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The authors generalize a method of Lehmann and Maehly for upper and lower bounds to eigen-
values of self-adjoint operators in Hilbert space by using a device introduced by Kato. The resulting
procedure can be used to improve bounds found by the Rayleigh-Ritz method and the comparison
methods of Weinstein, Aronszajn, and the authors by means of calculations involving easily found
vectors; and it is especially suitable for application to problems of vibration of continuous elastic
systems. Further a theorem of Kato is interpreted and extended by the results obtained.

1. Introduction

For the eigenvalue problems that arise in the theory of vibration of continuous elastic systems
it is useful to have auxiliary methods capable of improving the rigorous upper and lower bounds
that can be found by the Rayleigh-Ritz and comparison operator procedures [1, 2, 3, 4]4. We
present here the theory of a method which should be quite useful in problems of this kind.

The procedure of Lehmann and Maehly [5, 6] is in principle applicable, since it depends on
the use of an essentially arbitrary family of “trial vectors’ and the knowledge of numbers that are
known to separate adjacent eigenvalues. But while these numbers can be obtained by use of the
upper and lower bound procedures already referred to, the trial vectors must satisfy all of the
boundary conditions of the differential operators; and finding such vectors is far from an easy
task. On the other hand Kato has developed [7] and applied [8] an extension of the Temple
method [9] for operators of the form 7*7T that uses the same numbers and avoids the difficulty
of needing trial vectors that satisfy all of the boundary conditions. While the form 7*T is a
common property of the operators that arise in elastic vibration theory, the procedure of Kato does
not lend itself to optimization over a family of trial vectors. In the following lines we dicuss the
use of a device introduced by Kato in the procedure of Lehmann and Maehly. The resulting
procedure optimizes the estimate of Kato over a family of easily found trial vectors.

Section 2 sketches the needed properties of operators of the form 7*T and of the related
operator H introduced by Kato. Section 3 then discusses the application of the procedure of
Lehmann and Maehly to the operator H, and section 4 uses the results of section 3 to interpret
and extend a theorem of Kato.

2. Operators of the Form T*T and a Device of T. Kato

Here we are concerned with a positive self-adjoint operator 4 with domain ‘©4 in a Hilbert
space 9! for which the inner product is (u, v);. We will assume, for convenience, that the operator
A has for its spectrum an infinite discrete set of eigenvalues, 0 < \; <\, < . . ., that diverge to
infinity without finite limit points; i.e., that (4 +1)~!is completely continuous. Further, we require
A to have the form T*T. The operator T is to be a closed operator defined on a dense domain D,
in ! and having its range Rr in a Hilbert space ? with inner product (u, v).; T* is the operator
adjoint to T. Thus, Oy« is in 2, K¢+ is in H!, and together T and T* satisfy (Tu, v)s = (u, T*v); for

! The research reported in this document has been sponsored in part by the Department of the Navy under Contract NOw—62-0604—c with the Bureau of Naval
Weapons and in part by the Aeronautical Research Laboratories, OAR, through the European Office of Aerospace Research, United States Air Force.

2 Institut Battelle, Geneva, Switzerland.

3 Applied Physics Laboratory, The Johns Hopkins University, Silver Spring, Maryland.

4 Figures in brackets indicate the literature references at the end of this paper.
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every u in Or and every vin ©r-. The spaces ' and H2 may possibly coincide. The properties of
operators of the form T*T have been widely studied by von Neumann [10], Murray [11], and others.
Here we need draw on only a few of the properties of T, T*, T*T, and TT*. We recall that the
operators T*T (=A) and TT* are positive self-adjoint operators which are isomorphic except for
their null spaces N7 and N7+ and that

%T=©‘@§fer*, N1+ =H2OR .

