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The authors generalize a method of Lehmann and Maehly for upper and lower bounds to eigen· 
values of self·adjoint operators in Hilbert space by using a device introduced by Kato. The resulting 
procedure can be used to improve bounds found by the Rayleigh·Ritz method and the comparison 
me thods of We instein, Aronszajn, and the authors by means of calculations involving easily found 
vectors; and it is espec ially suitable for applicat ion to proble ms of vibration of continuous elasti c 
s yste ms. Further a theorem of Kato is interpreted and ext ended by the result s obtained. 

1. Introduction 

For the eigenvalue proble ms that ari se in the theory of vibration of continuous elastic systems 
It IS useful to have auxiliary me thods capable of improving the rigorous upper and lower bounds 
that can be found by the Rayleigh-Ritz and comparison operator procedures [1, 2, 3, 4] 4. We 
prese nt here the theory of a me thod which should be quite useful in problems of thi s kind. 

The procedure of Lehmann and Maehly [5, 6] is in principle applicable , since it depe nd s on 
the use of an essentially arbitrary family of " trial vec tors" and the knowledge of numbers that are 
known to separate adjacent eigenvalues. But while these numbers can be obtained by use of the 
upper and lower bound procedures already referred to, the trial vec tors mu st sati sfy all of the 
boundary conditions of the differential operators; and finding such vec tors is far from an easy 
tas k. On the other hand Kato has developed [7] and applied [8] an ex tension of the T emple 
me thod [9] for operators of the form T*T that uses the same numbers and avoids the difficulty 
of needing trial vectors that satisfy all of the boundary conditions. While the form T*T is a 
common property of the operators that ari se in elastic vibration theory, the procedure of Kato does 
not le nd itself to optimization over a family of trial vectors . In the following lines we dic uss the 
use of a device introduced by Kato in the procedure of Le hmann and Mae hly. The resulting 
procedure optimizes the estimate of Kato over a family of easily found trial vectors . 

Section 2 sketches the needed properties of operators of the form T*T and of the related 
operator H introduced by Kato. Section 3 then discusses the application of the procedure of 
Lehmann and Maehly to the operator H, and section 4 uses the results of section 3 to interpret 
and extend a theorem of Kato . 

2. Operators of the Form T*T and a Device of T. Kato 

Here we are concerned with a positive self-adjoint operator A with domain ~A in a Hilbert 
space .pI for which the inner product is CU, V)I. We will assume, for convenie nce, that the operator 
A has for its spectrum an infinite discrete set of eigenvalues, 0 ~ AI ~ A2 ~ ... , that diverge to 
infinity without finite limit points; i.e., that (A + I)- I is completely co ntinuous . Further, we require 
A to have the form T*T. The operator T is to be a closed operator de fin ed on a de nse domain '.D1' 

in .pI and having its range lli1' in a Hilbert space .p2 with inner product (u, vh; T* is the operator 
adjoint to T. Thus, ':D1' , is in .p2, lli1" is in .pI , and together T and T* sati sfy (Tu, vh = (u, T*v)1 for 

I T he research reported in this docume nt has bee n sponsored in pari by the De partme nt of the Navy under Contract NOw-62-0604-c with the Bureau of Naval 
Weapons and in parI by the Aeronautical Researc h Laboratories. OAB.. through the European Office of Aerospace Re search, United S tates Air Force. 

2 1ns titut Battelle, Genev a. Switzerland. 
3 Applied Ph ysics Laboratory. The Johns Hopki ns Un iversit ),. S il ve r Spring, Maryland. 
" Figures in brac ke ts indica te the lite rature refere nc6S at the e nd of tins paper. 
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every u in 'IlT and every v in '.'DT*. The spaces 4>1 and 4>2 may possibly coincide. The properties of 
operators of the form T*T have been widely studied by von Neumann [10], Murray [11], and others. 
Here we need draw on only a few of the properties of T, T*, T*T, and TT*. We recall that the 
operators T*T (=A) and TT* are positive self.adjoint operators which are isomorphic except for 
their null spaces WT and WT* and that 

We define with KaLo [7] the operator H in 4>1 X 4>2 with inner produc t (u, v) given by (u, v) 
= (u l , VI), + (u2, v2h by 

(1) 

on all pairs [u l, u2] in '.'DTX'.'DT* . H is a self·adjoint operator defined on 'IlT X'IlT• and has a real spec· 
trum that is symmetric about zero. In fact, the unitary transformation U on 4> I X4>2, defined by 

