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This paper presents a unified account of the theory of least squares and its adaptations to statis· 
tic al models more complicated than the classical one. Firs t comes a developme nt of the properties 
of weak general ized matrix inverses, a useful variant of the more familiar pseudo·inverse. These 
properties are e mployed in a proof of the usual Gauss theorem, and in analyzin g the case in which 
known linear res traints are obeyed by the para me ters. Anothe r s itu ation treated is that of a s ingular 
variance-co variance matrix for the observations . Applications include the case of equi-correlated 
variables (i ncluding es timation despite ignorance of the corre lation), linear " res tra ints" subject to 
random error, and step wise linear es timation. 

1. Introduction and Summary 

The aim of thi s paper is to present a unified account 
of the theory of leas t squares, and in parti«ular to de
scribe the necessary modifications when the customary 
statistical model is complicated in certain ways re
quired for greater realism. The paper contains (prob
ably) new results, (probably) ne w proofs of known re
sults, and an (almost certainly) new overall treatment 
of the subject. Our hesitancy to make stronger claims 
arises because many of the theore ms associated with 
least squares are part of the " folk-lore" of the fi eld , 
and because the rele vant literature is growing rapidly 
and mu ch of it is "di sgui sed" in the context of other 
branches of mathe matics or scie nce. The most closely 
related paper of which we are aware of is that of Rao 
[1962] ; our work was done independe ntly of his. (The 
relevance of the very rece nt paper of Chipman and 

Rao [1964], which contains other references of interest, 
is detailed at the end of section 5.2.) Valuable sum
maries of various aspects of th e theory of least squares 
can be found in Deming [1943J, Plackett [1949, 1960], 
Rao [1946], and Scheffe [1959]. 

The foundation of leas t- squares estimation theory 
is the well-known Gauss 2 theorem which can be proved 
in a numbe r of ways, e .g. , by linear vector space tech
niques as in Sche ffe (op. cit) or by the method of La
grange multipliers as in Plackett [1960]. We shall 
present a proof suggested by the properties of gener
alized inverses of matrices, an idea motivated quite 

·Parl of thi s au thor's wor k was supported by the Mathe matics Research Ce nter, U.S. 
Arm y, Madison, Wi s. under Contract DA- II-Q22--Drd-20S9. This is a re vision and ex ten
s ion of Mat hematics fiesearcll Cente r Technical ~eport 314, May 1962. 

I Prese nt address: National Cancer Institute, National Institut es of Health , Hethesda. 
Md. , 20014. 

2 The lit erature refe rs to Gauss ' fundamental work as the Markov or the Gauss- Markuv 
theore m. Since Markov's cOlltribution cons isted essential ly of bringing ali enI ion 10 Gauss' 
work. il does not appear necessary to hyphenate the theorem wilh the name of J\·larkov. 

naturally by the poss ible singularity of the coefficie nt 
matrix in the usual normal equations . It will be shown 
that anyone of a wider class of matrices, whic h we 
call weak generalized inverses, can serve equally well. 
The properti es of weak ge neralized inve rses appear 
interes ting in their own right ; they are developed in 
section 2, are applied to th e de rivation of the Gauss 
theo rem in sec tion 3, and are involved implicitly or 
explicitly throughout the res t of the paper as well. 

One complication of the cus tomary statis tical 
model whic h ofte n arises in prac ti ce is the imposi
tion of known linear restraints on the parameters. 
In sec tion 4 the Gauss theorem is extended to thi s 
case. For a careful analysis it is important to dis
tinguish clearly between artificial cons traints (imposed 
to obtain unique solution s) and " real" ones, and among 
the latter class to exploit the distinc tion be tween those 
constrained functions whic h were es timable before 
the restraints were imposed and those which are es
timable only by virtue of the res traints. 

Another frequent complication, the possibility of a 
singular variance-covariance matrix for the observa
tions, is discussed in section 5. It is shown how thi s 
deviation from the " standard model" can be replaced 
by the adjunction of linear res traints, and vice versa. 
Models involving both kinds of complications are 
treated. Applications of the general theory are made 
to the case of equicorrelated variables (including the 
possibility of estimation in some cases despite ignor
ance of the correlation), and to the case of linear 
"restraints" subject to random error. The topic of 
stepwise linear estimation, which has aroused con
siderable interest recently, is examined in section 
5.5(cf. Freund, Vail, and Clunies-Ross [1961], Gold
berger and 10ckems [1961]). 

The style of the paper represents a compromise 
between (1) the desire to have it serve as a useful 
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sLatistical reference as well as a vehicle of research 
communication, and (2) the need to avoid a length and 
prolixity which surely would induce "battle fatigue" 
in readers and authors alike. On the one hand, 
additional information and "sidelights" appear 
throughout as corollaries and informal remarks. 
Also, the more familiar matrix techniques have been 
used in preference to vector space concepts, at the 
cost of some awkwardness at points where the "linear 
geometry" approach is the really natural one. Proofs 
have been written out in fairly full detail (except for 
matrix-algebraic steps). It is hoped that these 
policies make the paper more valuable and accessible 
to a wider range of readers. On the other hand, it 
has been necessary to presuppose a rather mature 
grasp of matrix theory and manipulations. A serious 
expository gap (which we hope some colleague will 
fill) is the omission of any discussion of computational 
methods for the calculations required in utilizing 
the theory, and also the absence of concrete and non· 
trivial numerical examples. Inclusion of such ma
terial, though desirable for completeness, would have 
interrupted the logical pattern of the theoretical 
development. 

It is a pleasure to acknowledge the many fruitful, 
often heated, but always stimulating discussions with 
J. M. Cameron (NBS Statistical Engineering Labora
tory) which have continued over many years. With
out his constant interest, this paper would never have 
been written. Colleagues at the Mathematics Re
search Center, whose helpful comments have in
fluenced the present version of the material, include 
H. Reinhardt and J. C. Boot. We also acknowledge 
with thanks a constructive reading of our paper by 
T. N. E . Greville. 

2. Weak Generalized Inverses 

In this section we define weak generalized inverses 
and develop some of their properties. Let X be a p X n 
matrix. As a special case of what follows, we shall 
show that there exists an n X p matrix X+ with the 
properties 3 

(a) XX+X =X 

(b) X+XX+=X+ 

(c) (X+X) I =X+X 

(d) (XX+) I =XX+. 

(2.1) 

The matrix X+ is unique (this will not be proved in the 
present paper) and is called the generalized inverse 
of X. Further details on this topic can be found in 
the excellent review paper by Greville [1959]. Some
times X+ is called a pseudo·inverse or a Moore·Penrose 
inverse, the latter association referring to Moore [1935] 
who originally discovered its properties, and to Penrose 
LlY53J who later rediscovered and developed them 
further. 

3 A s uperscript prime will always denote (vector or matrix) transposition; the original 
d efinition s involved the complex*conjugate transpose. but we deal only with real matrices. 

Our approach to thi s material is based on the fol
lowing lemmas whose proofs (although simple) are 
given for completeness. 

LEMMA 1. Let A be a p X P symmetric matrix of 
rank q (q < p), and K a p X r matrix of rank r=p-q. 
Then there exists a pX r matrix H with the properties 

(a) H'A= O 
(2.2) 

(b) det (H'K) =1= 0 

if and only if the square symmetric matrix 

is nonsingular. In this case any H of rank r obeying .' 
(2.2a) can be used as the H in (2.2b). Furthermore, 
M - 1 has the form 

[
c 

M-l-
(HIK)-IH' 

PROOF. First assume M nonsingular, and let 

where C is symmetric and p X p, C2 is symmetric and 
rXr, and C1 is pXr. The multiplication 4 MM- I=I 
implies 

AC+KC;=I. 

N ow choose any p X r matrix H of rank r obeying (2.2a). 
Such matrices certainly exist. Pre multiply the last 
equation by H' to obtain H' KC: = H'; since H' is of 
rank r, H' K must have rank ~ r (and thus exactly r 
since K has rank r) , so that (2.2b) holds. To prove 
the converse, let H be any p X r matrix obeying (2.2). 
Then by (2.2b) H must have rank r=p-q, and from 
this and (2.2a) it follows that any p X P matrix B with 
H'B=O has the form B=AD for some p x p matrix D. 
Now specialize to B=I-K(H'K)-IH' and use the 
resulting matrix D to define 5 

C= [I_H(K'H)- IK']D. 

If this matrix, together with C 1 = H(K' H)-I and C2 = 0, 
is substituted in the M- l formula given above, then it 
is easily verified that MM-l = I so that M is nonsingular 
and the proof is complete. 

.. The symbol I will always denote an identity matrix of appropriate dimension. 

:'o We remark that the matrix C can be writte n e~p)icitly as C=[/ - H(K'H)- IK' J[A 
+ KH'J - I, One verification employs the properties (2.3b) and (3 .12) of the "true C," whose 
existence is shown in Lemma 2, to check that using the indicated formula in the upper left 
block in M- l does in fact lead to MM- l = I . AnOlhp.T formula !lot requiri~g knowledge of 
H , and verifiable using (3.12b) and its consequence U +KK')"-- IK = H(K'H)- I, is 
C= (A + KK') - ' -(A + KK')- 'KK'(A +KK') - ' 
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LEMMA 2. Let A, K, M be as in Lemma 1 and as· 
sume M nonsingular. Then there is a unique p X P 
symmetric matrix C associated to K, with the property 
that for at least one H obeying (2.2), 

(a) K'C=O 
(2.3) 

(b) AC=I-K(H'K)- IH' . 

Furthermore C obeys (2.3b) for every H satisfying (2.2), 
and has the additional properties. 

(a) C=CAC, A=ACA 
(2.4) 

(b) C is of rank q. 

PROOF . For any H obeying H'A = 0 and 
det(H' K) 01= 0, it is easily verified that any symmetric 
p X P matrix C satisfying (2.3) must be a block of M - I 
placed as in the formula for M - I given in Lemma l. 
Furthermore, such a C does satisfy (2.3). Since M de· 
pends only on K (i.e., not on the c hoice of H ), the same 
is true of M - I and therefore of C. Since CK = 0, pre· 
multiplication of (2.3b) by C yields CAC = C, which 
implies that the rank of C is at most that of A. Since 
H'A = 0, postmultiplication of (2.3b) by A yields 
ACA = A, which implies that the rank of A is at mos t 
that of C. Thus (2.4) is proved.sa 

It is interesting to observe, from eqs (2.2) through 
(2.4), that the relationship between the pairs (A, H) 
and (C, K) is symmetric. Also, property (2.4a) s hows 
that C enjoys properties (2. 1a) and (2 .1b) of A+. Since 
A and C are symme tric, (2. 1c) a nd (2.1d) read 

AC=CA. (2.5) 

This will certainly hold (by (2.3b)) if K = H, an allowable 
choice of K in accordance with (2.2) since det(H' H) 01= 0 
if H(P X r) is of rank r. Equation (2.5) will not hold in 
general,6 but we shall not require it and so can permit 
ourselves the freedom of choosing K different from H. 
The case q = p (i.e., A nonsingular) can be included 
by appropriate formal conventions concerning "vacu
ous blocks" in the block matrix M and its inverse ; 
this will be assumed done wherever appropriate, the 
result (by (2.4a)) being of course C=A-I. 

The next lemma and its use in the following theorem 
are not strictly necessary for our purposes, but are 
included to round out the theory. 

LEMMA 3. Let A be a symmetric p X P matrix. 
Then every symmetric p Xp matrix C related to A by 
(2 .4a) arises from some K as above. 