We define with Kato [7] the operator H in §! X $? with inner product (i, v) given by (u, v)
=(u', v") + (u?, v?): by

Hlu!, u?)=[T*u?, Tu'] (1)

on all pairs [&!, u2] in D, XDp..  H is a self-adjoint operator defined on Dy XDy« and has a real spec-
trum that is symmetric about zero. In fact, the unitary transformation U on !X 9?2, defined by

U, w?]=[u', —u?, 2)
transforms H into — H, that is,

—H=U"HU, (3)
so that H and — H are isomorphic. Further the operator H2, which has the expression and domain
given by

H?[u', u?|=[T*Tu', TT*u?)
and

DOpr =Dy XBype,

respectively, is reduced by ! and $? regarded as subspaces of §! X 2. Evidently, R y=N 1.
=N XNr+. Excluding zero, H? has the same eigenvalues \, as 4 but with the multiplicity doubled;
since H is isomorphic with —H, it has just the nonzero numbers+ \!/? and —A}/?as symmetrically
arranged eigenvalues, each having the multiplicity of A, in 4. Thus the spectrum of H is com-
pletely described in terms of that of A with the possible addition of zero from R 7:. On the other
hand bounds for the eigenvalues of H can be converted into bounds for eigenvalues of 4 by squaring.

3. Application of the Lehmann-Maehly Procedure to the Operator H

In this section we apply the Lehmann-Maehly procedure to the operator H of section 2. We
designate the separation constant by p or —p, where p is a non-negative real number. Our dis-
cussion considers first p in the resolvent set of H and then turns to p in the spectrum of H; finally,
we consider what happens as p passes from the resolvent set to the spectrum.

The procedure of Lehmann and Maehly applied to a self-adjoint operator B makes use of a real
constant 7 that separates adjacent eigenvalues of B and amounts to the calculation of Rayleigh-Ritz
bounds for the eigenvalues of the bounded operator (B—17)~! based on trial vectors ¢ of the form
¢ =(B—r)v, where the v’s are linearly independent vectors from ®;. The resulting bounds are a
consequence of the fact that for bounded operators the Rayleigh-Ritz method gives “inner bounds”
for “outer eigenvalues”.

3.1. pin the Resolvent Set of H
Let us suppose, at first, that p is a positive real number not in the spectrum of H. Then —p

is not in the spectrum of H, and —p and p satisfy
— )\1/2 < =10 < _)\31/2 and )\'11/2 < p < )\112

n+1 n+1°

respectively, for some ® n. The operator (H —p)~' is bounded. The positive spectrum of (H —p)~!

5 We introduce the “conventional’” eigenvalue Ao equal to zero whenever zero is not in the spectrum of 4 in order to unify the presentation.
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consists of an infinite decreasing sequence of eigenvalues,
(A zl:/fl_P) . )\;z/fz_ = . .. >0.
The negative spectrum begins with the increasing finite set (which is empty if A, =Xy =0),
—(P—=APR)ls—(p—Al2)1< . . . <—(p — 2!

where \, designates the first nonzero eigenvalue of 4; the point —1/p has an associated charac-
teristic subspace equal to R y; and the interval (—1/p, 0) contains the infinite set of negative

eigenvalues,
_(p+)\11)/2)~1 s—(p-{-)\;,/fl)_l = ...<0.

The following spectral diagrams may be helpful. For the sake of illustration we have assumed
p=3 so that \;=X>=0, A3 >0 and A5 < p? < Xs.

M T’\z )'\a A )\15 A - e
5 1 | . I‘f m—
Spectrum of A 2
N aE Fad 0 W
| | | | N | 1 | ] | 1 L
| | |f | | | | 1 | fl I |
-0 Spectrum of H 0
- - - = }é —
oZt o0d-r -ade) ! O&-p) L 0d-p)
ot Hi———— 1
T | 0 (i) L
P

The operator (H+p)~! is also bounded and has the same norm as (H—p)~!. In fact, since
H and —H are isomorphic, it follows that (H+p)~! is isomorphic with —(H —p)~!, so that the
spectrum of (H +p)~' is the same as that of (H— p)~! after a reflection about the origin.