(2) 

transforms H into - H, that is, 

_H=U- 1HU, (3) 

so that Hand - H are isomorphic. Further the operator H2, which has the expression and domain 
given by 

and 

respectively, is reduced by 4>1 and 4>2 regarded as subspaces of 4>1 X 4>2. Evidently, WH=IJL'2 
= W T X W T*. Excluding zero, H2 has the same eigenvalues 'A. v as A but with the multiplicity doubled; 
since H is isomorphic with - H, it has just the nonzero numbers+ 'A.~/ 2 and - 'A.U2as symmetrically 

arranged eigenvalues, each having the multiplicity of 'A. v in A. Thus the spectrum of H is com· 
pletely described in terms of that of A with the possible addition of zero from WT*. On the other 
hand bounds for the eigenvalues of H can be converted into bounds for eigenvalues of A by squaring. 

3. Application of the Lehmann-Maehly Procedure to the Operator H 

In this section we apply the Lehmann-Maehly procedure to the operator H of section 2. We 
designate the separation constant by p or -p, where p is a non· negative real number. Our dis· 
cussion considers first p in the resolvent set of H and then turns to p in the spectrum of H; finally, 
we consider what happens as p passes from the resolvent se t to the spectrum. 

The procedure of Lehmann and Maehly applied to a self-adjoint operator B makes use of a real 
constant 7 that separates adjacent eigenvalues of B and amounts to the calculation of Rayleigh·Ritz 
bounds for the eigenvalues of the bounded operator (B - 7)- 1 based on trial vectors <p of the form 
<p=(B-7)V, where the v's are linearly independent vectors from'IlB • The resulting bounds are a 
consequence of the fact that for bounded operators the Rayleigh·Ritz me thod gives " inner bounds" 
for "outer eigenvalues" . 

3.1. p in the Resolvent Set of H 
Let us suppose, at first, that p is a positive real number not in the spectrum of H. Then - p 

is not in the spectrum of H, and - p and p satisfy 

- 'A.:/~I < - p < - 'A.:/2 and 'A.:/2 < p < 'A.:!~ I' 

respectively, for so me 5 n. The operator (H - p)- I is bounded. The positive spectrum of (H - p)- I 

~ We introduce the "con ve ntional" e igenvalu e '\0 equal to zero whenever zero is not in the spectrum of A in order to unify the prese ntation. 

174 



consists of an infinite decreasing sequence of eige nvalues, 

The negative spectrum begins with the increasing finite set (which is empty if A /I = 1..0 = 0), 

where Ap designates the first nonzero eigenvalue of A ; the point -lip has an associated charac­
teristic subspace equal to IR H; and the interval (- 1/ p, 0) contains the infinite set of negative 

eigenvalues, 

The following spectral diagrams may be helpful. For the sake of illustration we have assumed 
0=3 so that AI = 1..2 = 0, 1..3> 0 and 1..5 < p2 < 1..6. 

~ ~ 'fv, I.e 
I I I I 

Spectrum of A 

-tJ -rJ 
I I 

-0 -~ 0 

I I I 
-J ~ 
I I 

~ A~ 
I I 

-p Spectrum of H p 

The operator (H + p)- l is also bounded and has the same norm as (H - p)- I. In fact, si nce 
Hand -H are isomorphic, it follows that (H + p)- I is isomorphic with - (H - p)- I, so that the 
spectrum of (H + p)- I is the same as that of (H - p)- l after a reflection about the origin. 

The Lehmann-lVi.aehly procedure can be applied to H using p or - p as the separating con­
stant. If we use p and base the procedure on an m+-dimensional manifold m + of 1)/1, then the 
resulting eigenvalues, designated by J.t+, are the stationary values over vectors v in m + of the ratio 

(( H - p)v, v) 
((H - p)v, (H - p)v) 

and may be determined from a matrix eige nvalue equation of the form 
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The matrices A and B are given in terms of a linearly independent basis {Vi} for 9)1+ by 

A = {((H - P)Vi, Vj)} and B = {((H - P)Vi' (H - p)Vj)}. 