PROOF. Let q and r be as above, and let H be any 
p X r matrix of rank r such that H'A = O. Let K(P X r) 
consist of r columns of J - AC in the same positions as 
r independent columns of H'. Since H'(l -AC) = H', 
it follows that H' K is nonsingular and thus that K has 
rank r . Also since C(l- AC) = 0, it follows that 
CK = 0 and therefore K' C = O. To verify (2.3b) , first 

~a From the last formula in footnote 5, we see that C is determined by K onl ), via KK'; 
e.g. C is unc hanged if K is replaced by some (p X r) KL with LL' = I . 

e For a specific example in which eq (2.5) fail s, la ke the rows of A to be (1, 0) a nd (0. 0), 
H' = (0 , I), K' = (1, I); the rows of C are (I, -I) and (- I, I). 

observe that (2.4a) implies (2.4b), so that the equation 
C(l- AC) = 0 proves J - AC to have rank not exceeding 
p-q=r. Thus the columns of J-AC not in K are 
linear combinations of the columns of K, i. e., we can 
write 

/ -AC=KE 

for some r X p matrix E. Then 

H' = H' (i-AC) = H'KE 

so that 

(H'K) - IH'=E 

and therefore 

J-AC=K(H'K) - IH' , 

complet ing the proof. 
No w let X be a p X n matrix. A weak generalized 

inverse of X is an n X p matrix X - with the first three 
of properties (2.1), i. e., 

(a) XX-X =X 

(b) (2.6) 

The following theore m, whic h c haracterizes the c lass 
of all weak generalized inverses of X, in particular 
establi shes the exis tence of at leas t one suc h inverse. 

TH EO REM. Let X be a p X n matrix. The n X p 
matrix X-is a weak generalized inverse of X, if and 
only if 

X- = X'C 

for some C associated to A =XX' as in Lemma 2. 
PROOF. First suppose X- =X'C with C associated 

to A as above. Property (2.6a) reads ACX=X, and 
follows from (2 .3b) upon noting that H' AH = 0 implies 7 

H'X = O. Property (2.6b) read s X'CAC=X'C and 
foll ows from (2.4a), while (2.6c) asserts th e symmetry 
of X' CX and is a consequence of the symme try of C. 
To prove the converse, assume X- is any n X p matrix 
obeying (2.6). By (2.6b) and (2.6c), 

X-= (X-X)X- =X' [(T) 'X- ]. 

By Lemma 3, it suffices to prove that C = (X- )'X - obeys 
(2.4a). This follows from 

CAC =(X-),X-X(X-X)'X-= (r),x-xx -XX

= (X-),r XX- = (X-),X-= C, 

ACA =X(X-X),X-XX' =XX-XX-XX' 

= XX-XX' =XX' =A. 

7 The last equation implies tha t the sum of the squares of the e ntries in eac h row of 
H'X va ni shes. 
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We note in passing that with X - =X'C, X - obeys 
(2.1d) if and only if eq (2.5) holds. Thus (2.1d) holds 
if the choice K = H is made (this completes the proof 
that X has a generalized inverse X +), but as mentioned 
earlier we shall not have to impose this requirement. 

In what follows the notations H, K, C, X - will have 
the same significance as in this section, A will stand 
for XX', and the notation X+ will be reserved for the 
generalized inverse. Note that X- and C need not be 
uniquely determined by X (although X+ is), but depend 
on the choice of K. The relations 

ACX=X 

H'X = O 

(2.7) 

(2.8) 

obtained in connection with the last proof are recorded 
here for subsequent reference . 

3. Fundamental Gauss Theorem for Linear 
Estimation 

The methods of least squares have bee n in use now 
for over 150 years. Gauss [1873] in 1821 (collected 
works 1873) is now credited with placing the method 
on a sound theoretical basis without any assumptions 
that the random variables follow a normal distribution. 
Gauss's contribution was for a time neglected until 
Markov [1912] "rediscovered" the work of Gauss. It 
should be noted that Legendre [1806] in 1806 was the 
first to publish the method of least squares, although 
apparently Gauss had known about it some years pre
vious. For a more detailed historical introduction 
consult Merriman [1877], Plackett [1949], and Eisen
hart [1964]. 

In this section we apply the properties of the weak 
generalized inverse to obtain a proof of the Gauss 
theorem. The relevance of the generalized inverse to 
the theory of least squares has been noted by Bjerham
mar [1951], Greville [1960], and Penrose [1956]. The 
fundamental result used in these papers is that for 
an over-determined system of linear equations 

X'b=y, 

the selection of b which minimizes the sum of squares 
of residuals, (y-X'b)'(y-X'b), is given by 

b=(X')+y 

where (X') + is the generalized inverse of X'. It is 
easily verified using (2.1) that (X')+ = (X+)" so that by 
(2.1a) and (2.1c) 

Ab = XX' (X+)' y= X (X+ X), y= (XX + X)y = Xy 

i.e., b must be a solution of the usual normal equations 
Ab = Xy of least-squares theory. More recently Rao 
[1962] has used property (2.4a) to demonstrate some of 
the well-known results associated with minimum 
variance linear unbiased estimation. 

Before stating the theorem we re view the central 
idea of an estimable parameter, cf. Bose [1944]. Let 
Y' = (Yl, ... , Yn) be a vec tor of random variables 
having a distribution which depends on a parameter e. 
A function g(Y) of the random vector Y is called an 
unbiased estimate of e if E [g(Y)] = e, for all values of 
e, where this last phrase may reflect limitations on the 
possible values of e imposed by the proble m at hand. 
The parameter e is called estimable if it has at least 
one unbiased estimate of some form prescribed by the 
context. In this paper we deal only with linear 
estimates 

g(Y) = d'Y +c 

where d' = (dJ, ... , dn ) is a 1 X n vec tor and c is a 
scalar. A best (unbiased linear) estimate of e is one 
which has minimum variance among the class of un
biased linear estimates of e. 

THEOREM 1: (Gauss) . Let X be a p X n matrix 
(p ~ n) of known constants having rank q, f3 a p X I 
vector of unknown parameters, and Y an n X I vector 
of random variables such that 8 

E(Y) =X',8 
(3. 1) 

var(Y) = (]'21. 

The minimum variance unbiased linear es timate of any 
estimable linear function e = [',8 of f3 (where l is a 
p X I vector) is 

e = l'(X- )'Y = l'CXy' 

For all such e, {} can be obtained as l'S where S 
(independent of l) is any vector minimizing the quad
ratic form (Y - x' ,B)'(Y - x' ,8), or equivalently is any 
solution of the normal equations 

AS =XY (A= XX') (3.2) 

whose general solution can be written 

S = CXY + (I - CA)z (3.3) 

with z an arbitrary p X I vector. 

PROOF: Let d be an n X 1 vector. Then we remark 
that the unbiased linear estimates of e= l'f3 are 
precisely the linear forms d'Y with d obeying 

Xd=l, (3.4) 

so that e is estimable if and only if (3.4) has a solution 
d. Indeed, the function d'Y+c is an unbiased esti
mate of e if and only if, for all values of e, 

l',8=e=E(d'Y+c) 

= d'E(Y) +c= d'X'f3+c. 

II lf Y' =(Yh ••• , f ,!). then EO') is the vec tor with E(Yk ) as klh compo ne nt , and varO,) 
is the n X n matrix wit h cov( Y;,Yj ) as (i , ;)t h e nt ry. 
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Whether l = 0 (so that 0 is the only value of 8) or 
[ =P 0 (so that 8 assumes all real values), th is will be 
true if and only if c = 0 and d obeys the sys te m (3.4). 

The key idea is to seek a linear c hange of (random) 
variabl e from Y to S = B'Y, where B is an n X p matrix 
so c hosen that for each es timable {} = [' [3, at feast one 
unbiase d linear estimate of 8 can be written in the 
form l ' ~. That is, for at least one d l obeying (3.4) the 
identity 

['B'Y= [' S =dl'Y 

is to h old, or equivalently 9 d, = Bl. For any pair of 
vectors I and d related by (3.4) we would have 

Xd= [=Xd l =XBl = XBXd, 

and since every d is related to some I by (3.4) Gust 
de fine [ by (3.4» the equality be twee n the end te rms 
of the las t di splay is an identity in d. Thi s shows that 
B must be chose n to obey 

X=XBX. (3.5) 

Convers ely if (3.5) holds th e n for each d and l related 
by (3.4) we can se t d, = BXd so that 

Bl = BX d = d, and Xd, = XBXd =Xd = l 

as desired. Therefore (3.5) is exac tly the desired 
relation ship , and its rese mblance to (2.6a) sugges ts our 
setting B = X- so that 

d, =X -l =X'Cl . 

The variance of o = d'Y is var(o) =(d'd)r:r2 , which is 
to be minimized by a proper choice of d subjec t to (3.4). 
Define an unknown n X I vec tor 0 by d = dl + 0, so that 

However, si nce d1 sa ti sfies (3.4) we have 

d /8 = l 'CX(d- X'Cll = l 'Cl-l'CACl = 0, 

so that 
var(O) = (d1' d l + o'8)r:r2, 

which is minimized if and only if 0 = 0, i .e ., d = dl . 

(Incidentally thi s shows d l independent of the choice 
B =X- .) Thus the unique " best estimate" is 

• 8 = dl 'Y=l'CXY (3.6) 

and its variance is 

We have shown that [' S is a bes t es timate of {} if and 
only if 

l 'S =l'CXY, 

9 We assu me fo r th is mo tivation thai the di s tribution of }' is not conce ntrate d 011 some 
lower dimensional subset of ",·dime nsional space. 

- -- ---- ----

which, since l =Xd, = ACl, is equivalent to 

l'C(A /J -Xy)= O. (3.8) 

This shows that any solution /J of th e normal equation 
A~ =XY yields a best estimate l'~ of 8. Co nve rsely 10 

if (3.8) is to hold for all es timable {} = l ' [3 (i.e. for all l 
such that (3.4) has a solution d), the n si nee every d is 
related to some l by (3.4) we have 

d'X'CAS =d'X'CXY 

as an identity in d, so that X'CAS =X'CXY and 
premultiplication by X (together with (2.4a) and 
(2.7» shows that S must be a solution of the normal 
equations. 

Since CXY is a solution of the normal equations, the 
general solution can be written 

~ = CXY+ 7) 

where 7) is an arbitrary p X 1 vector suc h that A7) = O. 
For any p X 1 vec tor z, 

7) = (l - CA)z 

sati s fi es thi s co nditi on by (2 .4a), while co nversely any 
7) obeying A7) = 0 has the form (/ - CA)z with z = 7). 

It only remains to s how th at the solutions ~ of the 
normal equations are precisely the vectors [3 whic h 
minimize the quadratic form 

Q = (Y - X' (3 )'(Y - X' (3 ). 

For thi s purpose se t [3 = ~ + 0 a nd observe 
X(Y-X'~) = O, so that 

Q = (Y-X'~ )'(Y-X'S)+ (X'o) '(X'o) 
~ (Y-X'/J)'(Y-X'/J) 

where equality holds if and only if X'8 = 0 and thus l Oa 

if a nd only if A8 = 0, i.e., if and only if [3 (as well as 
~ ) satisfies the normal equations. 

The preceding analysis esse ntially co ntains the de
scription of the class of estimable functions. We 
rephrase this in the following corollary. II 

COROLLARY 1.1: The parametric function {}=['[3 
is estimable if and only if 

(/-AC)l=O (3.9) 

or equivalently 

H'l=O . 

PROOF. W e know that 8 is es timable if and only if 
there exists a vector d, =X'Cl with Xdl = [. Substi· 

10 T h is converse , which makes the role of the normal equatio ns precise, was n o l exp li cit ly 
slaled as pa ri of the theore m. 

lOa Clearl y X'8 = O implies A5 = XX'8= O; conversely XX'i) = O implies (X 'o)'(X'S) = O 
and thu s X'S = O. 

11 We agai n remind the reader that H and K are assumed chosen as in sec tion 2, i.e., 
obeyi ng (2.2). 
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tuting (2.3b) yields 

l- Xdl = (J - AC)l = 0 = K(H' K)- 'H'l 

which implies 
H'l=O 

as desired. Conversely if (J - AC)l = 0 then 

l=ACl =Xdl (dl=X'Cl) 

and if H'l = 0 then by (2 .3b), (1- AC)l = 0 as well. 
We observe in particular that the components of S 

are best estimates of the corresponding components of 
{3 if and only if these components are in fact estimable; 
by (3.4) this requires that every unit p X 1 vector, and 
thus every p X 1 vector, be a linear combination of the 
columns of X. In other words" S is an estimate of {3" 
makes sense only in the special case q = p, when 
C=A-'. 