The Lehmann-Maehly procedure can be applied to H using p or —p as the separating con-
stant. If we use p and base the procedure on an m*-dimensional manifold I+ of Dy, then the
resulting eigenvalues, designated by w*, are the stationary values over vectors v in I+ of the ratio

(H—p), v) :
(H—p)v, (H—p)

and may be determined from a matrix eigenvalue equation of the form

(A—p*B)a=0.
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The matrices 4 and B are given in terms of a linearly independent basis {v;} for I+ by
A={((H—p)vi, v} and B={(H—p)vi, (H—p)v))} .
Let us agree to enumerate the nonzero eigenvalues by the useful but unconventional scheme,

f< gyt o< < pt —— =<yt <ut < < ut
MESpi =< .. sSpfy g < SUS S Ui S - \I"p+k+-s4<0,

p
and

O<mip* < ... SuinSmh,
where s is the dimension (possibly infinite) of & i, and the quantities j*, k*, and [* are nonnegative
integers that satisfy jt <n—p+1 and j*+k*+I[*<m*. Since the negative eigenvalues give

upper bounds to the negative eigenvalues of (H—p)~! and the positive give lower bounds to the
positive, we have ¢

= (\2—p)1, r=n,n—1, .. .,n+1—j", 4)

wi=— 2+ p)1, r=p,p+1, .. ., pt+kt—s—1, 5)
and

uis< (A2—p)1, r=n+1,n+2, ..., ntl* (6)
or equivalently,

/\r1/22p+:—¢, r=n,n—1, . .. n+1—j*, (7)

_)\;/2;‘,4-%;, r=p,p+1, ... ptkt—s—1, ®)

and

NCESEE r=n+1,n+2, . . ., n+l* ©)

o

When they are squared, the inequalities (7), (8), and (9) give lower bounds for Ap, Ap—1, . . -,
An+1-;7 and upper bounds for Ay, Ap+1, - - -, Apsrt—s—1, and for Aus1, Ausz, - - - Ansr™.

If —p is used in place of p in the Lehmann-Maehly procedure on H, we designate the eigen-
values based on an m~—-dimensional subspace M~ in Oy by u~ and enumerate those that are
nonzero according to

- =yp- <= c2 =
N T '\/‘lh+l_<0’
and
0 = < < - = = 1 < < < w1 < u
< Mpik=—s—1 = o - S My g1 S Ky \p Mnt1—i~ S o - S Hn-1= My,
8 We omit the valid but useless bounds u} 2—;1) ,n=p—s,p—s+1, . . ., p—1 and note that (5) gives useful information only when s is finite and k* >s.
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where j-, k=, and [~ are nonnegative integers that satisfyj-<n—p-+1landj +k +[-<m-. By
arguments parallel with those for p we find the bounds

A= p— 1_, r=n,n—1, .. .,n+1—j-, (10)
1
—}\lr/22p——_, r=p,pt+1, .. ,ptk—s—1, (11)
M
and
A"zsp—i’ r=n+1,n+2, .. .,n+Il". (12)
5 -
My
When squared, these inequalities give lower bounds for Ay, An—1, . . ., Au+1-j-, and upper bounds
for Ap, Ap+1, - - «» Apsk-—s—1 and for Nps1, Apsay « - oy Apsi-.

Although, in general, the bounds given by the procedure using p will differ from those ob-
tained using —p, even when the manifolds I+ and MM~ are the same, thiere is an important case
in which they will be identical. This happens when

UM+ =M-, (13)

where U is the unitary transformation given by (2), as is clear from the equality,

(H—pw,v) _ __ (H+pUv,Up)
(H—pw, H=—ppw)  (H+p)Uv, (H+p)Uv)

that follows from (3). In fact, when (13) holds we have u} =—u;, and j* =5, k*=k-, and [t =1[".
When M+ and M- are equal and (13) is satisfied, then it is always possible to choose a basis {v; }
such that each vector has the form [v?, 0] or [0, v?], as is evident from the definition (2) of U.

No matter whether p or —p is used, the bounds given on the right hand sides of (7), (8), (9), (10),
(11), and (12) are increasing with p. In fact, if we designate a right hand side of an inequality (7),
(8) or (9) by w*, then it follows from the stationary property of u* that w* is a stationary value of
the quotient

((H—p)v, Hv) (14)
(H—p), v)

over the vectors of M+, and that a vector v+ that makes the quotient stationary gives

+=UH=pp*, Ho")
(H=pl*, v¥)

When the eigenvalues o* and corresponding eigenvectors v* are considered as functions of p they
are analytic.” Considering the variation of a w* with respect to p we find that

do* _ (Hv*, Hv*)(@*, v*) — (Hv', v*)
dp (H—p)*,vt)?