Let us agree to enumerate the nonzero eigenvalues by the useful but unconventional scheme, 

and 

where s is the dimension (possibly infinite) of 91 H, and the quantities j+, k+, and [+ are nonnegative 
integers that satisfy j+ :;;; n - p + 1 and j+ + k+ + 1+ :;;; m+ . Since the negative eigenvalues give 
upper bounds to thp negative eigenvalues of (H - p)-1 and the positive give lower bounds to the 
positive, we have 6 

r=n, n-1, ., n+ 1- j+, (4) 

r=p, p+ 1, ., p+k+-s-1, (5) 

and 

r=n+1, n+2, ... , n+I+, (6) 

or equivalently, 

r=n,n-1, ... ,n+1-j+, (7) 

r=p, p + 1, ... , p+ k+ -s-l, (8) 

and 

r=n+1, n+2, ... , n+I+. (9) 

When they are squared, the inequalities (7), (8), and (9) give lower bounds for An, An-I, ... , 
A n+l -j+ and upper bounds for Al), AN!' ... , Ap+k+-s- J, and for An+1, An+2, ... , An+l+. 

If - P is used in place of P in the Lehmann-Maehly procedure on H, we designate the eigen­
values based on an m--dimensional subspace 9)1- in ~H by /-1-- and enumerate those that are 
nonzero according to 

and 

6 We omit the valid but useless bounds J.L! ;;l: - ~. n = p - s, p - s + I , . . .• p - 1 and note that (5) gives useful information only when s is finite and k+ > s. 
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--------

whe re j- , k- , and l- are nonnegative intege rs that sati sfy j - ,s; n - p + 1 and j - + k- + l- ,s; m- . By 
arguments parallel with those for p we find the bounds 

1 
A,,/2~ p- - , r = n,n - 1, . . . ,n + 1-j- , (10) 

r p:; 

and 

1 1.1 / 2 ,s; p - -, 
r J.L-;: 

r = p , p+1, . . . , p + k--s- 1, (11) 

r=n+1,n+2, . . . ,n+l-. (12) 

When squared, these inequalities give lower bounds for An, An- I, . .. , An+ l- j-, and upper bounds 
for Ap , Ap+l , • • . , Ap+k- - s- I and for An+l, An+2, ... , An+l-. 

Although, in general, the bounds given by the procedure using p will differ from those ob­
tained using - p, even when the manifolds im+ and im- are the same, tHere is an important case 
in whic h they will be identical. This happens when 

(13) 

where U is the unitary transformation given by (2), as is clear from the equality, 

«H- p)v, v) 
«H+p)Uv, (H + p)Uv( 

«H + p )Uv, Uv) 
«H - p)v , (H - p)v) 

th a t follows from (3) . In fact, whe n (13) holds we have J.Lt = - J.L -;:, and j + = j - , k+ = k - , and l + = l - . 
When im + and im- are equal and (13) is sati s fi ed, then it is always possible to c hoose a basis {vd 
su c h that each vec tor has the form [v I, 0] or [0, v2] , as is evide nt from the de finition (2) of U. 

No ma tter whether p or -p is used, the bounds given on the right hand sides of (7), (8), (9), (10), 
(11), and (12) are increasing with p . In fact, if we designate a right hand side of an inequality (7), 
(8) or (9) by w+, then it follows from the sta tionary pro perty of J.L + th at w+ is a sta tionary value of 
the quotient 

«H - p)v , Hv) 
«H-p)v, v) 

ove r the vectors of im+, a nd that a vector v+ that ma kes the quotie nt stationa ry gives 

«H - p)v+, H v+) w+= . 
«H - p)v+, v+) 

(14) 

When the eigenvalues w+ and corresponding eigenvectors v+ are cons idered as func tions of p they 
are analytic. 7 Considering the variation of a w+ with respect to p we find that 

dw+ = (Hv+, Hv +)(v+, v+) - (Hv+, V+)2 ~ ° 
dp «H - p)v+ ,V+)2 . 

In computing this derivative the contribution from the variation of v+ wi th p is zero since the ratio 
(14) is s tationary at v+. Similarly, for w- , a right hand side in (10), (11), or (12), we find 

1 Stric t!y spea king, it may be necessary in order to preser ve their analytici ty in p to rename the eigenvalues and eigenvectors in neighborhoods of p whe re t hey 
are multiple. T his in no way affects the validity of the argument since all the w+'s are nondecreasi ng in p. 
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and 

dw- JHv-, Hv-)(v-, v-) - (Hv-, V-)2 
dp- «H+p)v-,v-)2 

~o. 