The next corollary pertains to finding a solution of 
the normal equations by adjoining "dummy" quanti
ties to obtai n a system of full rank. 

COROLLARY 1.2: Let A. and m be r X 1 vectors of 
constants where m is arbitrary. Then the unique 
solution of the system of (p + r) simultaneous Linear 
equations 

(3 .10) 

yields a solution of the normal equations; the same 
holds for the unique solution of the system 

(A + HK')S = XY + Hm. (3.11) 

PROOF. The system (3.10) is of full rank since 
its coefficient matrix is the M of Lemma 1 in section 2. 
Therefore the solution can be written 

[S] [C H (K' H) -0' ] [X mY ] 
A. = (H'K) - 'H' 

= [CXY+H(K'H) - 'm]. (3.11a) 
(H'K) - 'H'XY 

However since H'X = 0, the vector A. is identically 
zero. Since K has rank r, m can be written as K' z 
where z is a p X 1 vector; then the solution vector ~ is 
~ = CXY + (J - CA)z which is the general solution of 
the normal equations. It also follows that the fJ of 
(3.1O)'s solution satisfies (3.11), since K' fJ = m . It 
only remains to prove that (3.11)'s solution is unique, 
i. e., that A + HK' is nonsingular. This is true since it 
can be directly verified using (2.3b), (2.3a), and (2.8) 
that 

(A + HK') - ' = C+ [H(K'H) - I-CH] (H'H) - 'H' . 
(3.12) 

For situations in which a suitable K is known but a 
suitable H is not at hand, it may be desirable to re
place (3.11) by an analogous sys tem not involving H. 

Such a system is given by 

(A + KK')~ =XY +Km, (3.12a) 

which is satisfied by the S of (3.10)'s solution, and 
which has only one solution since 

(A + KK' )- ' =C+ H(K'H) - '(H'K) - 'H' (3.12b) 

as can be directly verified using (2.3). Lacking H, one 
might still want to know C in order to check estima
bility by (3.9). 

From the criterion (3.9) and the fact that K is of 
rank r, it follows that the elements of K' {3 are an 
independent set of nonestimable functions with the 
additional property that [A, K] has independent rows. 
The analysis of (3.10), together with the Gauss theorem, 
shows that the values of these nonestimable linear 
functions can be prescribed in any way (i.e., K' (3 = m) 
without affecting the best estimates of the estimable 
functions; jJ depends on m but 0 = l' fJ (where 8 = l' (3 
is estimable) does not. The results of prescribing (in 
a self-consistent way) the values of an arbitrary set of 
linear forms in {3 are treated in section 4. 

~t is natural to inquire as to the significance of 
l' /3 when 8 = l' {3 is not necessarily estimable. One 
form of the answer is given in the next corollary. 

COROLLARY 1.3: Let fJ = CXY. Then for any 
8 = l'{3, there is a unique lIa esti",;ablefunction 8, = l;{3, 
namely 8, = l'CA{3, such that l{3 is the best estimate 
of81 • 

PROOF. First assume l, =ACl and 8, = l;{3, so that 
8, is estimable by Corollary 1.1. Then the Gauss 
theorem implies that l'S is the best estimate of 8" 
since by (2.4) 

l'S =!'CXY=l'CACXY 

= (A Cl),CXY = 1~r3. 

To prove the uniqueness, of 81 , consider any es
timable 81 = l;{3 such that l'fJ is the best estimate of 
8,. Then by Corollary 1.1 H'l, =0, so that l, = A1) for 
some p X 1 vector 1). Also we must have 

l'CXY=l'fJ =l;/3 = 1)'ACXY=1)'XY, 

so that X'Cl=X'1) and therefore 

as asserted. 
For completeness we include some known facts 

about the vector of residuals 

(where S is any solution of the normal equations 12) and 

II<' The unique ness asse rlion requires the ass umpt iun mentioned in footnote 9. Note 
that a definite choice of C is assumed. 

12 No te that f> is indepe nden t of the choice of {3 . 
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L 

the usefulness in es timating a 2 of its squared length 
(the residual sum of squares) 

COROLLARY 1.4: The residual vector is uncor
related with the estimate of any estimable function; in 
fact 12a 

Cov({3, 8) = O. 

Furthermore we have 

E(S2) = (n - q)a2 . 

PROOF. The expected value of the residual 
vector is 

E(8) = E(y) - E(X'(3) = o. 
Therefore 

Cov(S, 8) = E{ {3 8'} - E{E({3')8'} 
. = E {[ CXY] [Y - X' S ]'} = CXE(YY')(1- X' CX). 

Since 
E(YY') = a 2] + (X' (3)(X ' (3)' 

we have 

Cov(S, 8) = CX[a2] +X'{3{3'X] [I -X'CX] 
= C[a2] + A{3{3'] [X - ACX] = 0 

because X = A CX fro m (2.7). 

To prove the second assertion we use the general 
formula 

E(Y' BY) = E(Y')BE(Y) + trace (B var (Y) 

for the mean of a quadratic form, with 

B = (1- X'CX)2=] -X'CX, 
to obtain 

E(52) = E(8' 8) 

= {3'X(J - X'CX)X'{3 + a2 trace (] - X'CX) 

= a 2 trace (] - X' CX) 

=a2 [n-trace (X'CX)]. 

By the general formula trace (MIMf) = trace (M;M I) 
where Ml and M2 are rectangular matrices of the same 
dimensions, we have 

trace (X'CX) = trace (XX'C) = trace (AC) 

= trace (J-K(H'K) - IH') 

= p - trace [(H'K) (H' K) - I] 

=p-r=q, 

" " By definition, c ov(li, 5) is the matrix £{ [Ii - £i1i )][8 - £ (8)] ' }. 

completing the proof. 
A final comment deals with the maximum possible 

number of linearly independe nt nones timable para
metric functions () = I' {3. If q = p (i .e., A is non
singular) then this number is zero; e very linear func
tion of {3 is estimable since {3 itself is es timable 
(see the remarks after Corollary 1.1). If q < p, 
however, then the number is p rather than r (as is 
occasionally suggested)_ This can be see n by par
titioning A = [AI, A2 ], where A1 consist,s of qinde
pendent columns of A. Then the pXp matrix [H, AI] 
is nonsingular, since H' Hand AfA 1 are nonsingular 
and 

Therefore, if h is a column of H and (XI, (X2, 
are the columns of A I, then 

N= [H , (XI +h, (X2+h, ... , (Xq+h] 

. . (Xq 

has the same de terminant as [H, AI] and so is also 
nonsingular. The p columns of N are therefore the 
vectors " [" of coeffi cie nts of p ind e pe ndent parametri c 
fun c tion s, which are all nonestim ab le since the non
singularity of H'H implies that no co lumn of 

H'N= [H'H, H'h, H'h, . .. , H'h] 

is the zero vector. 

4. Gauss Theorem With Given Restraints 

Often experime ntal situations arise in which the 
parameters (components of (3) are connec ted by 
known linear relations. It is not generally realized 
that some of the linear form s whose values are pre
scr ibed by these give n restraints may be es timable with 
respect to the equ a tions of condition E (Y) = X' {3 
where as before we assume X is p X n (p ~ n) and of 
rank q. In this sec tion we di scuss the appropriate ex
te nsion of the Gauss theore m when these equations of 
condition are supplemented by known linear con
straints. It will be shown that several applications of 
the "simple" Gauss theore m of sec tion 3 suffice to 
reduce such problems to purely matrix-theoretic 
questions. 

We introduce the te rm pre-estimable to be used in 
this section for those parametri c functions (linear in (3) 
which are estimable with respect to E(y) = X' {3 . The 
term estimable will refer to the parametric functions 
which are estimable with all the given information in
cluding the res traints. Clearly every pre-estimable 
parameter is also es timable, but the converse need not 
hold; for example a nonpre-es timable function whose 
value is specified by one of the given constraints is 
obviously esti mabIe . 

W e will find it convenient to assume that the con
straints have been brought into an "irreducible form" 
in a sense made precise in this and the next few 
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paragraphs. Suppose the initially given restraints are 

L ' f3=m 

where L' is k X p with rank k, and iii is k X 1. The 
matrix L can be partioned into L = (LI, L2) where Li 
is pXSi (k = SI + S2) with rank Sj such that LI' f3 = ml is 
nonpre-estimable and L/f3 = m2 is pre-estimable; i.e., 
H'LI has no zero column and H'L2 = 0_ Since H has 
rank r = p - q, we know that S2 ~ q. Furthermore from 
the remarks at the end of section 3, the maximum num
ber of linearly independent nonpre-estimable re
straints 13 is p; hence Sl ~ p _ 

Let the rank of the r X Sl matrix H'L be v_ There 
will then exist a Sl X (Sl - v) matrix e with rank Sl - v 
such that H' LIG = O. Also there will exist a SI X v 
matrix F with rank v such that F'e=O. We can for 
example take F' to consist of v linearly independent 
rows of H'LI. Then the square matrix of order SI, 
5 = (F, e), has rank SI. Hence we can pre multiply the 
nonpre-estimable restraints LI' f3 by 5' to obtain 14 

[FI] [F I L:f3] ~FI iii] L;f3= = 
e ' e 'L;f3 e'ml. 

Since H'Lle=O, the (SI - V) restraints e 'L;f3 are pre
estimable. It is clear that the restraints F'Lff3 are 
nonpre-estimable, as H'LIF has no zero column by vir
tue of F'e=O. Thus the original k restraints L ' f3=m 
may be regarded as being transformed into two sets 

where Ki is p X ki with rank ki such that 

with H' K2 = O. Furthermore the rank of the r X kl 
matrix H' KI = H'LIF (k l < p) is 14a kl and hence the 
rank of KI is also k l . 

When the given SI nonpre-estimable restraints L;f3 
are such that the rank v of H 'LI is SI (equal to the num
ber of non pre-estimable restraints) then these res traints 
will be termed irreducible restraints . Alternatively if 
the rank v of H'LI is < SI (smaller than the number of 
nonpre-estimable restraints) the restraints L;f3 will be 

13 We will use the term " res traint " to refer to a constrained li near form as well as to the 
constraint equation it self. 

14 S ince S is nonsinguiar, L;f3 = ml is log ically e quivale nt to 5' L;f3 = 5' m •. 
WI For some nons ingular "X V matrix U. we have F= "tV where F(vxsd consists of v = kt 

independe nt rows_o~H'LI' Also_L'J! = FP , whe re P is a k.xr matrix of rank k j • Then 
K;H = F' L;H = U' F' FP; s ince V ' F ' F is nons ingular, 1<.,' H is a lso of rank k 1• 

called reducible restraints since it is then possible 
(as was just shown) to obtain pre-estimable restraints 
from them. Unless otherwise indicated the given 
restraints in this section will be denoted by 

where Ki is p X k; and has rank ki • Furthermore the 
restraints K'J3 are a set of kl irreducible non pre
estimable restraints and K'J3 denotes a set of k2 pre
estimable restraints; i.e., H' K2 = O. Since kl and r 
are the ranks of H' K I and H respectively, we must 
have kl ~ r_ 

THEOREM 2. Let X, /3 , and Y be as before, satis
fying 

E(Y) = X'f3, var Y = 0-21. 

Also let there be given known linear restraints among 
the parameters of the form 

where K j is p X k j with rank k j and mj is kj X 1_ The 
kl restraints Kif3 = ml are irreducible and nonpre
estimable whereas the k2 restraints K~f3 = m2 are pre
estimable. With H as before, let H = [Ho, HI] corre
spond to a partition such that Ho is p X (r - k l ) and HI 
is p X kl where det H;K l 01=- O. Then the minimum vari
ance linear unbiased estimate of the estimable function 
() = l' f3 is 

0= l' {CXY + H I (K I ' H I ) -1 ml 

+ CK2(K2 ' CK2)-I(m2 - K2' CXY)} 

where the matrix C is obtained from Lemma 2 with K 
taken to be K = [Ko, Kd and Ko(p X (r- k l )) chosen 
such that det H'K 01=- O. 