2
= 0.

In computing this derivative the contribution from the variation of v* with p is zero since the ratio
(14) is stationary at v*. Similarly, for ~, a right hand side in (10), (11), or (12), we find

(H+p)v-, Hv)
(H+pp~,v7)°

7 Strictly speaking, it may be necessary in order to preserve their analyticity in p to rename the eigenvalues and eigenvectors in neighborhoods of p where they
are multiple. This in no way affects the validity of the argument since all the w*’s are nondecreasing in p.
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and

do~ (Hv-, Hv )(v=, v) — (Hv", v7)?
dp (H+py—,v)?

= 0.

Since all of the bounds are increasing with p, the best lower bounds will be obtained when p? is
the largest known lower bound to As+1; and, conversely, the best upper bounds will be taken when
p?is the smallest known upper bound to Ay.

3.2. p in the Spectrum of H

Let us now suppose that p coincides with an eigenvalue of H. Our considerations can be
conveniently divided into the two cases: p=0 and p > 0. (The results for —p follow analogously
to those for p.)

If p is zero then the Lehmann-Maehly procedure can be applied to the restriction ot H to the
orthogonal complement of the null space Ny. As we shall see, this produces upper bounds for
the strictly positive eigenvalues of A, but these upper bounds may not be as good as those obtained
from the usual Rayleigh-Ritz procedure based on essentially the same family of trial vectors.
Let us designate the restriction of H to the orthogonal complement of 3t y by H° and the orthogonal
projection on this complement by P°. We apply the procedure using an m°-dimensional manifold
MO of Oyo. Let us designate the resulting nonzero eigenvalues according to

0 0 < 40 0 < < 0 S~0
MOysSphasS - S <0<py S - SRS B

where t; and ¢, are nonnegative integers that satisfy ¢; +t> < m° Since the negative eigenvalues
are upper bounds to the negative eigenvalues of (H°)~! and the positive to the positive, we have

1
)\;/2$—F, r=p,p+1l, .. ,p+ttu—1, (15)
and
1
}\;/2$ E’ r:p,p+l, I .,p+t2‘—1. (16)

Further, if UM°=IN® we have t;=1¢, and l=—pu?, as follows from (3).

It is important to note that to apply the Lehmann-Maehly procedure with p equal to zero, it
is no way necessary to know explicitly the operators H° or P° or to find vectors orthogonal to N .
In fact, if M? is any m’-dimensional manifold in Dy for which rank {(Hvi, Hvj)} = m°, where {v;}
is a basis for MO, then the manifold M given by POINO is of dimension m® as well and lies in the
orthogonal complement of . Further, the inner products used in the procedure are just (Hv;, v;)
and (Hvi, Hvj), as follows from the relation P°PH°P°=H°=H on .

If A has no zero eigenvalues, then the upper bounds given by (15) and (16) are always weaker
than those given by the usual Rayleigh-Ritz procedure for A based on the projection of I on H*.
In fact, we may assume that 920 satisfies Uimo— Mo, for if it does not, we can replace it by the even
larger space obtained by forming MO+ UMO and then removing the submanifold that lies in N .
The bounds obtained from the enlarged space will be better than those given by (10) and (11), and
they will be symmetrically arranged about the origin. As we shall see, the Rayleigh-Ritz bounds
will be even better. Let us suppose, then, that IR0 satisfies UIRO=9R0 and that a basis is taken
using vectors of the form [v!, 0] and [0, v2]. Those of the first set form a basis for the projection
of Moon 9!, and those of the second for the projection of Mo on P? after removal of the partin N 4.
The matrix eigenvalue problem takes the form

0 | C B, 0 al
SN S [P DR A | Y (R 0 (17)
cc | o 0 B, a
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where B, and B: are the positive definite matrices given by
Bi={(Tv}, Tv}).}, and B, = {(T*v3, T*v3)},
and C and C* are the matrices given by
C={(Tv}, v}):}, and C*={(T*v?,v)1}.
But the matrix equation (17) has just the same nonzero eigenvalues as the equation
(CB3'C* — u?By)a' =0. (18)