Since all of the bounds are increasing with p, the best lower bounds will be obtained when p2 is 
the largest known lower bound to ~n+I; and, conversely, the best upper bounds will be taken when 
p2 is the smallest known upper bound to ~n. 

3.2. p in the Spectrum of H 
Let us now suppose that p coincides with an eigenvalue of H. Our considerations can be 

conveniently divided into the two cases: p = 0 and p > o. (The results for - p follow analogously 
to those for p.) 

If p is zero then the Lehmann-Maehly procedure can be applied to the restriction of H to the 
orthogonal complement of the null space 91H. As we shall see, this produces upper bound~ for 
the strictly positive eigenvalues of A, but these upper bounds may not be as good as those obtained 
from the usual Rayleigh.Ritz procedure based on essentially the same family of trial vectors. 
Let us designate the restriction of H to the orthogonal complement of 91 H by HO and the orthogonal 
projection on this complement by PO. We apply the procedure using an mO-dimensional manifold 
9.n0 of :DHO• Let us designate the resulting nonzero eigenvalues according to 

where tl and t2 are nonnegative integers that satisfy tl + t2 :;;; mO. Since the negative eigenvalues 
are upper bounds to the negative eigenvalues of (HO)-I and the positive to the positive, we have 

and 

\ 1/2 0< 
I\.r ~ 

1 

r=p,p+l, .. . ,p+tl-I, 

r = p, p + 1, . . ., p + t2 - 1. 

Further, if [11))10 = 9.n0 we have tl =t2 and ilo=- j-t0, as follows from (3). 
. r r 

(15) 

(16) 

It is important to note that to apply the Lehmann-Maehly procedure with p equal to zero, it 
is no way necessary to know explicitly the operators HO or pO or to find vectors orthogonal to 91 H • 

In fact, if 9510 i§ any mO-dimensional manifold in l)H (or which rank {(HVi, HVj)} = m O, where {Vi} 
is a basis for 9.no, then the manifold 9.n0 given by p 09.n0 is of dimension mO as well and lies in the 
orthogonal complement of 91 H. Further, the inner products used in the procedure are just (Hvi, Vj) 
and (Hvi, HVj), as follows from the relation pOHopo = HO = H on l)H. 

If A has no zero eigenvalues, then the upper bounds given by (15) and (16) are alwaYJ> weaker 
than those given by the usual Rayleigh-}{itz procedure for A based on the projection of im0 on .pl. 
In fact, we ~ay assume that 9510 satisfies U 9510= .mo, for if it does not, we can replace it by the even 
larger space obtained by forming mo+ usmo and then removing the submanifold that lies in 91H. 
The bounds obtained from the enlarged space will be better than those given by (10) and (11), and 
they will be symmetrically arranged about the ori~in. As we sh~ll se~, the Rayleigh-Ritz bounds 
will be even better. Let us suppose, then, that 9.n0 satisfies U9.n 0= 9.n0 and that a basis is taken 
using vectors of the form [Vi, 0] and [0, v2 ]. Those of the first set form a basis for the projection 
ofWlo on .pI, and those of the second for the projection of 9510 on .p2 after removal of the part in 91 H. 

The matrix eigenvalue problem takes the form 

{ (-z. --t --~ -) -~ (-; --t --;: -) } (- ~~ } 0, (17) 

178 



where BI and B2 are the positive de finit e matrices given by 

Jj I = {(Tv!, TvJ)z}, d B {(T*? 7'* 'J) } a n 2 = Vi, vJ I , 

and C and C* are the matrices give n by 

C = {(Tv), vJ)z}, and C* = { (T *v7' v])d· 

But the matrix equation (17) has just the same nonzero eigenvalues as the equation 

(18) 

However, since the matrix CB21C* is the Gram matrix of the orthogonal projection in .pI of the 
vectors {vl} on the subspace spanned by the vectors {T*v,2}, we have the matrix inequality, 

In whic h r is the Gram matrix of the vec tors {vI}. Thus, acco rding to the minimum-maximum 

principle, the eige nvalues, jLT ~ iLl~ . .. , of the matrix equatio n 

(19) 

are larger than those of (18). That is, 

i=l, 2,. _ _ , t , 

and hence, 

1 1 
Ai ~ -::z ~ (<J)2 ' 

f.L i f.L i 
i = 1, 2, _ . _, t . 