PROOF. 14b A partition H = [Ho, H I] with the de
sired properties can be formed by taking H'I to con
sist of kl rows of H' in the same positions as kl lin
early independent rows of H' K 1• We first show that 
the unbiased linear estimates of () = [' f3 are precisely 
the linear forms 

g(Y)=d'Y +d{ m] +d{m2, (4.1) 
for which 

(4_2) 

where d is an n X 1 vector and di is a ki X 1 vector. 
Thus () is estimable if and only if (4.2) has a solution 
[d' , d;, d:\] _ The proof is based on the observation 
that 

Z' =[Y', m;, m:\] 

defines an (n + kl + k2) X 1 random vector Z (recall 

14b We point out in advance that rearranging the colu mn s of H and/or K does not a lter the 
prop erti es required of Hand K (i.e., (2.2)). 
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that a constant is a special case of a random variable), 
and that 

E(Y) = X'{3 , 

are equivalent to E(Z) = [X, K" K2 ]'{3. Thus the asser
tion is proved by the proof of (3.4), with Z replacing 
Y, [X, K" K2] replacing X, and [d', d;, d~] replacing d'. 

The nonsingularity of H; Kl can be used to solve 
(4.2) for dl after premultiplying it by H'I' The result 
IS 

so that the unbiased linear estimates of e = I' (3 are 
precisely the linear forms 

(4.3) 

for which 

(4.4) 

Thus e is es tim able if and o nl y if (4.4) has a solution 
[d', dz]. 

Since var [g{Y)] = var (d'y) = (J2d' d, as before (in 
sec tion 3) the objec tive i s to minimize d'd, but now the 
side condition on d is the exis te nce of a d2 relate d to 
d by (4.4). Initially regard d2 as fix ed ; the n the min
imization of d'd subjec t to Xd = 1* - K2d2 is ide ntical 
with th e probl e m of findin g a b es t es timat e fo r 
(1* - K 2d2 )' {3 subj ec t to (3. 1). By the Gauss th eo re m 
of section 3, the uniqu e solution (as a funct ion of d2) is 

d=X'C(/* - K2d2 ) =X'C{ [I - K, (H(K, )- 'H(]1 - K2d2 }. 

(4.5) 

In (4.5) the matrix C is obtained from Lem ma 2 for 
some appropriate K; c hoosing ' 5 K as in the state me nt of 
the theore m yi eld s CK, = 0 (since C is sy mm etri c and 
(2.3a) holds); so that (4.5) simplifi es to 

d = X'CI-X'CK 2d2 • (4.6) 

This simplification was th e purpose for c hoosing the 
indicated form K = [Ko, K1J . 

Let y* =X'CI and X* = KzCX. The n the quad
ratic form d'd to be minimized beco mes, by (4.6), 

Q* = (y* - (X*)' d2)'(Y* - (X*)' d2), 

and the condition on d2 is that it be related to some 
d by (4.4). This condition is, however, automatically 
satisfied for any d2 , which can be seen as follows. 
First, the estimability of e implies that 1* can be written 
in at leas t one way in the form (4.4), say 

15 T o s how Ihat suc h a c hoice is possible in at least one way, setect a ny p X (r - k .) matri x 
Ku of ran k r - k l s uch thai H;Ko= O and AKo= O. If Ho= Ko held. the n (2.2a) would be 
sa tisfied and 

H'K ~ [H" H,]'[K" K,] 

wou ld have nons ingul ar square bloc ks Jt' l-I n and ~ ' K I on i l s main di ago nal, implying the 
des ire d relation det (H ' K ) ""- O. Since by Le mma I thi s relation (for fixed K ) is independe nt 
of the partic ula r c hoice of N, it persis ts even if Ho -::;If Ko. 

Second, the pre-estimability of K~{3 (i. e .; the fact 
H'K2= 0) implies that K2= XB for so me n x k2 matrix 
B. Combining these observations gives (for any d2) 

as desired. 
The choices of d2 (now unres trained) whic h mini

mize Q* are known by the Gauss theor e m to be pre
cisely the vectors 

d2 = C*X*y* + (J - C* A*)z, (4.7) 

where z is an arbitrary k2 X 1 vector and C* is related 
to 

A* =X*(X*)' = KzCXX'CK2 = KzCK 2 (4.8) 

as C is to A. We shall however show below that 
1 - A*C* = 0, so that A* is nonsingular and the solu
tion becomes uniquely 

d2 = (A*) - 'X*Y* = (K~CK2)- 'K;CI. (4.9) 

Substitutio n of (4.6) and (4.9) into (4 .3) gives the best 
es timate 0 as asserted in the s tate me nt of the theore m. 

S ince K2 has linearly ind e pe nd e nt columns, we can 
prove 1= A*C* by s howing that 

(1 - A*C*)Kz = 0. 

For thi s purpose write K2 = XB as abo ve, a nd use eq 
(2.6a) to obtain 

K; = B' (XX-X)' = B'X'(X- )'X' = K;(X'C)'X' =X*X' . 

Then the version A*/C*X*= X * of (2 .7) gJves 

(1 - A*C*)K; = (1 - A*C*)X*X' = ° 
as des ired , comple ting the proof of the theore m. 
s hall frequently use the co nseq ue nce 

of K2=XB and ACX=X. 

W e 

(4.10) 

COROLLARY 2.1: The parametric function e=I'{3 is 
estimable if and only if 

Ho '[I - K, (H, 'K, )- 'H, ']I = 0. (4.11) 

Furthermore if Ho is chosen such that Ho 'K, = 0, then 
the condition reduces to 

Ho'I = O (4.12) 

PROOF. The necessary and sufficient condition 
for e to be es timable was s hown to be (4.4), i.e., 

holds for some d and d2 • Since H~X = ° and H~ K2 = 0, 
eq (4.11) holds. Conversely if (4.11) holds , the n 
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which implies that (4.13) holds for some d and d2 , 

whic h in turn means that () = l' /3 is estimable. 
The o nly r es tri c tion s on H = [Ho, HI] a nd 

K = [Ko , K 1] are that d e t H ' K =I' 0, H ' A = 0, 
det HIKI =I' 0 and that both H and K have rank r=p-q. 
The matrix Ho can be c hosen in any way subjec t to 
sati sfying the above conditions. H 0 can always be 
take n to satisfy H~Kl = 0 by taking an initial Ho for 
which the above conditions hold and letti ng 

Ho= [J- HI (KI' HI )- IKI']Ho . 

It is easy to verify that H~A = 0, and further that 
H~I = O. By Lemma 1, if the matrix H = [Ho, HI] 
has rank r, the n det (H' K) =I' O. To prove that H has 
the required rank 1', we write the formula for Ho as 

where the first factor on the right· hand side has rank 
I' while the second is I' X rand nonsingular. 

Note that the previous construc tion did not depe nd 
on Ko. W e now show, in addition, that Ko can be so 
~hosen that H;Ko = O. Simply replace an initial 
Ko by 

then H;Ko = 0, and H~o pas the required rank r - kl 
since it coi ncides with Ho' Ko. 

For simplicity we shall assume in what follows that 
H'o and Ko are chosen so that both H~I = 0 and H;Ko=O. 
Thus the es timability condition is give n by H~l = 0, and 
the frequently occurring inverse (H' K)- I takes the 
simple form 

(4. 14) 

Then the general form of the vector S , such that the 
best estimate of every estimable l'f3 is l' S , is given by 

S = CXY + H o(KlJ Ho) - lmo + HI (K[ HI )- lm1 

+ CK2(K~CK2)- I(m2 - K~CXY), (4. 15) 

where mo is an arbitrary (r- kd X 1 vec tor. 
The next corollary formulates some sys te ms of 

equations involving "dummy" variables (f..to , f..t 1, A) 
and artificial restraints (K'of3 = mo ) whic h can be used 
to solve for S of (4.15). 

COROLLARY 2.2: Let f..to and mo be (r - kd X 1 vec
tors, f..tl a kl X 1 vector and A a k2 X 1 vector. Thtm 
every solution S of the system 

can be used in the best estimate 8 = lS of any es ti
mable function () = l'f3 . The same holds for the unique 
solutions of each of the systems 

A Ko KI K2 S XY 

K'o 0 0 0 f..to mo 

K; 0 0 0 f..tl ml (4.17) 

K~ 0 0 0 l A m2 

A K2 Xy 

K~ 0 

[:] ~ 
mo 

KI' 0 ml 

(4. 18) 

[~;+ H.K'+ H'K: : ,] r.H:~ +H.m,+H,ml 

(4.19) 

as well as the vector 

where So is obtained from the unique solution of 

[
A Ko KI] 
K~ 0 0 
K; O. 0 

(4.21) 

PROOF. System (4.16) does not have a unique solu
tion for kl < r, but for any solution [S " A'] we can 
d;,e./ine a vector mo by K'o S = mo and observe that 
[/3 " A'] sati sfi es (4. 18). Thus the di scuss ion of (4.16) 
reduces to that of (4. 18). 

Since the S of (4. 15) clearly obeys K! S = mi, and also 
(pre multiply S by CA) sati sfi es 

C{AS + K2A - XY} = 0 

where 

(4.22) 

we find that S and A obey (4.18). Thus the solution 
of (4.18), once it is proved uniqu e, mus t have the form 
(4. 15). 

The first subsystem 

A~ + Kof..to + Klf..tl + K2f..t2=XY 

of (4. 17), when premultiplied by (H~O)- IH'o, yields 
(4.16) f..to = 0; then pre multiplication of 

AS +Klf..tl +K2f..t2=XY 

by (H;Kd- 1 H; yields f..t I = o. Thus every solution of 
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(4.17) is a solution of (4.18), so (4.17) does not require 
furth er discussion. Note that the dummy variables 
p.,o and p.,1 are zero vectors in the solution. 

It is trivial to c heck that any solution of (4.18) is 
al so a solution of (4.19). Thus the results for (4.16) 
through (4.19) will be proved once we show that (4.19) 
has a unique solution. The utility of (4.19) is that it 
is a smaller system than those preceding it. We 
write the first subsystem of (4.19) in the form 

(A +HK')~ =XY+Hm-K2A 

where m' = (mo, mD. By Corollary 1.2, A + HK' is 
nonsingular so that ~ is directly determined in terms 
of A by 

fi = (A + HK') - I(XY + Hm)-(A + HK') - IK2 A. 

Corol!ary 1.2 shows that the first term on the right is 
jus t f3 0, while since H' K2 = 0 the formula (3.12) for 
(A + HK')- I s hows that we have 

(4.23) 

After premultipl ying by (K~CK2) - IK~, noting K~~ = m2, 
we obtain a unique A. 

To treat (4.20) we firs t use (4.14) to obtain 

and the n apply coronary 1.1 (see (3 .11a)) to th e sys tem 
(4.21) to show th at it s unique solution has 

~ 0 = CXY + Ho(KOHo)mo + HI(K;HI) - lml. (4.24) 

Thus ~ give n by (4.20) co incides with (4.15). 

COROLLARY 2.3 . With th e particular choi ce 
~ = CXY + HI(K;}L)- I ml + CK2(K~CK2)- I(m2-K~CXY) 
for any 6 = l' /3 there is a unique 15a estimable 61 = l;/31 
given by II = [AC + KI(H;KI)- IH;]l such that for all 
possible ml, m2 and /3,[, ~ is the best estimate of61. 