However, since the matrix CB3!'C* is the Gram matrix of the orthogonal projection in §! of the
vectors {#} on the subspace spanned by the vectors {T*v?}, we have the matrix inequality,

CB3'C*<T,

in which I' is the Gram matrix of the vectors {v!}. Thus, according to the minimum-maximum
principle, the eigenvalues, g} = i3 =. . ., of the matrix equation

(F'—@2By)al=0 (19)

are larger than those of (18). That is,

and hence,

But the matrix equation (19) is just that which arises from the Rayleigh-Ritz procedure for 4
using the projection of IM° on H'.

If, however, A has zero in its spectrum, our conclusion is no longer valid, for the Rayleigh-
Ritz procedure gives upper bounds starting with the lowest, which is zero, while the Lehmann-
Maehly procedure starts with the first strictly positive eigenvalue.

When p is equal to a nonzero eigenvalue of H, thatis, 0 < p= A2, we proceed in much the same
way as for p equal to zero. Suppose A, is an eigenvalue of 4 of multiplicity ¢, i.e.,

)\u—l < }\u:}\u+1=- . . =)\v+t—l = }\v+!9 (20)

and that N is the characteristic subspace associated with A'/? as an eigenvalue of H.  We desig-
nate by H} the restriction of H to the orthogonal complement of 2 * and apply to it the procedure
using p and an m;-dimensional manifold M; of vectors in Dyf. The negative eigenvalues less
than —1/p of the procedure give rise to lower bounds for eigenvalues of H! below p. Since the
spectrum of H} coincides with that of H after the omission of A'/2, we find bounds to eigenvalues
of A. Designating the nonzero eigenvalues according to

o= +r < o= +v, —_—< +v = +v < = +v
S uits s, LS gt < i Myl Sl S S g <0
and

+v < < ptv < tv
0< #'V+H-It—l S SR S Mo,
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where ji, ki, and [} are nonnegative integers that satisfy ji <v—p, ji +k; +[; <m}, we obtain
the bounds

1
Ntz pt+—0ro) r=v—1,v—2,. . .,v—Jji, (21)
A% = 1 = aF
=Nz /p+,u.*"’ 7=, arily e o spfparlararg= Il (22)
and
A2 >p+#1“’ s r=vte, v+e+l,. . vttt —1. (23)

Parallelly, using —p we find bounds in terms of the eigenvalues,

I“Ly#-t /‘Ly+t+1< c o © SI“‘;KI+’;—1<O’
and
0< uv < s u <—V<l< v < <—V<
Ppibg—s—1= - =« S My o S = p (P =S o 0 o S v— 1,
according to
1 .
Atz p——ns r=v—1,v—2, .. .,v—J,, (24)
My
—\Nt=p— 1 = +1 +kr—s—1 y
r =p _V’ r=p,p y + « o P v S 0 (25)
»
and
A% $p—“_y’ r=v+t,vte+1, . . ,v+e+l;—1, (26)
=

As in the previous cases, we find that u/*=u;” provided that UM; =M. The characteristic
subspace N does not need to be known, nor do vectors orthogonal to it have to be found explicitly.
In fact, if 972+ is an m;-dimensional manifold in Dy that satisfies rank {(H — p)vi, (H— p)v))} =m}
for a basis {vi} for Sm , then 9)?* can be used in place of I*, and the inner products needed are
just (H—p)vi, (H— p)vj) and (H — p)vi, v)).

The manifolds MM that we have introduced when p is in the spectrum of H have the advantage
that in each case the eigenvalue problem has the matrix form, (4 — uB)a =0, in which B is positive

definite. This restriction is not really necessary. The eigenvalues may be defined to be stationary
values of the quotient.