But the matrix equation (19) is jus t that whic h ari ses from the Rayleigh-Ritz procedure for A 
using the projec tion of 9510 on .pl. 

If, however, A has zero in its spectrum, our co nclusion is no longer valid, for the Rayleigh­
Ritz procedure gives upper bounds starting with the lowest, which is zero, while the Le hmann­
Maehly procedure starts with the firs t strictly positive eige nvalue _ 

When p is equal to a nonzero eigenvalue of H, that is, 0 < P = At{2, we proceed in muc h the same 
way as for p equal to zero. Suppose Av is an eigenvalue of A of multiplicity t, i.e., 

(20) 

and that \JC ~ is the characteristic subspace associated with A 1~2 as an eigenvalue of H. We desig­

nate by Ht the restriction of H to the orthogonal complement of W ~ a nd apply to it the procedure 

using p and an m;:--dimensional manifold 9Jl~ of vectors in '1)< _ The negative eige nvalues less 

than - lip of the procedure give rise to lower bounds for eigenvalues of H~ below p. Since the 

spectrum of H~ coincides with that of H after the omission of AI~2, we find bounds to e igenvalues 

of A. Designating the nonzero eigenvalues according to 

< 0 

and 
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where jt, kt, and It are nonnegative integers that satisfy jt ,;;: v- p, jt + kt + It ,;;: m,,+, we obtain 
the bounds 

and 

1 
-AI> "?;p+-

r lL~v ' 

r=v-1, v-2, . .. , v-jt, 

r=p, p+1, . . . ,p+k:+s-1, 

r = v + t, v + t + 1,. . ., v + t + Iv+ - 1. 

Parallelly, using - p we find bounds in terms of the eigenvalues, 

and 

1 
,;;: II - V ,;;: II -V ,;;: - < II - V. ,;;: • • • ,;;: lI -v _v 2 ,;;: /I. -v _V" 

'-p - s+ I '-p - s P '-V- J" ,- r-

according to 

1 
A~ "?;p-~' r=v-1, v-2, ... , V-)-;;, 

J-t r 

1 
-A~ "?;p-~' r=p,p+1, ... ,p+k-;;-s-l, 

J-t,. 

and 

r=v+t, v+t+1, ... , v+t+I-;;-1. 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

As in the previous cases, we find that J-t ~v = J-t~v provided that U'JR~ = m~ . The characteristic 

subspace 91) does not need to be known, nor do vectors orthogonal to it have to be found explicitly. 

In fact, if m: is an ~:.dimens!onal manifold in l)H that satisfies rank {((H - p)v;, (H - p)Vj)} =mt 

for a basis {Vi} for 9.R ~ , then m: can be used in place of m:, and the inner products needed are 

just ((H - p)Vi, (H - p)Vj) and ((H - p)v;, v;). 
The manifolds 9.R that we have introduced when p is in the spectrum of H have the advantage 

that in each case the eigenvalue problem has the matrix form, (A - J-tB)a = 0, in which B is positive 
definite. This restriction is not really necessary. The eigenvalues may be defined to be stationary 
values of the quotient. 

((H - p)v,v) 
((H - p)v, (H- p)v) 

over vectors v in an arbitrary m-dimensional manifold m of1)H under the subsidiary condition that 
((H - p)v, (H - p)v) > o. In fact, the eigenvalues may be defined 8 as recursive maxima or minima 
or by minimum-maxima or maximum-minima of ((H - p)v, v) under the condition ((H - p)v, 
(H - p)v) = 1. Evidently the eigenvalues J-t are uniquely defined and are equivalent to those 
found using only that part of m in the orthogonal complement of 91, while the eigenvectors in 9.n 
are undetermined to the extent of an arbitrary vector v in 9.n n 91. 

8 The orthogonality st atement s in the vari atio nal principles are to be understood in terms of the form ((H - p)v. (H - p)v). 
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3.3. p Passes From the Resolvent Set to the Spectrum 

We now examine what happens when p passes from the resolvent set of H 1.0 a point (T of the 
s pectrum. We shall see that the bounds pass smoothly, indeed analytically, into those given at 
the spec tral point. In order to preserve the proper enumeration, and thus obtai n th e s tronges t 
bounds, it is necessary to consider the limits from both sides of the spectral point. 

