bg.. (2b)
(af)Bg1 +(a:f2)Bg: +. . .+ (anf)Dgn

=/ Na1g) +/:Nazg)+. . . +/iNaugn) (3)

where ai, a2, . . ., an are arbitrary scalars.

Iti 1s not difficult to see that two expressmns Ef®gl
and Zf ®g} define the same operator T of ﬁmte rank

if and only if one can be derived from the other by a
finite number of successive applications of the above
relations 1, 2a, 2b, 3.

The problem is to furnish some ‘“enlightening”

n

information concerning y(7T)= inf 2 I£ill lledl where the
i=1

infimum is extended over the set of sums correspond-

n
ing to all possible representations zfi®g,~ of the given
=1
operator T of finite rank. In other words, we are
interested in some characterizations of the above
infimum. Perhaps in particular Banach spaces, it is
possible to express y(T') directly in terms of T just as
it was done in the case of completely continuous
operators T on a Hilbert space. In the last, y(T)=7(T)
=2\, where the \; represent all the nonzero eigen-

1
values of (T*T)'2; each eigenvalue appearing in the
last sum the number of times equal to its multiplicity.
In this connection one is tempted to add an addi-
tional problem: Suppose that %#; and -4, are subspaces
of the normed linear spaces # and 9. Tf fis o o fu

are in #; and g1, . . ., g are in %4, then Zfl®g, may

be considered as an operator T; from ‘/ into %1, as
well as an operator T from 4* into %. Smce all the
representations of T; are among the representations of
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T, it is clear that y(T') < y(T;). When are they equal?
The preceding dlscussmn and the equality y(T)—T(T)
which we promise to prove later, imply that this is
always the case when both % and .7 are Hilbert
spaces.

EXAMPLE Let / stand for the linear space of all
continuous functions fls) on 0 <s<1. There,

I£1|= max |£is) |

0ss<1

defines a norm. Moreover, the resulting normed

linear space is complete.

If fis) and g(s) are both in_7, then the “product”
f(s)g(t) is defined and continuous on the square
0<s,t<1. A function K(s, t) defined on0<s,t<1
will be termed ‘“degenerate” if it can be represented
as a finite sum of products, that is, if it admits a rep-
resentation of the form

Kis, 0= fi(s)eit)
i=1

withﬁ .« o fu(s) and gi(s), . . ., gu(s) in7.

It is n()t dlﬂI(ult to see that not every continuous
function K(s, t) is degenerate. It is also clear that
every degenerate K(s, t) admits an infinite number of
representations as a finite sum of products; the
number of terms in each sum will vary with the par-
ticular representation.

For each representation Zf(s)g, ) of a degenerate

H(s,t) form the number

2 I£illll &l = Emdx | fi(s)

i=10=s=<1

max | gis) |

0=s=<1

and then consider the infimum over the set of numbers
so obtained corresponding to all possible representa-
tions of the degenerate H(s, t).

We are interested in some characterizations of the
above infimum. In particular, we wonder whether
the above infimum can be expressed directly in terms
of a given (degenerate) H(s, t).

THEOREM 1. Let # and -7 represent two normed
linear spaces and ® stand for the linear space of all
operators from -7* into # of finite rank. Then, the
above defined functmn ¥(T') represents a norm on .
Also, y(T) has the “cross property,” that is, y(T)
comc1des with the bound ||T|| for all operators 7T of
rank < 1. The last condition characterizes y(T)
completely in the following sense: y(T) is the greatest
norm on % having the cross property.

PROOF: Let Te# and Ge.7 *.
sentation 2f,~®g,- of T we have

i=1

I7GN=11'S el <Iel Sl leil.
=i i=1

Then for any repre-

Thus,

17| < |G [[y(T).

The last inequality implies
IT|| < wT)
for all operators T in #4.

(i). If T=0, then obviously y(7)=0.
0<|IT||<y(T), and thus y(T) > 0.
11) It is also clear that for any scalar a we have
= la|y(T).
(111) To prove that y(T;—I—Tz) v(T)+y(T>) for any
two operators Ty and T> in %4, we argue as f()llowq

Let € >0 be given.