PROOF. Firs t assume II = [AC+ KI(H;KI)- IH;]l 
and 61 = l;/3. Then Holl = 0, so 61 is estimable, and 
we have 

by direct ~alculation (using CAC = C, AH 1 = 0, K;C = 0) 
so that l' f3 is the best estimate of 61• To prove unique. 
ness, consider any estimable 61 = l;/3 such that l' fI is 
the best estimate of 61 for all ml and m2. Note with 
the aid of (2.2a), that det (H;K I ) =F- 0 implies that [A, K I] 
has rank q + kl. Since Hb[A, K I] = 0 and Ho has rank 
p - (q + kd, it follows from BOll = 0 that II = Ad + Kldl 
for some vectors d and dl. Using ACX = X and 
ACK2 = K2 we obtain 

l.~ a The un iqu e ness assert ion requires the ass llmption me ntioned in footnote 9 . 

Setting mi = K;/3 (i = 1, 2) and equating the coe ffi c ie nts 
of Y and f3 inl(/3 and l'{3 , we obtain 

X'(l- CK2(K~CK2)- IK~)(d - Cl) = 0, (4.25) 

K2(K~CK2)-IK~ (d-Cl)=KI[(H;KI )- IH;l - d l] (4.26) 

Multiplication of the second equation by H( lead s to 
H;l = H;K1d1 and thus to 

as desired. Substitution of this into (4.26) yields a 
result which when substituted into (4.25) gives 

X'(d-Cl)=O 

implying that Ad = ACl as desired. 
We turn now to the residual vector o = Y-X'~ 

and the residual sum of squares S2 = 0'0. 
COROLLARY 2.4. The residual sum of squares can be 

written as 

and has the expected value 

where ~ 0 is the estimate ignoring the preestimable 
restraint K2/3 = m2 and 

PROOF. Th e residual sum of squares can be 
writte n 

S2= O'O = (Y-X'~ 0+ X'CK2A)'( Y- X'~ o+ X 'CK2A) 

=(Y-X'~ o)'(Y-X'~ 0) + A'(K;CK2)A +2(Y-X'~ 0)'X'CK2A. 

However we have 

(Y - X'~ 0)'X'CK2A = (Y'X'C - ~ OAC)K2A 

= (Y'X'C- Y'X'CAC)K2A = 0 

and thu s 

From Corollary 1.4 of section 3 we have 

E{(Y - X'~ o)'(Y - X'~ on = (n- q)a2. 

Furthermore 

Making use of the formula for finding the expec tation 
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of a quadratic form 16 gives 

E(A'KfCK2A) = trace {(K~CK2)(var A)} 

= trace {(K~CK2)(K~CK2)-1(J"2} = k2(J"2, 

and thus the result is proved. Note that the formula 
for 52 is composed of two parts, the second of which 
measures the deviation between the values of the pre
estimable restraints KY3 as estimated from the data 
(y), and the given values m2 of these restraints. , 

COROLLARY 2.5. The residual vector 0 = Y - X' f3 
is uncorrelated with any estimable function; in fact 

Cov(8,~)=0. (4.28) 

PROOF. We write 80=Y-X'~o as the residual 

where L is a p X k matnx of known constants and m is 
a k X 1 vector of known constants. The minimum 
variance unbiased linear estimate of any estimable 
linear function (j=I'f3 is e =l'S, where S (independent 
of I) is given by 

~ = (I - LL -)'(:(1- LL -)XY 

+ [I-(I-LL- )'C(I-LL-)A](L- )'m (4.33) 

and C ~s related to A = (I - LL - )A(I - LL -)' as C is 
to A. 

PROOF. We first show that the unbiased linear 
estimates of (j = I' f3 are precisely the linear forms 

g(Y)=d'Y+p'm (4.34) 

vector if the restraints Kff3 = m2 had been ignored. for which 
By (4.20) o=oo+X'CK2A and .S =~0-CK2A and we 
can write 

Cov (8, ~)=cov (80 , ~o)-cov (80, A)K~C 

+X'CK2 cov (A, ~o)-[E(H')]K~C. (4.29) 

From Corollary 1.4 of section 3 we have 
cov(80, ~ 0) = o. For the second term in (4.29) we 
calculate 

cov(8o, A) = cov(oo, K~ ~ 0 - m2)(K~CK2t I (4.30) 

= cov(oo, ~ 0)K2(K~CK2)- 1 = O. 

For the third term we calculate 

COV(A, ~o)- [E(H')]Ki£' (4.31) 

= (K;CK2)-; 1 {K; var(~ 0) - K;C(J"2} 

= (K;CK2)-1{K; var(CXY) - K;C(J"2} = O. 

Substituting in (4.29) we obtain the desired result 
(4.28). 

It is possible to develop the extension of the Gauss 
theorem in a manner which leans more heavily on 
properties of the weak generalized inverse. However, 
the final form of the solution is not useful for practical 
applications. One possible advantage of this alterna
tive approach is that there is no need to make a 
distinction between pre-estimable and nonpre-estima
hIe functions. These results are contained in the fol
lowing theorem. 

THEOREM 3. Let X, f3 and Y be as before, satisfying 

E(Y) = X' f3, var(Y) = (J"2I 

and also the restraints 

Xd+Lp=1 (4.35) 

where d is an n X 1 vector and p is a k X 1 vector. 
Thus (j is estimable if and only if (4.35) has a solution 
(d, p). The proof is based on the observation that 

Z'= [Y',m'] (4.36) 

defines an (n + k) X 1 random vector Z (recall that 
a constant is a special case of a random variable), 
and that (4.32) and E(Y)=X'f3 are equivalent to 
E(Z) = [X, L] 'f3. Thus the assertion is proved by 
the proof of eq (3.4), with Z replacing Y,[X, L] replac
ing X, and [d', p'] replacing d'. 

The variance of g(Y) given by (4.34) is (d' d)(J"2, so 
that finding a best estimate of (j is equivalent to mInI
mizing d'd by a proper choice of d, subject to the condi
tion that there exist a p related to d by (4.35). The 
choice of such a p is immaterial (as long as one exists) 
since p appears in (4.34) only in the combination 

p'm=(Lp)'f3 

which by eq (4.35) is determined by d and I. If d is 
such that some p obeys (4.35), then by eq (2.6a) 

1-Xd=Lp =LL -Lp =LL -(1- Xd) 

with L - any weak generalized inverse of L, so that 

(I - LL- )(l-Xd) = 0 (4.37) 

and a particular solution of (4.35) is p* = L -(1- Xd). 
Conversely if (4.37) is satisfied then p* provides a 
solution of eq (4.35) and we can take 

g(Y) = d'(Y - X'(L - )'m) + I'(L - ),m. (4.38) 

It has been shown that finding a best estimate of (j 
is equivalent to minimizing d'd _subje_ct to condition 

L'f3=m (4.32) (4.37), which can be rewritten as Xd= I with 

- -
16 If the column vec tor Z is suc h that E(Z )= O, var Z = cr2I . then E(Z'AZ) = u 2 tr AI. X=(/-LL- )X,I=(/-:-LL-)/. 
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This is analogous to the problem (treated in the proof Note that (5.2) combined with (5.1) results in 
of the Gauss theorem) of minimizing d'd subject to 
Xd=l, and so the unique solution is F,'Y=O (5.3) 

d=x- i =X'(I - LL -),C(I - LL - )[, (4.39) 

from which eq (4.33) follows by substitution into (4.38). 
Still another approach to the material of the section 

can be based on the random variable Z defined by 
eq (4.36~. Namely, as regards the first and second 
moments with which least-squares theory is exclu
sively concerned, the model specified by E(y) = X' (3 
and L' (3 = m is equivalent to the model 

E(Z) = [X, L]'(3, var(Z)=a2 [In 0 ] 
o Ok (4.40) 

where In is the n X n identity matrix and Ok is the k X k 
zero matrix. Thus a model with linear restraints is 
equivalent to a "restraintless" model which however 
involves a sin'gular variance-covariance matrix. 
Least-squares estimation in such models is discussed 
in the next section . 

5. Gauss Theorem With Arbitrary Variance
Covariance Matrix 

The results of the previous sec tions were derived 
assuming that the vector of random variables 
Y' = (y" Y2 , • • . , y,,) were uncorrelated and had co m
mon variance; i.e., var Y = a 2I . This section con
siders some ramifications when var Y = a 2V where V 
is a known n X n matrix with rank m (m ~ n). The 
case when m = n has been investigated by Aitken 
[1937]. His result is generalized to include the pos
sibility of a singular variance-covariance matrix . 

5.1. Preliminaries 

Before di scussing the extension of Aitken's results 
it will be convenie nt to r ecord the implications of hav
ing a singular variance-covariance matrix. When V is 

'singular with rank m (m < n), then there will exist a 
n X s (s = n - m) matrix F with rank s suc h that F' V = O. 
However, this also implies that the s co mponents of 
F'Y have var F'Y = (F' VF)a2 = 0 whicb is equivale nt to 
F'Y being equal to a constant. 17 Since E(y) = X' (3, 
we have as the value of this constant 

F'Y = F'E(Y)=F'X'(3 . (5.1) 

Then the distribution of Y' =(y" Y2, . . . , Yn) is 
singular and can be reduced to a distribution in m 
random variables. In most applications when (5.1) 
holds we generally have F' X' = O. However, it is 
quite possible that F'X' ¥- o. In order to discuss this 
more general proble m, we write F = (F" F 2) in parti
tioned form where Fi is n X Si with rank Si (i = 1, 2) and 
Sl +S2=S. Furthermore we have 

FI'X'=O (5 .2) 

rank F2'X' =S2 (S2 < p ). 

17The qualifying phrase "with probability one " should be added but we omi t s uch 

distinctions. 

That is, there are SI independent linear relc>.tions 
among (YI, Y2, ... , Y n) and S2 restraints among the (3 
which are preestimable by virtue of H' (XF2) = o. 

Another preliminary aspect of the problem is the 
existence of an n X n orthogonal matrix P such that 

P'VP=[~ ~J (5.4) 

where A is the m X m diagonal matrix whose elements 
are the m nonzero characteristic roots of the sym
metric positive semidefinite matrix V. Let G be a 
n X m matrix such that the columns of G are the m 
(normalized) characteristic vectors of V; i.e ., 

VG=GA, G'G=I 

Then the orthogonal matrix P In (5.4) can be taken to 
be 

P = [F,G] (5.5) 

where F is the n X s matrix mentioned previously, 
c hosen (as is possible) so that F'F=I and G'F=O. 
By virtue of this partition we have 

V=GAG'. (5.6) 

We also note that V+ is given by 

V+=GA- IG'. 

The necessary four properties (2. la- d) follow from 

V+V = GA - 'G'GAG' = GG' 

as G'G=I. 
A frequently occurrin g case is when V2 = cV where 

c is a scalar. Then it can readily be verified that 
the generalized inverse of V is V + = c- 2v. 

Also there will be need for writing the matrix V+ as 

V+= TT', T =GA- '/2 (5.7) 

where A - 1/2 denotes the matrix obtained from A by 
replacing the diagonal terms by the reciprocals of 
their posi tive square roots. Note also that T'VT = I . 

5.2. Arbitrary Variance-Covariance Matrix 

In thi s subsec tion we give some of the main results 
associated with an arbitrary variance-covariance 
matrix. The notation used will correspond to that of 
the preceding sections . 

THEOREM 4. Consider the vector of random varia
bles Y having E(Y)=X'(3, var (Y)=a 2V where V is an 
n X n symmetric positive semidefinite matrix with rank 
m (m ~ n). Then the minimum variance linear un
biased estimate of (J = ['(3 coincides with its best 
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estimate found from the model 

(5.8) 

-
K'f3=in 

where X=XT, Y=T'Y, K =XF2 and m = F;Y . Thus 
if F 2 is nuLL, f3 can be chosen as any sol~tion of the 
normal equations 

(5.9) 

PROOF. As in the proof of the Gauss theorem of 
section 3, obtaining a bes t es timate ~' Y + c of () is 
equivalent to choosing an n X 1 vector ~, subject to 
X~ = I, so as to minimize 

var(~'Y) = (~' V~)cr2. 

On the other hand , from the beginning of the proof of 
Theorem 3 we see that finding a bes t estimate in the 
model (5.8) is equivalent to choosing a pair Ed' , p' ], 
where d is an m X 1 vector and p an S2 X 1 vector, so 
as to minimize d'd subject to 

- -
Xd+Kp=l, 

i. e., X(Td+F2p) = I. 