Let (T be a nonnegative point of the spectrum of H and let W IT be the associated c haracteris ti c 
subspace. We take iI.n to be an m-dimensional subspace of'IlH and suppose that {Vi} is an ortho­
normal basis for iI.n such that ViEW a, i = m' + 1, m' + 2, . . ., m, and that the other vectors in the 
basis have no nontrivial linear combinations in Wa. The manifold spanned by the first m' of the 
v's will be denoted by mao We restrict our attention to p's that are distinct from (T and lie in an 
interval about (T that contains no other spectral points of H. The Lehmann-Maehly eigenvalue 
equation for H based on p and iI.n takes the form, 

in which Al and BI are give n by ((H -P)Vi, vj} and ((H - P)Vi, (H - p)vj ), res pec tively, i,j = 1,2,. 
m' . Equivalently, we have 

and 
(27) 

(28) 

As p approaches (T the valu es f-t determined by (28) beco me lnfinite while the numbers p + 1/f-t 

have the co nstant value (T. Th e f-t' S determined by (27) de pend analytically on p and pass to the 
values found with p eq ual to (T. 

L~t us assume that (T is A~, where Av is the same as in (20) . We id e ntify 9]1 with 9], + , il.na 

with iI.n: , m with m+ and m' with m~ . As p approaches Av'h from above the bounds give n by (8) 

decrease to those of (22) and the bounds give n by (9) with n eq ual to v + t -1 decrease to those of 
(23).9 The numbers obtained as th e limiting values of the right s id e of (7) co ntain Av'h re peated 

m - m ' times and th e others are the bounds found on the right hand s id e of (21), but th e e nu me ration 
obtained by the limiting process will not be as strong as that in (21) unless m-m' equals t. On 
the other hand as p inc reases to Av'h the bounds gi ven by (7) with n equaJ to v - 1 and by (8) increase 

with p to those given by (21) and (22) respectively. Th e numbers obtain ed as the limits of th e right 
hand side of (9) will co ntain Av'h repeated m-m' times and the others are the bounds found on th e 

right hand side of (23). Again, if m - m' is less than t, the enumeration of the bounds found from 
(9) by the limiting process will not be as strong as that of (23). Evidently, a parallel di sc ussion 
can be made for the bounds found with - p to relate the limiting valu es of the bounds of {l0), (11), 
and (12) to those of (24). (25). and (26). - -

If we assume that (T is zero, we identify iI.n with iI.n+, il.na with il.no, m with m+ and m' with mO. 

As p approaches zero from above the bounds given by (9) with n eq ual to p - 1 decrease to those 
of (16). The set of bounds given by (7) is empty, and the limiting values of th e right-hand side of 
(8) contain zero repeated m - m' times and the others are th e numbers th at ap pear on the right in 
(15), but the e numeration obtained in the limit will not be as strong as th at of (15) unless m - m' 
equals S. To obtain the bounds (15) direc tly as limits we use - p. For this we ide ntify 9]1 with 
9]1 - and m with m-. As p approaches zero from above, the bounds of (12) with n equal to p-1 
decrease to those of (15). The set of bounds given by (11) is e mpty, and the limiting values of the 
right hand side of (10) contain zero m - m' times and those of the right hand side of (16). Again 
precise e num eration is lost unless m- m' eq uals S. 

9 The nu mbers ) -+- . k+, a nd 1+ c hange wit h p as va lue s of J-I. pass th rough zero or - l ip. 

181 



4. An Interpretation of a Theorem of T. Kato 
T. Kato [7], has proved the following theorem: 
Let H be the operator described in sec. 2, and suppose that the interval (a,f3), 0 ~ a < f3, con­

tains at most a nondegenerate eigenvalue ofH. If v, a nonzero vector in 'JJf{, satisfies 

where 

then there is an eigenvalue A'h ofH in (a,f3) and the following bounds hold: 

We first note that the inequality (29) is equivalent to each of the inequalities 

and 

_=((H_-..!-f3,,-)v-,-, -,"-v)_ < _-_1_, 
((H - (3)v, (H - (3)v) f3 - a 

((H - a)v, v) 1 
~:-=---..,.---'::-::'---'--- < --, 
((H - a)v, (H - a)v) (3 - a 

and that the bounds (30) can be written 

a < (3+ ((H - (3)v, (H -(3)v) ~ 11.' /2 ~ a+ ((H -a)v, (H -a)v) < f3. 
((H - (3)v, v) ((H - a)v, v) 