If T # 0, then

Choose a representation 2 £ Qg
_ =
of T, such that

S 1A el < ¥

i=1

T.)+§.

m
Similarly, we can find a representation Ef;®gj’ of

=
T such that

S gl < T +5
Jj=1

But, then 2f®g,+ E f’®g, is a representation for
T,+T,, and lher( fort

YT+ T < 3 il lail

i=1

+ S gl < y(T) +y(To) +e.

=il

. (iv). Assume now that T is of rank <1. Then T
admits a representation in the form 7'= f®g, and thus

y(T) < Al =Tl

We already know that ||T||<y(T) holds. Thus

y(T)=|T||.
Finally, suppose that for a norm « we have a(f@g)

=|/ll llef. Let Te%. For every representation Ef,-@g,-
iz

of 7' we have

< 2 a(f®g,)—z I7ill llgil-

i=1 i=1

Thus, a(T) < y(T).
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3. Some Preliminaries on Hilbert Space

The setting for our discussion is a fixed complex lin-
ear space with a complex inner product (f, g). An
inner product generates a norm |[|f]|=( /N2 Of
course, every norm | f]| generates a metric; the distance
of two vectors fand g being given by |[f—g|. We shall
assume thus that our space is a Hilbert space 9, that
is, a linear space with an inner product for which the
resulting metric space is complete.

In an inner product space, the following identities
may be readily verified to hold for any pair of vectors

fand g:

If+glF +lf—elP=21fF+2] &l

Af, o =+el*—lf—eglf+ilf+iglP—ilf—iglP

The first is known as the parallelogram law.
ond is known as the polarization identity.

The parallelogram law suggests that the norm on a
Hilbert space is of a special kind. Obviously, not
every norm on a linear space satisfies this law, and
thus could not be obtained from an inner product.
An early result of P. Jordan and J. von Neumann states
that a Banach space (normed linear space for which
the resulting metric space is complete) is a Hilbert
space, that is, has a norm derivable from an inner
product, if and only if the norm satisfies the parallelo-
gram law.

A basis {¢;j} in § is by definition a maximal ortho-
normal family of vectors; the index set J of subscripts
J 1s not necessarily countable. It is a consequence of
Zorn’s lemma (which is equivalent to Zermelo’s axiom
of choice) that in every Hilbert space there are bases.
The cardinal number of elements in any two bases
of the given space is always the same and defines
the dimension of the space. Any orthonormal family
of vectors in § can be made part of a basis.

We mention in passing that every finite-dimensional
normed linear space generates a necessarily complete
metric space. Moreover, any two norms on the same
finite-dimensional linear space generate equivalent
topologies. More precisely: Any two normed linear
spaces of the same finite dimension (and over the same
scalar field) are necessarily linearly homeomorphic.

Also the following result due to Klee points out a
striking difference between a finite and an infinite
dimensional Hilbert space: Every infinite-
dimensional Hilbert space is homeomorphic to the
surface of its unit sphere, that is to the set of all f’s
such that ||f]|=1.

To include in our discussion nonseparable spaces,
that is, spaces whose bases are uncountable, we ad-
here to the following convention: For a family {«;}
of nonnegative numbers (where j varies over some
possibly uncountable set of indices), we shall write
Naj=a if aj# 0 for at most a countable number of
J
indices j, and the sum formed from all the nonzero «j,

The sec-

converges to «.
E(Xj:‘f‘ oo,
J

In all other cases, we shall write

Bessel’s inequality

S x) <112

i=1

valid for any finite orthonormal family of vectors
{x1» - . ., x«}, implies that if {g;} is a basis, then for

any fe®, we have (f, ¢;) # 0 for at most a countable
number of subscripts j.

The following conditions on an orthonormal family
of vectors {¢;} are equivalent:

1. {¢;} is a basis in §.
2. (f, )=0 for all j, implies f=0.