Thus the theorem will be proved if we show how to 

PROOF. When V is nonsingular, the matrix F is 
null and V + = V - I, so thesesult follows from (5.9). 

COROLLARY 4.2. Let X = XT have rank q. Then 
the minimum variance linear unbiased estimate of an 
estimable function is e = l'~ where 

~ = CXY+Y _ _ _ _ _ _ __ 
+ CK(K'CK)- l(m - K'CXY+Y)+ H(K'H)- lmo. 

The matrix C is related to A = XX' = XY + x' and K 
by Lemmas 1 and 2; :k js a p X r (r = p - q) matrix of 
rank r such that det H'K =I' 0, and mo is an arbitrary 
r X 1 vector. _ 

PROOF. Since X = XT has rank q, H has the same 
relation to X as to X. Because H' K = 0, the restraints 
K' f3 = m are pre-estimable in the model (5.8) . The re
s ult follows from (4.15) upon noting lhat here H I and 
KI are null, while Ho=_H and Ko = K. 

COROLLARY 4.3. If X has rank q, then the quantity 

in which 

~o = CXY = CXY+Y 

~ = (K'CK)- I(K'CXY - ill), 

associate to each vector ~ a pair [d', p'], and to each has expectation 
• pair [d', p'] a vector ~, such that in each case 

X~=X(Td+F 2p) , ~'V~ = d'd. (*) 

Given Ed', p'] we simply set ~ = Td + F2P; the second 
relation in (*) then follows from F' V = 0 and T' VT = I. 
Given ~, we e mploy the orthogonal matrix 

p= [F, G] = [F I , F2, G] 

to define an n X 1 vector (and thus define d and p) by 

[p;, p', d' A- l i2]' =p- l~; 

then we have 

The first requirement of (*) is satisfied because 
XF I = 0, and the second for the same reasons as 
above. 

Finally, that the normal equations corresponding 
to the first line of (5.8) are given by (5 .9) follows from 
substitution for the tilde quantities, together with 
TT'= V+. 

COROLLARY 4.1 (Aitken). If Y is non-singular then 
the best estimate of any estimable () = l ' f3 is given by 
e = l' ~ ' where ~ is any solution of the normal equations 

(5.10) 

PROOF. This corollary is an application of corol
lary 2.4 of section 4 to the model (5.8) . Note that X 
is p X m, which is why m appears in place of n in the 
formula for E(52 ). 

The first two sentences of the proof of corollary 4.2 
show that if X = XT has rank q, then the class of pre
estimable functions is no! reduced in passing to the 
model (5.8). However it X has rank ·Wi < q) , thefl in 
passing to (5.8) °H is replaced by a p X r matrix H of 
rank r = p - ij such that if'x = O. Such a matrix can 
be obtained as if = [Ho , H] where lIo is an appropriate 
p X (q - ij) matrix. 

It is desirable to have a system of equations for /3 
(in Theore m 4) when F 2 is not null. Such systems can 
be obtained (and other information derived) by applying 
the material of section 4 to the model (5.8). In doing 
~o it should be kept in mind that the restraints 
K' ~ = in must be separated into those whIch are pre· 
estimable (this is the sole class when (j = q, as already 
noted), and those which are not; the latter must be 
examined for irreducibility (see the paragraph preced· 
ing Theorem 2) and "reduced" if necessary. 

It is natural, as a next step, to consider a model 
which involves both the complications of linear 
restraints on the f3 and an arbitrary variance·covariance 
matrix Vcr2• This requires no new extension of the 
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theory, s ince the only addit ion is that of the res traints 
K!f3 = mi (i = 1, 2) where K~ f3 represent pre-es timable 
res traints. It is quite possible that sq.me of the 
res traints K'f3 coin cide with the restraints f5.'f3 in whic h 
case the duplicate r es traints in K'd3 (or K'd3) may be 
dropped . Aside from this duplication one will then 
have the situation 

E(y) = X' (3, var Y = (J"2V (V has rank m (m ~ n)) 

Kff3 = mi (i = 1,2) 

which I S identical for purposes of estimating (J = [' f3 
with 

- - -
E(y) =X'f3, var Y= (J"21 

( 5.ll) 
K/(3 = mi, K'f3 = m 

where the tilde C-) quantities are defin ed as in Theorem 
4. A formal proof is ob tained by applying Theore m 4 
to 

E(Y*) = (X*) ' f3 , val' y* = V*(J"2 

in which 

(Y*)'= [Y', m( , ml],X*= [X, K" K2] , 

[
V 0 0] 

V* = 0 0 0 . 
o 0 0 

Suppose for exa mple th at X is of full rank (i .e., q = p) 
and that V is nons ingular (i .e., m= n), a nd co nsider 
the model 17a 

E(Y) =X'(3 , var(y) = (J"2V (5.lla) 

K'(3 = m, 

where K is a p X k matrix of rank k and m is a k X 1 
vector, both consisting of known constants. By the 
prescription give n in the last paragrap h, and from the 
fact that m = n implies that K in Theorem 4 is null, we 
see that an ap propriate /3 will be one for the model 

where C is related to i =XX' = XV- IX' as C is to A, 
and where iJo is the uniqu e so lu tion of ljio=XY. 
Since A is p X P nonsingula r, we have 

C =1-1 = (XV- IX ') - I, 

t30 = CXY= (XV- IX ') - IXV - IY, 

so that substitution in (5.lld) yields 

S =(XV- IX')- I{XV- IY 

+ K[K'(XV- IX') - lK] - I(m- K'(XV- IX')- 'XV- Iy)}' 

in agreement with the result obtained for thi s special 
case by Chipman and Rao [1964]. 

5.3. Simplification of the Normal Equations 

In the mod el 

E(y) =X'(3 , 

we will have XF = 0 (so that the normal equations are 
given by (5.9)) if and only if X = XGC' . For, if this co n
dition holds the n 

XF = (XC)(C' F) = 0, 

while if XF = O the n X = MC' fo r so me p X m matrix M 
(i. e., the rows of X are linear co mbinations of the 
orthonormalized c haracter istic vectors of V), and 
pos tmultiplication by C yields M = XC. 

In particular, thi s will be the case if 

XV+= BX, X = BXV (5.12) 

for some nonsingular p X P matrix B. For, the first 
co ndition in (5 .12) yields X = MC' with M = B - 'XCA - I , 

while the second yields it with M = BXCA . The two 
conditions of (5.12) are logicall y equivalent, for the 
firs t implies 

X=XCC' = (XCA - IC' )(CAC') = (XV+)V= BXV 

ECy)=X'(3, var (y) = (J"21 

K'f3=m 

(5. llb) while the second implies 

(5.llc) XV+ = BXVV+ = BXCG' = BX. 

where X=XT, Y=T'Y, and T=CA- I/2. C is of rank 
m = n and so T is n X n nonsingular, implying (since 
q = p) that X is of rank p. Hence the constraints 
K'f3 are all pre-estimable with respect to (5.llb), i. e. 
K = K2 in our previous notation. Applying (4.20), we 
see that we can take 

S = /30 + CK(K' CK)- I(m - K' cxi/) (5.lld) 

17f1 In the rest of thi s subsec t ion. use of the s ymbol m both for the rank of V (here m = n), 
a nd fo r the k x I vec tu r in (S.lla), should cause no confu s ion. 

If (5.12) holds the n th e normal equations are 

and become 
(XV+X')/3 = XV+Y, 

(BXX')/3 = BXY, 

which are equivalent to the usual normal equations 
A/3 = XY obtained when V = I . This result seems to 
have been first noted by T. W. Anderson [1948], 
and Muller and Watson [1959] have di scussed it in 
the context of randomization theory. 
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For the rest of this section we assume XF = 0 (i.e., 
X =XGG'), and ask when a simplification of the normal 
equations something like the one described above 
is possible. Note that X =XGG' implies q:%: m. If 
q = m we can partition 

X'=[X;, X~], ,8' = [,8;, ,8~] 

where XI is qXn of rank q, X2 is rXn,,81 is qXl and,82 
'is rX1. The normal equations become 

(X IV+X{)S I +(XIV+X~)P 2 =XIV+Y, 

(X2V+X 'I)P I + (X2V+X2)P z =XzV+Y. 

Since X = XGG' implies XI =XIGG', XIG has rank 
q = m and hence 

where BI is qXq nonsingular. Premultiplication of 
the first normal equations by BII (after substitution 
of BIX, for X,V+) yields 

(XIXDS I +(X,XDQ32=XIY 

(XzX;BDP , + (X2V+ Xz)13 z = X2V+ Y. 

(5.13) 

Thus at least the first subsystem of the normal equa
tions has been somewhat simplified. 

If in particular P = q = m then we have (5.12) and 
the resulting full simplification. If P > q = m but 
XIXf = 0, then the normal equations reduce to 

(XIX;)S I =XIY 

(X2 V+XDP 2 = X 2V+Y, 

(5.14) 

and the solutions for S I are the same as if var Y = (TZ[. 
Without assuming X;X2 = 0, we can observe that 
Xz=X;N for some q X r matrix N and that A,=XIX; 
is q X q nonsingular; thus the first subsystem of (5 .13) 
can be solved for f3 I as 

and the second subsystem becomes 

N'(BI - A,B;A11)A IN/3 2 =N'(BI -A ,B(A]I)XIY 

which is to be solved for P 2. If in addition Xz has rank 
r (which requires r ~g), then N do~s too and one can 
first find the unique ,8J such that AI,81 =Xlt', ang then 
~atisfy the secQnd subsystem by solving Nf3 2 =,81, i.e. 
f3 2 = (N'N)-W' ,81 . 

If q < m the situation is more complicated. This is 
illustrated by the following example (due to K. Gold
berg, NBS) in which P = q = 1 and n = m = 2. Take 
X= [1, 0] and 

G= G' = 2 - 1/2 [1 1], 
1 -1 

Then XV+ = XGA - IG' = [3/2, -1/2] but BX has the 
form [t,O] for all 1 X 1 matrices B; hence (5.12) or its 
analogXIV+ = BIXI cannot hold. 

Even when q < m, some simplification is ppssible 
if there is a partition G = [GI , G2 ] , with GI (n X q, such 
thatXIGz = 0. Forthen, if 

denotes the decomposition of A corresponding to the 
partition of G, we have 

and can mimic the procedure for q = m (up to and 
including (5.14)) using G, and Al instead of G and A. 
At present it is not clear what other cases admit anal
ogous simplification if q < m . One such situation 
arIses if we change the dimensions of the partition 
of X' so that Xi is Pi X n (PI + P2 = p), ,8i is Pi X 1, and 
Xl has rank PI (implying PI:%: q). If there is a parti
tion G=[GI, G2], with Gl (P1Xn), such thatX1G2=0, 
then the preceding analysis still applies. 

5.4 . Equicorrelated Variables 

In many experimental situations the covariances 
between the observations are not zero, but to a reason
able degree of approximation may be regarded as 
being equal; i.e., cov (Y;, Yj ) = p(]'2 (i =I' }). Therefore 
we can write val' Y= V(T2 where 

V=(l- p)[ + p} (5 .15) 

and} is an nXn matrix with all elements unity. 
The matrix V has the two distinct characteristic 

roots [1 + (n - l)p] and (1- p) with multiplicities one 
and (n-l) respectively. However since V(]'2 is a 
variance-covariance matrix, it is positive semidefinite 
and the roots are nonnegative. Consequently 

l+{n-l)p~O, I-p~O 

and we obtain the bounds - {n _1)- 1 :%: P :%: 1. When 
either p =- {n _1)- 1 or p = 1, a characteristic root 
will be zero and V will be singular. If the Yi are in 
creasing linear functions of one another, p will be 
equal to unity. The case p =- (n _1)-1 implies that 
n L Yi=constant, V+=(n-l)n- J{l-)/n}, and that 

i ~ 1 

the sum of the elements in any row or column of V is 
zero. 