(H —p)v,v)
(H=p)v,(H—p)v)

over vectors v in an arbitrary m-dimensional manifold I of Dy under the subsidiary condition that
(H—p)v, (H—p)w)> 0. In fact, the eigenvalues may be defined ® as recursive maxima or minima
or by minimum-maxima or maximum-minima of ((H—p)v, v) under the condition (H— p)v,
(H—p)v)=1. Evidently the eigenvalues u are uniquely defined and are equivalent to those
found using only that part of I in the orthogonal complement of R, while the eigenvectors in IN
are undetermined to the extent of an arbitrary vector v in NN

8 The orthogonality statements in the variational principles are to be understood in terms of the form ((H—ph, (H—ph).
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3.3. p Passes From the Resolvent Set to the Spectrum

We now examine what happens when p passes from the resolvent set of H to a point o of the
spectrum. We shall see that the bounds pass smoothly, indeed analytically, into those given at
the spectral point. In order to preserve the proper enumeration, and thus obtain the strongest
bounds, it is necessary to consider the limits from both sides of the spectral point.

Let o be a nonnegative point of the spectrum of H and let # be the associated characteristic
subspace. We take I to be an m-dimensional subspace of Dy and suppose that {v;} is an ortho-
normal basis for M such that vieR?, i=m’+1, m'+2, . . ., m, and that the other vectors in the
basis have no nontrivial linear combinations in #”.  The manifold spanned by the first m’ of the
v’s will be denoted by IM,,. We restrict our attention to p’s that are distinct from o and lie in an
interval about o that contains no other spectral points of H. The Lehmann-Maehly eigenvalue
equation for H based on p and I takes the form,

Ai(p) i 0 Bi(p)

in which 4 and B, are given by ((H— p)vi, vj) and (H — p)vi, (H— p)vj), respectively, i,j=1,2,. . .,
m'. Equivalently, we have

(A — uBa' =0, (27)
and

{I—wo—p)laz=0. (28)

As p approaches o the values u determined by (28) become infinite while the numbers p+ 1/u
have the constant value 0. The u’s determined by (27) depend analytically on p and pass to the
values found with p equal to o. B

Let us assume that o is A%, where A, is the same as in (20). We identify ¢ with 3¢+, M,
with M+, m with m* and m" with m!. As p approaches A* from above the bounds given by (8)
decrease to those of (22) and the bounds given by (9) with n equal to v+t —1 decrease to those of
(23).  The numbers obtained as the limiting values of the right side of (7) contain A* repeated
m—m' times and the others are the bounds found on the right hand side of (21), but the enumeration
obtained by the limiting process will not be as strong as that in (21) unless m —m’ equals t. On
the other hand as p increases to A the bounds given by (7) with n equal to v — 1 and by (8) increase
with p to those given by (21) and (22) respectively. The numbers obtained as the limits of the right
hand side of (9) will contain A% repeated m—m' times and the others are the bounds found on the
right hand side of (23). Again, if m—m' is less than ¢, the enumeration of the bounds found from
(9) by the limiting process will not be as strong as that of (23). Evidently, a parallel discussion
can be made for the bounds found with —p to relate the limiting values of the bounds of (10), (11),
and (12) to those of (24). (25), and (26). ~ .

If we assume that o is zero, we identify 30 with M+, M, with MO, m with m* and m’ with m°.
As p approaches zero from above the bounds given by (9) with n equal to p—1 decrease to those
of (16). The set of bounds given by (7) is empty, and the limiting values of the right-hand side of
(8) contain zero repeated m — m’ times and the others are the numbers that appear on the right in
(15), but the enumeration obtained in the limit will not be as strong as that of (15) unless m—m'
equals s. To obtain the bounds (15) directly as limits we use —p. For this we identify 2t with
i~ and m with m~. As p approaches zero from above, the bounds of (12) with n equal to p—1
decrease to those of (15). The set of bounds given by (11) is empty, and the limiting values of the
right hand side of (10) contain zero m —m’' times and those of the right hand side of (16). Again
precise enumeration is lost unless m —m' equals s.