3. For every fe we have the Fourier expansion
=X eiei-
J

4. For every pair f, g in § we have Parseval’s

identity:
(f.e) =2 (f, ¢i)@i:8)-
J

5. For every fe9 we have
=316, o)l
J

We shall consider exclusively linear transforma-
tions defined on all of  and having their range in-
cluded in . For a linear transformation 4,

sup || Af|=sup |(4f, g |
A<t =1

llgll=1

defines its bound and is denoted by || 4|. We say that
A is bounded if |4 | <+«. Boundedness is equiva-
lent to continuity. Every linear transformation of
finite rank (i.e., whose range is finite dimensional), and
in particular every linear transformation on a finite di-
mensional space, is necessarily bounded. A bounded
linear transformation will be termed an operator. The
identity operator will be denoted by I. An operator
A is invertible if there is an operator B such that
AB=BA=1. The set of complex numbers \ for
which 4 — A is not invertible defines the spectrum of
A; the last is always a closed subset of the disk
|z|<||4| and includes, of course, all the character-
istic values of A, and perhaps other complex numbers.
If A is an operator, then there exists a unique
operator A* called the adjoint of A4, such that

(Af, & =(f,A*g)

for all pairs of vectors f,g in . We have [|4||= 4%
and [4*4||=||4|2. The condition A=A4* defi

efines a
Hermitean operator. If A is Hermitean, then its
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spectrum is a subset of the real axis. The operator
A is positive—in symbols 4 = 0—if (Af, f) = 0 for all f
in . Since P is assumed to be a complex space,
every positive operator 4 is necessarily Hermitean.
An operator A is normal if A¥*4=AA*; we reserve the
letter U for unitary operators, i.e., such that U*U
=UU*=1

For every positive operator A there is one and only
one positive operator B such that 4=B? we write
B=A"2. In particular, for every operator 4, the opera-
tor (4*A4)'2 is well defined; we find it more convenient
to write [A] instead of (4*A)'2. Clearly, [A]=[A4%] if
and only if 4 is normal. If 4 is of finite rank (that is,
has a finite dimensional range) then both 4*4 and A4*
and therefore also [A] and [4*] are of finite rank. We
have [[4]]|= |l].

The polar decomposition of operators will play a
central part in our later discussion. To state it, define
an operator W to be partially isometric if W is isometric
on a (closed) subspace MM of H and equal to 0 on its
orthogonal complement; I is the initial set of W,
while the range of W is its final set.

The polar decomposition. l.et A be an operator.
There exists a partially isometric operator W whose
initial set is the closure of the range of [4] and whose
final set is the closure of the range of A, satisfying the
following relations:

(i) A=W [A],

(ii) [4]=W*A,

(Gii) A*=W*[4%],
(iv) [A*]=W [A]W*.

The above decomposition is unique in the following
sense: If A=W,B, where B, =0 and W, is partially
isometric having as its initial set the closure of the
range of B, then By=[A] and W,=W.

In the case A4 is of finite rank, we may assume that
W is unitary (not necessarily unique, however).

Our exposition will deal almost exclusively with
completely continuous operators. Recall that a
sequence {f,} of elements in § is said to be weakly
convergent in f, in symbols f, = f, if (fu,2) = (f,g) for
all ge®; as usual f,—f will symbolize strong con-
vergence, that is, ||, —ful| = 0.

An operator A is termed completely continuous if
for every bounded sequence of vectors fi, f2, f3, . . .
the transformed sequence Afi, Afs, Afs, . . . contains a
subsequence convergent (in the strong sense) to some
element of the space. Equivalently, an operator A
is completely continuous if it transforms every weakly
convergent sequence of elements into a strongly con-
vergent sequence, that is, f,—f implies Af,— Af.

It is an immediate consequence of the polar decom-
position, that one of the operators A, A*, [A4], [4*] is
completely continuous if and only if the same is true
for the remaining three.

Definition: If ¢ and x are two elements of $ let
¢ ®X represent the operator whose defining equation
is given by

(¢ XS =(f, X
for all fin ©.