When p =I' 1 or p =I' (n -1)- 1, V has an inverse which 
is given by 

V- I = (1- p)- J{[_ p[1 + {n -l)p]- IJ}. 

Therefore using (5.10) the normal equations can be 
written 

{[A-p[l +(n-l)p]- lX}X'}S =XY- p[l +(n-l)p]-l X}Y. 
(5.16) 
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where A =XX'. The conditions for eS limability of a 
parame tri c function only involve first mom e nts and 
hence are not de pendent on p. Therefore the func
tion 8 = l'{3 is estimable if and only if H'I = O where 
H'X = O. The solution of (5.16) involves knowledge 
of p. However we wish to determine the parametric 
functions which can be estimated without knowledge 
of p . 

Le t 1 de note an n X 1 vector of ones, so that J = 1 I'. 
Since 1 and therefore n - I /2 1 is a characteristic vector 
of V corresponding to the characteristic root 
[1 + (n - l)p], we can take the matrix G of subsection 
5.1 as G =[n -1/21, M]. Here the n-l columns of M 
are characteristic vectors of V corresponding to the 
characteristic root (1- p), and 

M'M = IlI _l, I'M=O, VM=(l-p)M. 

Since G is square, G'G=J impli es GG' = I and therefore 

MM' = i-n- IJ _ 

Also, in the notatio n of subsection 5.1, 

T= Gi\ - 1/2 = [n- I/2(1 + (n -1)p)- 1/21 , (1 - p)- 1/2M], 

so in applying Theorem 4 

i =XT = [n- I/2(1 + (n -1)p)- 1/2X I , (1- p)- 1/2XMj, 

_ [n - I/2(1 +(n-l)p)- 1/21 'Y] 
Y = T'Y = 

(1 - p)- 1/2M'Y . 

The equation E(Y)=X'{3 of (5.8) the refore becomes 
equivalent to 

E(I'Y) = I 'X'{3, 

£(Y) = X'{3 C\, = XM,Y = M'y) 

and it is readily verified that 

(5.17) 

(5. 18) 

var (Y) = (1- p)0-2/, cov( I'Y,Y)= O. (5.19) 

The unbiased estimates of any es timable 8 = I' (3 
have the form 

g(y)=d'Y+e(l'y) 

where d is an (n-l) X 1 vector, e is a scalar, and 

Xd+Xle=l. (5.20) 

Also, 

val' [g(Y)] = (1- p)0-2d' d + e2n[1 + (n - l )p ]0-2 

First suppose the rank of X =XM is less than the 
rank q of X. This rank must be q - 1. Then there 

exists an m x l vector h such that h'X= I , and (5.20) 
yields 

h'l = h'XMd + h'X l e = ne, 

so that 
e = eo = n- I(I' h) 

in every estimate g(Y).18 Thus the mlnJlTIlzation of 
var [g(Y)] subject to (5.20) is achieved by c hoos ing d 
to minimize d'd subject to 

Xd= 1-Xleo = 1- Aheo. 

This, however, coincides with the problem pf finding 
a best estimate for (1- Aheo)' {3 in the model specified 
by (5.18) and (5.19); the Gauss theorem yields the 
solution as 

d'Y = (/- Aheo)'{3 

where (3 is a ny solution of the normal equations ob
tained usi ng (5.18) and (5. 19). Since MM' = 1 - n- IJ, 
we find that th ese norm al eq uations are 

X[/ - n- IJ]X'{3 = X[I - n- IJ]Y. 

Thus the bes t es timate g(Y) of f) = I ' {3 is 

8 = (1- Aheo)' j3 + I 'Yeo 
- -

= I' (3 -I' h(n - lh'A{3) + I' h(n - II 'Y) 

= l'h 

(5.2 1) 

where h=j3+ n- I/~( I'Y- I 'X'j3). Use of.(5.21) and 
h'X = I ' lea,.ds to A(3 = XY. Convessely if (3 is any so
luti on of A(3 =XY, the n c hoosi ng (3 =/J yields a solu
tion of (5.21), and also 

8 =(l-Aheo)'~+ I 'Yeo=l't3 . 

Now assume X =XM has the same rank q as X. To 
minimize val' [g(Y)] , first treat e as fixed ; as in the pre
vious case we are led to the c hoice 

d'Y = (l - Xle)' t3 
where {3 is any solution of (5.21). The rank hypo the
s is ilTJpli es that the same H, and thus th e same K and 
c;, wQEk for XX' as for A, and so we may choose 
(3 = CXy' Now 

g(Y) = 1'13 + el '(Y - X'j3) 

val' [g(Y) ] = var (I'j3) + e2 val' [1 '(Y-X'j3) J 

+ 2e cov [l'j3, I '(Y - X'j3)]. 

The range of e in the remaining minimization prob
lem is that of all real numbers. To prove this. note 
that by the rank hypothesis l = Xdo for some (n - 1) x l 

I II A simpl e sufficient condit ion for the existence of such a vector h is that th e colum ns of 
X all sum to some nonze ro constant k. That is, I 'X =~k l ' and thus we Illay tuke h= k- 1 J. 
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vector do (i.e., each estimable form is also estimable 
with respect to (5.18)), and also X = XN for some matrix 
N, so that for any real number e 

!-Xle=Xd (d=do-Nle) 

as required by (5.20). The solution of the minimiza· 
tion problem is therefore 

- - -
e=-cov [1'/3, 1'(Y-X',B]/var [l'(Y-X'/3)] 

= (1- p)!'CXI /{n[l + (n -l)p] + (1- p)l 'X'CXI}. 

This is independent of p if and only if the numerator 
vanishes, i.e., 

I'CXI = 0, (5.22) 

() = I' [~ - n- 1CXJY + {n[np(l- p)- 1 + 1] + I 'X'CXI }-1 

(Y - X't3 +n- 1X'CXJY)] 

with t3 as above. 

COROLLARY 5.1. Let the deviations y* and X* be 
defined by Y*=MY = MM'Y, X*=XM'=XMM'. 
Then the quantity 

S2 = (y* - X*'t3 )'(y* - X*'t3) 

has expectation 

E(S2) = (n - q)(l- p)a-2 

if a vector h exists for which h 'X = I'; otherwise the ex· 
and in that event the best estimate reduces to pectation ofS2 is 

I'P = I'CX([- n- 1J)Y = I'CXY = 1't3 E(S2) = (n - q -1)(1- p)a-2. 

where t3 is a solution of At3 = XY. Note that I' CXI = 0 
will hold for all estimable functions if and only if 
XI=O. 

Before assembling these results (with a few more 
substitutions) into a formal theorem, we remark that 
XM has the same rank as 

XMM'X' =X([- n- l])X' =X(I - n-l])2X', 

and thus the same rank as the matrix 

X*=X[I-n - 1]] 

obtained from X by simply taking deviations from the 
mean, i.e., 

n 

xia = Xia - Xi.; Xi = n-1 LXi,,' 
0 = 1 

Thus when X* and X have the same rank, a solution of 
(5.21) can be obtained as 

,B=CX[I-n- 1jJY=t3 -n- 1CX]Y. 

THEOREM 5. Let 

E(Y) =X'/3, var (Y) =a-2[(1-p)I + pJ1. 

- (n _1)- 1 < P < 1. If the rank q* ofX* =X[I - n - 1J) 
is q -1 (i.e ., there exists an nxl vector h such that 
h 'X = I '), the normal equations are AS = XY and do 
not depend on p. When q* = q, the only estimable 
functions f) = i' (J with best estimate independent of p 
are those with 

i'CXI =0, (5.22) 

and for these the best estimate is i' ~ with A~ = XY. 
If (5.22) does not hold, the best estimate of f) is 

PROOF. The expectation of (l' - X't3 )'(l' - X't3) is 
(n-q)(1-p)a-2 if X has rank q-l (i.e., a vector hex· 
ists for which h'X = 1). When X has rank q, the ex· 
pectation is (n - q -1)(1- p)a-2. These results imme
diately follow by applying corollary 1.4 of the Gauss 
theorem. Since 

Y-X't3 =M'(Y-X'{3) 

and (MM')2 =MM' =1 - n- 1], we have 

(l' - X'~)'(l' - X,~ )=(Y-X'~ )'MM'(Y -X'~) 
= (y* - X*'!3 )'(y* - X*'t3). 

The problem arises as to what to do if there does not 
exist an h for which h'X = I' (i.e., if XM has the same 
rank q as X), p is unknown, and we wish to estimate 
an estimable function for which i'CXI f= O. Estimates 
of f) = i' /3 can be obtained if we are willing to consider 
the alternate estimation problem where 

E(l') = X' /3, var Y = (1- p)a-2[ (5.23) 

subject to the restraint 

I'X'/3= I'Y, 

which must be pre-estimable. 

Application of (4.16) results in the normal equations 

XCI - n- lj)X't3 + XH =X(I- n- 1j)Y, 

I'X't3 = I'Y, 

which reduce to 

At3 +XH=XY, 

I'X'{3 = I'Y. 
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After pre multiplication by the nonzero 1 Xp vector 
1 'X' , the firs t equation can be solved for A. to ob tain 

A. = (1 'X'Xl)- 11 'X'(XY - A{3), 

and then the normal equations for {3 alone are obtained 
as 

[J - (1 'X'Xl)- IXJX']A{3 = [J - (IX'Xl) - IXJX']XY 

I'X'{3 =1'Y. 

Alternatively, we can apply Theorem 2 to the model 
given by (5.23) and the restraint l' X',B = 1 'Y. Since 
X has the same rank as X, H has the same relation to 
X as to X. Thus, by Lemmas 1 and 2, the matrices 
K and C are the same for X as for X. Here HI and KI 
are null, while Ho and Ko correspond to Hand K, reo 
spectively. The result of applying Theorem 2 is given 
next as another theorem ; note that the es timate 8 = l' ~ 
coi ncides with that given in Theorem 5 when l' CXl = 0 : 

THEOREM 6. F or the model 

E(Y) =X',B , var Y = (T2[(1- p)I + pJ], 

where - (n -1)- 1 < P < 1, the parameter p is unknown, 
and X = XM has the same rank as X, the best estimate 
conditional on 1 'X',B = l ' Y of the estimable functio n 
8 = l',B is given by 

(j = l' ~ = l' CX{(I - n- IJ) 

+ (1 'X'CXl)- IJ[I - X'CX(I - n- 1J)]} Y. (5.24) 

COROLLARY 6.1. The qua ntity 

S 2 = (y* - (X*)' ~ )'(y * - (X*)' ~), 

where X*=X(I-n - IJ ) and Y*=(I-n- IJ)Y, has the 
conditional expectation 

E(S211 'Y) = (1 - p )(T2(n - q) . 

PROOF. We firs t observe that 

so that E(S211'y) can be found by applying Corollary 
2.4 to the model consisting of (5.23) and the restraint 
1 'X',B = 1 'Y. Here k2 = 1, n is replaced by n-1 
since X is p X (n-1), and (T2 is replaced by (1-p)(T2. 
This proof also shows, by (4.27), that S2 can be written 
as 

S 2 = (y* - (X*)'t3 0) '(y* - (X*)~ 0) + A2(1 'X'CXl) 

where ~ 0 = CX(l- n- IJ)Y and 

A= (l'X'CXl) - I[l'X'CX(l- n- 1J)Y - 1'y]. 

5.5. Two Stage Least Squares 

An application of Theorem 4 arises in two !'; tage 
leas t squares estimation which has recently been 
discussed by Freund, Vail, and Clunies·Ross (1961) 
and Goldberger and Jockems (1961). We s hall con· 

s ider so me furt her generalizations and discuss the 
matter more fully . Conside r the model 

(5.25) 

where Xi are Pi X n matrices and ,Bi are P i X 1 vectors 
for i = 1, 2. Instead of considering the full model, 
in the first stage we ignore ,132 variables and take 
E(y)=X/,BI. Then the normal equation s will yield 
the solution 

(5.26) 

where C is related to X1X/ as C is to A. 

