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Equivalence of Certain Inequalities Complementing
Those of Cauchy-Schwarz and Hélder

J. B. Diaz,' A. J. Goldman, and F. T. Metcalf !

(August 26, 1964)

An inequality due to the first and third authors, which complements the Cauchy-Schwarz Inequal-

ity, is shown equivalent to a result of Rennie.

A more general inequality due to the first and third

authors, which complements that of Hélder, is proven equivalent to a previously published general-

ization of Rennie’s Inequality.

Although the inequalities treated below have dis-
crete analogs [2; 4]2 as well as Hilbert space operator
analogs |6], we shall present only the integral versions.
The symbol I will denote integration over a fixed to-
tally finite measure space, the existence and finite-
ness of the various definite integrals involved being
assumed throughout. M and m stand for real num-
bers with M > m.

In [2; 5], Diaz and Metcalf give the following result
for real-valued functions f and g with the former non-
vanishing: If

m=g/f=sM (1)
almost everywhere, then
I(g%) + mMI(f?) < (M + m)I(fg) (2
with equality if and only if
(M —g/f)(g/f —m)=0 3)

almost everywhere. Since (2) gives a lower bound
for the “inner product” I(fg) in terms of the squares of
the “norms” {I(f?}V2 and {I(g?}'?, it can be regarded
as a complement to the Cauchy-Schwarz Inequality

I(/‘g) = {I(f‘Z)}l/Z{I(g2)}l/‘l

which yields an upper bound for the inner product in
terms of the norms.

In [11], Rennie shows for a real-valued function F

that if

0<ms=F=sM (4)
almost everywhere, then
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I(F)+ MmI(F-!) < M+ m)l(1) (5)
with equality if and only if
(M—F)(F—m)=0 (6)

almost everywhere. Our first aim in this note is to
exhibit the equivalence between Rennie’s Inequality
and the one given in the last paragraph.

First, suppose it “given” that (1) implies (2). If
F obeys (4), we can set

g=F12 f=F-12

in (2) to obtain (5), and can observe that (3) applies if
and only if (6) does.

Second, suppose it “given’ that (4) implies (5). Let
f and g obey (1), and initially assume m > 0. Then
fg > 0 almost everywhere, so that from the original
measure g we can obtain a new measure u' given by

w'(S)=1(fgCs)

where Cy is the characteristic function of S. Let I’
denote integration over the entire space with respect
to u'. Then f and g obey (1) almost everywhere (u')
as well as (u), so that (4) with F = g/f yields from (5)

I'glf) +Mml'(flg) < (M ~+m)I'(1)

which is equivalent to the desired result (2). More-
over equality holds in (2) if and only if it holds almost
everywhere (1) in (6), hence iff it holds almost every-
where (u') in (3), thus iff it holds almost everywhere
(w) in (3).

If the hypothesis m > 0 is dropped, we need only
choose a real number ¢ so large that m+c¢> 0, and
replace (1) with its consequence

0<m+tc<(g+chHlfsM-+c.
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By the case just treated we have

I((g+cf)?) +(m~+c)(M—+c)(f?)
s(M+c+m—+c)(f(g+cf)

with equality if and only if (3) holds almost everywhere.
The terms in ¢ on both sides of this last inequality
(after expansion) are identical, and can be subtracted
off to obtain the desired result (2). This completes the
proof of equivalence.

Now let p and ¢ be real numbers which are “Hélder-
conjugate,” i.e.,

(7

In |3], Diaz and Metcalf announced the discrete ana-
log of the following result for a positive-valued func-
tion f and a nonnegative-valued function g: If

p>0,¢g>0,pt+qgt=1.

0<mP<gifr<MP 8)
almost everywhere, then

(M —=m)~'(MP~ ! —mP~1)I(g")

+Mm)P () < (M —m)"'(M? —m?)l(fg) (9)
with equality tf and only if
(MP — g/f?)(g/f* —m) =0 (10)

almost everywhere. Since (9) gives a lower bound for
the “bilinear product” I(fg) in terms of the “conju-
gate norms”” {I(f)}'? and {I(g9)}"9, it can be regarded
as a complement to the Holder Inequality

I(fg) < {1(f)}"'{l(g)}"

which vyields a corresponding upper bound. Note
that (1) and (2) constitute the special case p=¢g=2
of this result.

We shall find it convenient to ‘“normalize” this
result by a technique which fails in case m=0, and
therefore note in advance that an elementary proof
is available in case m=0: From (8) we obtain

0= gi=< MrfP, so that
g1 (g g = (g g < M
almost everywhere, implying

I(g?) < MI(fg)

which is equivalent to (9) with m=0; (10) also comes
out right.