Clearly, the transformation ¢ ® ¥ defined above, is
an operator; its bound “(p®x |—||<p|h|x|| The range of

¢ ®Y is of dimension 1 or 0

Remark. Observe the shght change of notation
from the one introduced in 2. Riesz’ representation
theorem states that a linear functional Fy(¢) defined
for all pe®, is bounded if and only if there is a unique
Xo€® such that

Fo(p)= (¢, xo) for all peP.

The correspondence xo<> F, is not an isomorphism
but a conjugate-isomorphism between § and *, be-
cause Xo <> Fo implies Axo <> AF, for any complex A.
We shall thus write ¢®X, to remind us that the x
plays the part of a bounded linear functional on 9.

The following relations are immediate consequences
of the definition of ¢ & x:

(i) (¢®£* = x®

(i) (\p)Ox = Mw
(ii") e®\x) = <p®x)
(iii) (<P1+<Pz)®X 01O + ¢, BX.

(111") <p® X1+ x2)=¢ ®x1 + ¢ ).
(iv) (¢ %1) wéxz)—(w Xl)ﬂol&)(
(v) ( X)=(A¢)Dx.

Vi) (p®x)4=¢®(A*).

n

The meaning of the symbol 2 Nip i ®xi is then clear;
=1

it represents an operator of rank at most n (i.e., whose
range is at most n-dimensional).

In general, analogous infinite sums have no meaning.
However, the following theorem will be useful for all
our purposes:

THEOREM 2. Let {¢;} and {xi} stand for any two
orthonormal familes of vectors and {uwi} a bounded
family of complex numbers indexed by the same set
of subscripts. Then,

Tf=3 wilf, xe

is meaningful for every f in § and represents an
operator T which we shall also denote by

> mipi ®x
The bound of T is given by

171 = sup [pil.

We have:

> ity x> <

PROOF:

sup |wil* 3 105 xo)l* < AP sup |pil*.
i i i
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Thus Tf is meaningful and

ITAP < AP sup [pil>.

T|<sup |wi|- On the
wil- And therefore

Wil -

This of course means that
other hand, we have |[Ty;

|17 = sup [wil. Thus, |T]|= sup

1 1
The fundamental theorem of algebra implies that
the characteristic equation of a complex matrix pos-
sesses at least one (in general, complex) root. It
follows that an operator on a finite-dimensional (com-

plex) space has at least one proper value. In general
if A1, A2, . . ., A\x are different proper values of A4
and ¢1 @2, . . ., ¢r corresponding proper vectors
(that is, Api= Nipi) then @1, s, . . ., @i are linearly
independent. In the case an inner product space

is infinite dimensional, it is always possible to con-
struct completely continuous operators which do not
have a single proper value. It may be added that thus
far it is not known whether every operator T on a
Hilbert space  possesses a proper invariant subspace.
We mean hereby, a subspace I such that 0 # M # H
and T(R)C M.

Added in proof: The September 1964 issue of the Bulletin of the
American Mathematical Society, carries a research communication
by Louis de Branges and James Rovnyak to the effect that every
operator (linear and bounded) in a Hilbert space admits proper
invariant subspaces.

The story is however quite different when one deals
with Hermitean operators. The spectral theorem in
its simplest version states that a Hermitean operator
A on a finite-dimensional unitary space admits a basis
(orthonormal) in that space, made up of proper vectors
of A. We mean hereby, that there is an orthonormal
basis ¢1, . .
and thus

A= 2": )\i(p,'®¢i.
i=1

The corresponding proper values A, . . .,
necessarily real.

Conversely, every sum of the above form with
@1, . - ., ¢n orthonormal and A\, . . ., N\, real, repre-
sents a Hermitean operator.

The infinite-dimensional extension of the above
result which follows is also well known:

THEOREM 3. Every Hermitean completely con-
tinuous operator A on a Hilbert space admits in that
space an orthonormal basis of characteristic vectors.
The corresponding nonzero (necessarily real) proper
values are each of finite multiplicity and may be ar-
ranged either in a finite or denumerably infinite
sequence \Ai, A2, . . . (each nonzero characteristic
value being repeated in the sequence the number
of times equal to its miltiplicity) such that \;— 0.