¢ The numbers j*, k*, and {* change with p as values of u pass through zero or—1/p.
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4. An Interpretation of a Theorem of T. Kato
T. Kato [7], has proved the following theorem:
Let H be the operator described in sec. 2, and suppose that the interval (a,3), 0 < a < 3, con-
tains at most a nondegenerate eigenvalue of H. Ifv, a nonzero vector in Dy, satisfies

e€<(n—a)(B—m), (29)
where
_ (Hv,y) _(Hv,Hv) .
=) T

then there is an eigenvalue \* of H in («,8) and the following bounds hold:

e e =
a = < <
1B T —a

<B. (30)

We first note that the inequality (29) is equivalent to each of the inequalities

(H—PB)v, v) o —1
(H=Bw, (H=PBn) B—«

) 31

and

(H— v, v) o1

(H—apw, H—ap)  B—a &2
and that the bounds (30) can be written

(H—Bw, (H=B) _ et (H— ), (H—a))
(H—PB), v) (H—av, v)

a<pB+ <B. (33)
From the form of the bounds in (33) it is clear that the theorem of Kato can be interpreted as
the application of the Lehmann-Maehly procedure based on the one-dimensional manifold spanned
by v and using in turn « and B as p. The inequality (29) suffices to insure that the bounds give
improvements over « and 3. Further, the procedure applied to H using a fixed finite-dimen-
sional manifold I and the constants a and B gives the best possible bounds 1 of the Kato type
(33) that can be obtained using v’s from M. In fact, the smallest eigenvalue w(B) of the
(H—PBw, v) .
@B, H=Pw) over M, and if
there is any v in IR that satisfies (29) then it satisfies (31), which guarantees that

procedure based on MM and B is the minimum of the quotient

=]l
(B < B—a
In addition, we have by the minimum property of w(8) that
(H—PBw, v)

=<
HB) =B, (H—Bw)
for any v in M for which (H—Bw #0. Consequently, any lower bound of the form

B+ ((H——ﬁ;;’_(lé);’i);}) can be no better than that given by 8 +ﬁ, which shows that the Lehmann-
Maehly procedure is optimum for the lower bound. Similarly, the largest eigenvalue u(a) of the

(H—a)v, v)
H— v, H—ap)’ 24Py 62

procedure based on o and M is the maximum value of the quotient

it satisfies 1
> .
wla) B—a

10 Kato suggested [7] and used [8] a process that tends to minimize €2 instead.
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The maximum characterization yields

(H— a), v)
HQ) = (H—aw, (H—0)
for any v in M for which (H—a)v # 0, and thus the procedure yields the best upper bound
(H—a)v, (H—a)v)
(H—a)v, v)

a vector vg that yields u(B) less than — (8 — ) ! satisfies (31) and hence (32), and conversely a vector
vq that yields w(a) greater than (8— a)~! satisfies (32) and thus (31). Nevertheless, the vectors
ve and vg will be different in general, even when neither « nor B is in the spectrum of H; that is to
say that the upper and lower bounds are optimized separately by the procedure of Lehmann
and Maehly.

Let us note that it is not necessary to assume that the interval («a, ) contains at most one
eigenvalue of H. In fact, if the procedure based on M and B yields j* eigenvalues u,(B) that are

of the form a+ According to the equivalence of the inequalities (31) and (32),

less than — (8 —a)~! then from these u’s there result j* positive lower bounds of the form 3+
for the eigenvalues of H that lie just below B, and these bounds satisfy

1
wr(B)

1
<L B < (b,
“« B Ier(,B) B
Consequently, there are at least j* eigenvalues of H in the interval [8+ (min u,(8))!, B). How-
ever, since the inequality (31) is equivalent to (32), the procedure for H based on M and «

1

has also exactly j* eigenvalues w,(«) greater than (8—a)~!. These give j* upper bounds of the

. 1 . . . .
form a+—— for the eigenvalues of H that lie just above «, and they satisfy

M r(a)

1
a < a+—#r(m <B.

Hence there are also at least j* eigenvalues of H in the interval (o, a+ (max u(@)~']. If it is
known that there are at most j* eigenvalues of H in («, ), then the results from the use of @ and 8
combine to assert that there are exactly j* eigenvalues of H in the smaller interval [8 + (min w.(8))~!,

1

a+ (max w{(a))~'], and that the numbers « +1— and B+

@) provide j* pairs of upper and lower
i

bounds for those eigenvalues.
From the results of section 3, it is clear that the interval (— 8, —«) could be used in place of
(a, B) and results parallel to those of this section would be obtained.
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