Assuming now that m > 0 in (8), we ‘“‘normalize” by
replacing m by 1, M by the constant Q=M/m > 1,
and g by the function h=g/m. The equivalent nor-
malized version of the result [3] then reads as follows:
If p>1, and if the positive-valued functions f and h

satisfy
(11)

almost everywhere, then

(QP — QP-HI(f*) < (Q° — DI(fhP-1) — QP —DI(h?)  (12)
with equality if and only if
(Q—h/fHh/f—=1)=0 (13)

almost everywhere. Here p > 1 is the necessary and
(s7u)ﬂicient condition for p to be related to some ¢ as in
In [8], Goldman proved and presented as a normal-
ized generalization of Rennie’s Inequality, the follow-
ing result, which turns out to have been anticipated
by Rennie himself (see example 1 of [12]) and also to
appear in recent work of A. W. Marshall and 1. Olkin
[10]: Let s and r be real numbers satisfying

s>r,sr#0. (14)
Ifthe function F satisfies
1<F<0Q (15)

almost everywhere, then

(Q*— QM) = (Q°*— DI(F") — (Q"— DI(F®) if sr >0,

(16a)
(Q*=Q"I(1) = (Q* = DI(F") — (Q"— DI(FY) if sr <0,
(16b)
with equality if and only if
Q-FHF-D=0 (17)
almost everywhere. (The additional normalization

I(1)=1 was assumed in [8].) Our second aim is to
exhibit the equivalence between this result and the
one given in the last paragraph.

First assume it “given” that (11) implies (12).
F obey (15), and suppose initially that s > r > 0.
duce the numbers

p=s/(s—n>1,Q0=05"

Let

Intro-

so that

=0 01=0,
and (15) implies that 1 < Fs-" Saalmost everywhere.
Application of (12) with Q replacing Q, h=F5"", and

f=1, yields (16a) as desired. The argument shows
that equality holds in (16a) if and only if the analog

(Q—Fsr)Fs—1)=0

of (13) holds almost everywhere, which is equivalent
to (17).
Next suppose 0 > s > r, and set

s'=—r,r'=—s, F=QF!
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so that

s'>r">0,1sF<(.
By the case of (16a) already proved,

Q"= Q)< (Q"—=DIF*—(Q*—DIF™. (18)

1.e.,
Q" — QW) = Q" — Q- )I(F")— (Q~— Q- I(F)

which is equivalent to (16a) after multiplication by
Qs+*r.  Furthermore, equality holds if and only if

Q@—-F)F—-1)=0

almost everywhere, which is seen to be equivalent to
(17) after multiplying the first factor by FQ !> 0 and
the second by F > 0.

Finally suppose s > 0> r, and set

s'=s—r,r'=—r,

so that s' >r" > 0. Introduce a new measure u' (and
corresponding integration [') related to the original
measure u by

w'(S)=QrI(FrCs).

Then (15) holds almost everywhere (') since it holds
almost everywhere (u); applying the already-proven
(16a) with s’ and r’ replacing s and r yields

(@ =0 =0 T= HI'F) =0 " — L),
or equivalently
Q@ —DI'F"=(@ Q') —1A—QNI'(F*™),

which is in turn equivalent to the desired result (16b),
the condition for equality also working out correctly.

Second, assume it “‘given’ that (15) implies (16).
Suppose that A and fsatisfy (11) and that p > 1. Intro-
duce a new measure u' (and corresponding integration
I') related to the original measure u by

}L'(S):I(ﬂ'cs)-

Taking F=~h/f in (15) with s=p and r=p—1 leads
via (16a) to

(@ — Q- HI'(M)<(QP=)I'(hr=1[fr=1) — (Qr='— DI'(h*[f?)

which is equivalent to the desired result (12), the con-
dition for equality also working out correctly. This
completes the equivalence proof.

Two final remarks are in order. First, a number of
known inequalities can be obtained by weakening
the ones given here or their discrete or operator
analogs, e.g., by applying to one side the relation be-
tween arithmetic and geometric means. This par-
ticular process when applied to (16) yields the upper
bounds for ratios of weighted means obtained by Cargo
and Shisha [1], as was noted in [8] and [12]; when
applied to (9) it yields an inequality due to Gheorghiu
[7], which our results therefore show to be equivalent
to the Cargo-Shisha bounds. The specifics for other
corollaries are given in the papers cited. Second,
the justification for the measure-theoretic maneuvers
employed (the transitions between w and I, and u'
and I') is supplied by appeal to Halmos [9; p. 134].
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