A, are

If ¢1,¢2, . . .is a corresponding orthonormal sequence
of proper vectors (that is, Api=N\ip; fori=1,2, . . .),
then

AZE }\i(.0i®¢i

1
Conversely, every sum of the above form, that is, with
{¢i} orthonormal, \; real and A; — 0, represents a com-
pletely continuous Hermitean operator.

The above yields a representation characterizing
the completely continuous Hermitean operators. To
obtain an analogous representation valid for all com-
pletely continuous operators, one makes use of the
polar decomposition for operators.

THEOREM 4. An operator A is completely con-
tinuous if and only if it admits a polar representation.

A= 2 Nipi Oxi

where both {¢;} and {x:} are orthonormal sequences
and the A;’s are positive. The sum has either a finite
or denumerably infinite number of terms. In the last
case, we have also \;— 0. The above representation
is unique in the sense that the \;’s are necessarily
all the positive proper values (each represented in the
sequence {\;} the number of times equal to its multi-
plicity) of [A4].

PROOF: Since A4 is completely continuous, the same
is true for [A]. Thus,

[A]ZZ Nixi Oxi.

Now, if A=W]A] is its polar decomposition, then W
is isometric on the closed linear manifold determined
by {xi}. Thus, {Wx:} is also an orthonormal family.
Put Wxi=¢i. Then

A= W[A]:W<z 7\1'Xi®)?i
:2 )\i(WXi)®>2i=E Nigi Qxi.

S

. ¢a for which Api=N\ig;i for 1 <i< n, 4. The Schmidt-Class and the Trace-Class of

Operators

LEMMA. Let A be a given operator and {¢:}, {x;}
be any two bases. Then

> el
> Dldei, )l
> il

represent the same (finite or infinite) value; we denote

the last by |42

ProoF. For a fixed i, the “Pythagorean theorem”
implies
Ieillr=> 1ei, x)I*
J
and thus,

S el =3 3 e, )P
1 o)

Replacing in the last, 4 by A*, {¢i} by {x;}, and {x;}
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by {¢i} one gets

Sl =3 S 14, gl
J i J

=22 106, 4P =3 3 |dei, x)|*.
i J i

Thus, the values of the above three sums are the same.
Observe finally that, A**=4. This concludes the
proof.

Definition. For a given operator A4, let |4|? stand
for the common value of the three “sums” determined
above.

LEMMA. For any operator 4, we have ||4|| < |4].

PROOF. It is sufficient to prove that |4¢| < 4] for
every vector ¢ such that |lg||=1. This is easy: Choose
a basis {¢i} with ¢ as one of its elements. Then

HelP < 3 | dgill2=|4[>.

LEMMA. For any two operators 4 and B we have
|[A+B| < |A|+ |B]|.

PrOOF. It is sufficient to consider the case in which

both |4| < 4 and |B| <+%. Choose a fixed basis

Then

1/2
A+ Bl =(S 1A + Bl

{oi}.

,.
< (3 e+ 1Bl
1/2

<(Shek) +(Simelr)” = 1ai+151

THEOREM 5. Let 8 stand for the set of all operators
A for which |4| <+. With the obvious definitions
of addition and scalar multiplication, 8 is a complex
linear space. There |4| represents a norm. The
norm also satisfies the parallelogram law,

|4+ B|2+ |A— B|> =2|4|2+ 2|B|2.

PROOF. That |4| is a norm on & follows from the
preceding propositions. The last equality is also
true, since if {¢;} is a fixed basis, then for every j

4 ¢; + B i | +|lAp; — Bojl* = 2|4 ? + 2|| B |I*-

THEOREM 6. Let A and B be two operators in 8
and {¢;} a given basis. Then

4, B=Y (Ag;, Bg))
4

is a well-defined complex number, independent of
the chosen basis. Also, (4, B) defines an inner prod-
uct on B and thus

|| =4, A)"

is the norm which it generates.