Define the residual vector 

and the ide mpotent matrix 

The n we have 
E(8) = VX;,B2, 

a nd these equations serve as the mode l for the second 
stage. Now apply Theore m 4 to thi s mod el: V = V+ 
s ince V is idempote nt, the analogs of X and F' = F; 
are X 2V and XI respec tively with X I(X2V)' = 0 s in ce 
X I V = 0, and so the res ult is the equ ation 

(5.27) 

with solution 

(5.28) 

where C2 is related to X2 VX2 as is C to A. 
S uppose 8 = l;,BI + l2,B2 is es timable in th e full model. 

The n (see (3.4)) there exists an n X 1 vec tor d suc h th at 
X;d = l;(i = 1,2), and so 8 1 = l;,B1 is es timable in the firs t· 
stage model. Its bes t es tima te in that model is 

and in the full model 

The procedure to be described involves adding a 
term to 81 to obtain an unbiased es timate 81 of 81• 

Clearly thi s will be possible only if 81 is in fact esti · 
mabIe in the full mod el. We therefore are led to 
determine what condition on the partition [X;, Xf] 
will ensure that 81 = l;,B1 is es timable in the full model 
whenever 8 = l',B is. First suppose the partition has 
thi s property . Since the rows of X',B are estimable 
in the full model, the same must hold for the rows of 
X{,BI and thus for the rows of 
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By (3.4) there is an nXn matrix B such that XIB=O 
and X2B = X2. XIB = 0 implies that B = VB I for some 
PI Xn matrix BI, and so X2VB 1 =X2. The last equa
tion shows that the rows of Xff32 are estimable in the 
second-stage model, or equivalently (by Corollary 1.1) 

Conversely, suppose (5.30) holds and that 

() = l;f31 + l;f32 

(5.30) 

is any parametric function estimable in the full model. 
By (3.4), there exists an n X 1 vector d such that 

Then 

so that by (3.4) (}l = l;f31 is estimable in the full model. 
Hence (5.30) is exactly the required condition on 
[X{, Xi], and is assumed in what follows. 

An unbiased estimate of (}I in the full model can now 
be given as 

Since () and (}I are estimable in the full model, the 
same is true of 

so that 

for some n X 1 vector d2 • From this and (5.30) it can 
be verified that 

is an estimate (therefore the best estimate) of (}2 in the 
second-stage model, and also an unbiased estimate of 
(}2 in the full model. 

It has been shown that an unbiased estimate of the 
estimable function 

is gIven by 

0= 01+02= L;/'3 J + l;S 2, 
where 

(5.31) 

The solutions (5.31) can be shown by substitution to 
satisfy the normal equations 

of the full model, and so 0 is the minimum variance 
linear unbiased estimate of (). 

For the same reason, oi=lIS i is the best estimate 
of (}i = lif3i in the full model. In terms of this model 
alone, the following result has been proved: If the 
portions of every estimable function which respectively 
involve the f31 and f32 variables are separately estim
able, then the best estimate of each such function is 
simply the sum of the best estimates of its portions. 
In this sense the condition (5.30) can be regarded as a 
generalization of orthogonality (XzX; = 0);' in the or· 
thogonal case the normal eqs (5.27) of the second-stage 
model are simply 

in direct analogy to those of the first-stage modeL 
Note also that (5.30) automatically holds if q = P (i.e., 
if A is nonsingular), since then every parametric func
tion l' f3, in particular l;f3t, is estimable. 

5.6. Restraints Subject to Uncertainty 

Occasionally situations arise in which the given 
restraints K' f3 = m are themselves subject to varia
tion. Such may be the case when the value of K'f3 
is not known but prior information is available which 
can be summarized as a value of a random vector m 
with E(m) = K' f3 and with precision described by 
var (m) = Vm(J'2. A circumstance where this may 
occur is when data are available from another source 
which is believed to be without bias or systematic 
error. 

Let E(y)=X'{3, var Y=(J'2] and let the k "given" 
restraints consist of unbiased estimates ,ni (i = 1, 2) of 
Kif3, where Ki is p X k i of rank ki' and m' =:' (m;, m~) 
obeys val' (m) = VIIl(J'2. Further it is assumed that the 
restraints K;f3 are nonpre-estimable functions and K;f3 
are pre-estimable functions with respect to the observa
tional equations E(y) = X' {3. It is desired to perform 
estimation subject to the additional conditions 
K/ S = m;, i.e ., to fit the new data so that the quantit-ies 
K'f3 are exactly equal to m. We may assume without 
loss of generality that K~K2 = I and that the restraints 
K;f3 are irreducible. 

It will be convenient to introduce the expression 
undisturbed to refer to those estimable functions 
() = [' f3 whose best estimate 0 = l'S is not altered by 
the requirement that S be chosen to satisfy K'S = m. 
Not all estimable functions are undisturbed in general; 
for example we have no freedom in choosing 0 when 
() is a linear combination of the rows of K;f3. The 
subclass of the estimable functions, consisting of 
those which are undisturbed, is a matter of choice 
and its selection would presumably depend on the 
problem at hand, but it should not contain any non
zero linear combinations of the rows of K;f3. (If for 
example there is skepticism concerning the prior 
information, then this subclass would chosen to in
clude, so far as possible, those functions for which a 
minimum variance estimate is of particular impor
tance.) The class of undisturbed functions may 
be chosen, of the maximum possible dimension, 
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as the class of all linear co mbina tions of the rows of 
L' {3 whe re L is a p X (q - k2) matrix of rank q - k2 suc h 
that H'L = O and [K2, L] has rank q. We may assume 
L'L=I without loss of generality. 

Because H'[K2 , L] = 0, and [K2' L] has the same rank 
q as X, there exist a k2 xn matrix P2 and a (q-k2)Xn 
matrix P such that 

X~[K,. L) [:1 ~KJ',+ LP. 

These matrices can be found explicitly, in terms of 
the inverse N- l of the qXq nonsingular matrix 

N=[K~l [K2' L]=[I KI ~Ll' 
. L' L'K2 

as 

Since E(rh2) = K~{3 , we find that E(Y) =X' {3 is e quiva
lent to 

E(Y) = X' {3 (5.32) 

where F=Y-P~m2 and X = LP =X- K2P2. Similar
ly, unde r the as~umptio n cov (Y, m2) = 0 whic h is i m
plicit in our s ituation, it follows that var (Y) = (J"2[ is 
equivalent to 

vadY) = iT (J"2, (5 .33) 

where V = 1+ PW2P2 and V2 is defined by 

var (,112) = V2 (J"2. 

Thus the original model E(y) =X'{3, var Y=(J"2I, ig
noring the res traint K'{3 = m,i s equivalent to the one 
given by (5.32) a nd (5.33). 

From the fact that equality holds throughout the 
sequence 

q = rank (X) = ra nk (K2P2 + LP) 

~ rank (K2P2) + rank (LP) 

~ rank (K2) + rank (L) = k2 + (q - k 2) = q 

of inequalities , it follows in particular that X = LP has 
the same rank q - k2 as L. Therefore the class of 
functions estimable with respect to (5.32) consists of 
all linear combinations of the rows of L' {3. 

We next prove that an analog oJ: li for (5.32) is given 
by H = [H, ([ - LL')K2]. Since H' X = 0, it suffices to 
show that H has rank at least p - (q - k2) = r + k2 ; 

sInce 
H'(I - LL')K2 = 0 

and H has rank r, it suffices to show that (I - LL')K2 

has at least rank k2 . This however follows from the 
consequence 

of the identity 

(/-LL')K2 = [K2, L] [ I J. - L 'K2 

From the irreducibility of the res traints K;{3 in the 
original model, we can deduce th at the res tra ints K'{3 , 
where K = [Kl' K2 ], are nones timable a nd irredu c ible 
with respect to (5.32). Namely, 

- [H'KI 
H'K= K;(l-LL')Kt ~(I-LL')KJ 

can be shown to have rank kl + k 2 • For this purpose, 
observe that H' Kl has rank kl so that the same holds 
for the first block column in H' K. Also, SInce 
(I - LL')K2 has rank k2, the same is true of 

and thu s of the seco nd block column. The presence 
of the zero block then e nsures the res ult. 

Th eore m 4 can be appli ed to the model co nsisting 
of (5.32) and (5 .33), to obtai n a new model a nalogous to 
(5.8), and the res traints K' {3 will re main nones timable 
in thi s new model. Thus the conditions K'~ = m can 
simply be adjo ined to the normal equations of the new 
model without affec tin g the best estimates iJ of the 
functions es timable in this new model ... i.e . the 
linear combinations of the rows of L'{3. Thus, as 
desired, these linear form s have thei r bes t es timates 
" undis turbed" by requiring K' {3 = m. (Here K pgys 
the role of Ko in Theorem 2.) If in particular V is 
nonsingular, the n by Corollary 4. 1 the normal equa
tions b ecome 

K'{3 =m. 

It may also be appropriate to adjoin artificial non
pre-estimable restraints to secure a unique solution 
for ~. 

The pre vious material also permits us to arrive at 
unbiased estimates, consistent with K'S = m, of fun c
tions () = I' {3 whic h are estimable in the original model 
but are not linear combinations of the row s of L'{3 . 
From 

it follows that 

() = I' CXP~K:j3 + I' exp' L' {3, 

so that an unbiased es timate is 

B = I'CXP~ 1h2 + I'CXP'L' S = !'CX(P~K~+ P'L')~ = l'~ 

with ~ as in the last paragraph. , Note ,that although 
the second summand (!'CXP'L'{3) in () is the bes t 
estimate of the second summand of () , rJ as a whole 
does not coincide with the best estimate of () in the 
original model since ~ comes from a se t of normal 
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equations other than AS =XY. Thus () has been 
disturbed. 

The previous material takes an especially simple 
form when L'K2 =O, i.e., when the estimable functions 
whose minimum·variance estimation is to be empha· 
sized (L' (3) are orthogonal to those whose estimates 
are prescribed (K:j3). Here premultiplication of 

X=K2P2 +LP 

by K~ and L', respectively, shows that P2 = K;X and 
P= L'X. Thus H = [H, K 2 ], and the model (5.32) 
and (5.33) becomes 

E(Y) = X'f3, var(Y)=V(T2 
with 

V=[ +X'K2V2K:;X. 
For a simple but artificial example, suppose 

X=[ ~ n ' K = K2 = [ ~ ] ' L = [ n 
i.e., estimation of the second component f32 of f3 is of 
principal importance. Suppose also thHt 

v are m2) = V2(T2 = 7 2(T2, 

so that 7 indicates the relative precision of the prior 
information relative to the new measurements under 
discussion. The previous paragraph applies, and we 
are led to the model 

with 
E(Y) = X' /3, var(Y) = 17 (T2 

Y = [ ;~ - m2 ] ' X = [ ~ n 
17=[ 1;72 n. 

This can be rewritten 

E(Y)=X'/3, var(Y)= (T2[ 
with 

X = X, y' = ((YI - m2)(l + 7 2)-1/2, Y2)'. 

The normal equations of the new model are (XX')S 
=XY, i.e., 

0{31 + O{3 2 = O(YI - m2)(1 + 7 2)- 1/2 + OY2, 

O{3 1 + {3 2 = O(YI - m2)(l + 72)- 1/2 + Y2, 

to which we adjoin K'{3 = m2, i.e., {3 1 = m2. Thus the 
result is 

{3 , = (m2,y2)', 

whereas without the requirement K'{3 = m2 we would 
have 

The estimate assigned to (J= /31 + /32, which IS not a 
linear combination of the rows of L'/3, is 

() = {3 1 + {3 2 = m2 + Y2 

and has variance 7 2(T2 + (T2, whereas the best estimate 
of () in the original model is YI +Y2 with variance 2(T2. 
Thus the requirement K'{3 = m2 decreases or increases 
the variance of the estimate of () according as 7 < 1 
or 7 > 1, i.e., according as the prior measurement of 
m2 was more or less precise than the new measure· 
ment of YI. 
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