(29) 

(30) 

(31) 

(32) 

(33) 

From the form of the bounds in (33) it is clear that the theorem of Kato can be interpreted as 
the application of the Lehmann-Maehly procedure based on the one·dimensional manifold spanned 
by v and using in turn a and f3 as p. The inequality (29) suffices to insure that the bounds give 
improvements over a and (3. Further, the procedure applied to H using a fixed finite-dimen­
sional manifold 9R and the constants a and (3 gives the best possible bounds 10 of the Kato type 
(33) that can be obtained using v's from m. In fact, the smallest eigenvalue fJ.-(f3) of the 

d b d an d (3 ' h _. f h . ((H - (3)v, v) an d 'f proce ure ase on :1.1, an IS t e mllllmum 0 t e quotient ((H _ (3)v, (H _ (3)v) over :1.1" an I 

there is any v in m that satisfies (29) then it satisfies (31), which guarantees that 

-1 
fJ.-(f3) < (3 - a' 

In addition, we have by the minimum property of fJ.-((3) that 

((H - (3)v, v) 
fJ.-((3) ~ ((H - (3)v, (H - (3)v) 

for any v in m for which (H - (3)v -# 0_ Consequently, any lower bound of the form 
((H - (3)v, (H - (3)v) . 1. 

f3 + ((H _ (3)v, v) can be no better than that gIven by f3 + fJ.-(f3)' whIch shows that the Lehmann-

Maehly procedure is optimum for the lower bound. Similarly, the largest eigenvalue fJ.-(a) of the 

procedure based on a and m is the maximum value of the quotient((H ~~~,at~::.,) a)v) , and by (32) 

it satisfies 1 
fJ.-(a»--· 

f3-a 

10 Kato sugges ted [7) and used [8} a process Ih al le nd s 10 minimize f: 2 instead. 
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The maximum characterization yields 

( ((H - a)v, v) 
f.L a) :3 ((H - a)v, (H - a)v) 

for any v in 9R for which (H - a)v oF 0, and thus the procedure yields the best upper bound 

of the form a + ((H «/;~'a~~~) a)v). According to the equivalence of the inequalities (31) and (32), 

a vector Vf3 that yields f.L(f3) less than - (f3 - a)-l satisfies (31) and he nce (32), and conversely a vector 
Va that yields f.L(a ) greater than (f3 - a)- l satisfies (32) and thus (31). Nevertheless, the vec tors 
Va and Vf3 will be different in general, even when neither a nor f3 is in the spectrum of H; tha t is to 
say that the upper and lower bounds are optimized separately by the procedure of Lehmann 
and Maehly. 

Let us note that it is not necessary to assume that the interval (a, f3) contains at most one 
eigenvalue of H. In fact, if the procedure based on 9R and (3 yields j + eigenvalues f.L r(f3) that are 

1 
less than - (f3 - a)- l then from these f.L 'S there result j + positive lower bounds of the form{3 + .(f3) 
for the e igenvalues of H that lie just below f3, and these bounds satisfy f.L1 

1 
a < (3 + f.L l.(f3) < {3. 

Consequently, there are at leas t j + eigenvalues of H in the interval [{3 + (min f.Lr(f3» - I, f3). How· 
e ve r, s ince the inequaLty (31) is equivale nt to (32), the procedure for H based on 9R and a 
has also exac tly j + eige nvalues f.L r(a) greater than ({3 -a)- I. These give j + upper bounds of the 

form a + ~( ) for the eigenvalues of H that li e just above a, and they sa ti sfy 
f.Lr a 

1 
a < a+-(-) < {3. 

f.Lr a 

He nce there are also a t leas t j + eigenvalues of H in th e interval (a, a + (max f.Lr(a»- I]. If it is 
known that there are at mostj+ eigenvalues of H in (a, (3), the n the results from the use of a and f3 
combine to assert tha t there are exactl y j + eigenvalues of H in the s maller interval [{3 + (min f.L r(f3»- I, 

a+(max f.Lr(a»- I] , and that the numbers a+~( ) a nd f3 + 1(f3) provide j + pairs of upper a nd lower 
f.Lr a f.L1' 

bounds for those eigenvalues. 
From the results of sec tion 3, it is d ear that the interval (- (3 , - a) could be used in place of 

(a, f3) and results parallel to those of this sec tion would be obtained. 
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