Proor. For each j we have

4Agj, Boj)=|Ap;+ Be*
— A — Bej|I* + i || Ap; + iBgjl|* — ill Ap; — iBejl|?
and thus,
44, B)=|A+B|2—|A—B|*+i|4+iB|*—i|d— iB|2.

Remark. Incidentally, the inner product space % is
also complete (hence a Banach space); it contains the
operators of finite rank as a dense subset. Consider-
ing however, 8 only as a linear set of operators on §,
and defining the bound ||4| of an operator as a new
norm on 3B, then the resulting normed linear space is
not complete, (provided ? is infinite-dimensional).

Remark. Incidentally, |4] also satisfies the following
conditions:

(i) |4]=|4*].

(i1) For any operator B, we have
|[4B| < |A] |IB|| < |4] |B|.

As a consequence of (ii), 8 is also an algebra. In
fact, B is an ideal in the algebra of all operators.

Definition: An operator A in B is commonly referred
to as one which belongs to the E. Schmidt-class and
|A| is said to define its Hilbert-Schmidt norm.

Remark. That the Hilbert-Schmidt norm of an
operator is always not smaller than its bound was
proven above. Also, it can be readily verified that the
Hilbert-Schmidt norm is a crossnorm; that is, |A4| = |||
wherever A is an operator of rank < 1.

At this point, the following comment is in order:
Let L, stand for the Hilbert space of all complex-
valued Lebesgue measurable functions flx) defined on
the interval 0 <x <1 for which [Aix)|? is integrable;
two functions being considered identical if and only
if they differ on a set of measure zero. There, the
linear operations are the usual ones in function spaces;
the inper product is represented by

(f, &= froglodx.

Similarly, let /", represent the Hilbert space of
complex-valued measurable functions K(x,y) defined
on 0<x, y=<1 for which |K(x,y)|? is integrable; the
inner product being given by

(H,K)=[[ H(x,y) K(x,y) dx dy.

One observes that if K;(x,y) and Ks(x,y) are both in_7"5,
then the function

H(x, y)= [ Ki(x, 2)Kz(z, y) dz
is also in 7’ and
ST |H(x, y)|*dx dy
< [[ |Ki(x, y)|2dx dy - [J |Kalx, y)|*dx dy.
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Thus, if H (x,y) is defined as the “product” of Ki(x,y)
and K(x,y), the space_s > turns out to be an algebra.
Let K(x,y) be a fixed element in_/"». For f(x) in Lo,

JK(x, y) fy) dy

is then defined for almost all x in 0 <x <1 and repre-
sents a function g(x), again in Ls. It turns out that
the equation

gx)=[K(x, y) fly) dy

defines an operator K on L, which belongs to the
Schmidt-class (of operators on Ls) and

| K| =(J] K, y) |*dx dy)*.

Moreover, every operator on L. in the Schmidt-class
is obtained in such a manner. This one-to-one cor-
respondence between / > and the Schmidt-class of
operators on L, preserves addition, scalar-multiplica-
tion, products, and the norm. This means we have
the following:

THEOREM 7. The Schmidt-class of operators on
L,, and the Hilbert space /s, are congruent not only
as Banach spaces but also as Banach algebras.

THEOREM 8. Every operator 4 in the Schmidt-class
is necessarily completely continuous.

ProOOF. Letfn — f. We prove the following: Given
an € > 0, there is a natural number n, such that for all
n > ny one has | Af,—Af|<e.

Clearly for some constant ¢ we have | f, || < ¢ for all
n and thus also ||f||<c. Choose a basis {¢;}. Since
A is in the Schmidt-class, we can find a finite set J of
indices j such that

62
Zjes | AP < o=
Clearly,
o= =2 —fipilpi

and therefore,
Afn— Af= 2j (fn
Thus, for every natural n,

| Afa — A2 = Zjesfa — 1, @) A@i+ 2 jusfua— 1, e)A; ||

—f, ¢)Ap;.

< 2|| Zjefu—1, el + 21| 2y fu — 1, € Aoill*

The second term on the right of the last inequality is

5 5 €2 62
< 21— Sl g < 220p5 5=

On the other hand f, — f implies lim (f,
all j.

—f.¢) =0 for
Thus, the sum

2| St —frpi)Ae; |2

2
. . €
having a finite number of terms can be made< —

2

for large enough n, say for all n > ny. Therefore for

all n > ny, we have

”Afn_

The theorem which follows characterizes the com-
pletely continuous operators in the Schmidt-class.

THEOREM 9. A completely continuous operator
A =3\ ipiQx; belongs to the Schmidt-class if and only
if 3i\% <+ oo, that is, the series formed from the non-
Z€ero proper values of A*A converges. In the last case
we also have

Af|I2 < e

|A| = (iNY)*%.
Proor. We extend {xi} to a basis by adding
{w;j}. Of course
I Ax: =l Xi¢i | = \i and || Aw; | =0.
Hence,

A2 =3 || Axi |2+ 2 || Awj [P =33 .

COROLLARY. The operators of finite rank form a
dense set in the Schmidt-class.
PROOF. Let A=3Z\ipi®%;
Let 4,=3 Nigi Oy
i=1

with A2 <+oo.

Then,
lim |4 — A, =1lim (Si=xA)2=0.
n n
LEmMmA. Let 4 be a given operator and {¢i} a
basis. Then

2i([4]ei, ¢i)

is independent of the chosen basis.
ProOF. Since [4] =0, there is a unique operator
B = 0such that [4] =B2.  Now,

([A]‘Pl» l ) = (B? Di, (Pl)—(B(Pi, Bgol _”B(p ”2
and 3j|Bgi|? is of course independent of the chosen
basis {¢pi}.
Definition. The operators A for which the sum in

the preceding Lemma is finite, form the trace-class (rc).
THEOREM 10. Let (7¢) denote the class of all op-
erators A for which

T(A)=2j([A]pj, ¢)) <+

for a fixed basis {¢;}. With the obvious definition of
addition and scalar multiplication, (¢) is a linear space.
The last will be normed if the above sum represents
the norm of an operator A. Moreover, the resulting
normed linear space is complete, hence a Banach
space: it contains the operators of finite rank as a
dense subset. The operators in the trace-class nec-
essarily belong to the Schmidt-class, and thus are
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completely continuous. Moreover (r¢) is a (two-
sided) ideal in the algebra of all operators and a Banach
algebra under its own norm.?

THEOREM 11. Every operator in the trace-class
is necessarily in the Schmidt-class. Every operator
in the Schmidt-class is completely continuous.

Let 4 be a completely continuous operator and
Sihipi®yi its polar form. Then A is in the Schmidt-
class if and only if Z]\2 <+%; we have |[4|=(Z\3)/2
The operator A is in the trace-class if and only if
Siki <+x; we have 7(4) =3i\.

THEOREM 12. For an operator T of finite rank

(D =y@=inf 3 Lflle

where the infimum is taken over the set of all numbers
m

corresponding to all possible representations Eﬁ@gj
=
of T.

ProOOF. Since 7(T) is a crossnorm, for any repre-

m m
sentation 2]}@@; of T we have 7(1)<?Y) 7(/,®z))
J=1 j=1

2For the complete details of the proof of Theorem 10, the reader is advised to consult
this author’s monograph “Norm Ideals of Compietely Continuous Operators” Ergebnisse
der Mathematik (Springer-Verlag, Berlin, 1960).
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:i I£llllgill. Thus, #(T) < y(T). However, if i Nipi®Xi
= =

is a polar representation of 7', then
n
TT= ( 3 hx®s ) (S re®x
i=1
__28 AIXT

and [T]=Y Aixi®Xi. Now, [T]e=0 whenever ¢ is
orthogonal l{o X1, - - - Xn- Thus,
A= 2 [T]Xl »Xi)

S

:::El leaXl 25

i=1

:Z INigdl Ixill = ¥(T).

This concludes the proof.

(Paper 68B4—130)
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