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The frictional force on a Brownian motion particle can be expressed by means of the time-

correlation of the fluctuating force on the particle.

We show that this method, applied to a spherical

particle in a viscous incompressible fluid, leads to Stokes’ Law. The calculation is based on the
theory of hydrodynamic fluctuations due to Landau and Lifshitz, and on a hydrodynamic theorem

due to Faxen.

The subject of this article is the connection between
two different methods for calculating the frictional
force on a Brownian motion particle. One method is
based on the statistical mechanical theory of irre-
versible processes, and involves evaluation of a certain
time-correlation formula. The other method is
based on macroscopic hydrodynamics, and requires
solution of the Navier-Stokes equation.

For simplicity we restrict the discussion to the
special case of a spherical particle of radius @ moving
slowly through a viscous incompressible fluid. The
viscosity coefficient is 7.

In the hydrodynamic theory, the frictional force F
on a sphere moving with constant velocity v is given
by Stokes’ law,
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In the molecular theory, eq (1) is unchanged; but
the friction constant is now given by a time-correlation
formula. This formula was obtained first by Kirk-
wood [1].1 A more precise and general treatment has
been given by Lebowitz and Rubin [2].

The time-correlation formula for £ is

fdte“'< 0) - F(t)> (3)

In this expression, F(2) is the total force exerted on the
sphere at time ¢ by the molecules in the surrounding
fluid. The time dependence of F(t) is determined by
solution of the molecular equations of motion, subject
only to the condition that the spherical partlcle is
held fixed in position. The angular bracket ( ) de-
notes an average over a thermal equilibrium ensemble
at temperature 7. Boltzmann’s constant is kg.
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1 Figures in brackets indicate the literature references at the end
of this paper.

The time-correlation formula (3) is known to be
much more general than Stokes’ formula (2). For
example, Green [3] and Mazo [4] have shown that it
gives the correct expression for the friction constant
in a Rayleigh gas, where the molecular mean free path
is much greater than the radius of the sphere. Stokes’
formula, having been derived only in the hydro-
dynamic limit (mean free path much smaller than the
radius of the sphere), is not valid for a Rayleigh gas.

In this article we show the equivalence of (2) and (3)
under conditions where the hydrodynamic result is
valid. Our discussion is based on the statistical
theory of hydrodynamic fluctuations, as set forth by
Landau and Lifshitz [5].

In the Landau-Lifshitz theory, as applied to a viscous

incompressible fluid at low Reynolds number, the
equations of motion are the conservation law
V-v=0, @)
and the generalized Navier-Stokes equation
v ;
p5=—Vp+nV2v+V'S (5)

with the convective inertial terms omitted because of
the low Reynolds-number application. The pressure
is p; the fluid density is p; and S is the fluctuation of
the stress tensor away from the value it takes on when
the fluid is in local thermodynamic equilibrium (i.e.,
the deviation from the usual Navier-Stokes stress
tensor).

In the language of Brownian motion theory, eq (5)
may be regarded as a Langevin equation. The di-
vergence of S represents the fluctuating force acting
on the fluid. This force is not specified exactly, but
only in a statistical way. In particular, its mean value
vanishes, and its second moment is given by
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(We have left out certain terms containing the co-
efficient of volume viscosity, since we are concerned
with only incompressible fluids.)

Note that the correlation is taken to be local in space
and time, as indicated by the delta functions in eq (6).
This is an approximation which must fail for molecular
times and distances; but because we are interested in
only macroscopic times and distances, the approxi-
mation is good enough.

Because eq (5) is a Langevin equation, the prob-
ability distribution of velocities is given by a certain
Fokker-Planck equation; this connection is quite fa-
miliar in the theory of Brownian motion. The appro-
priate Fokker-Planck equation is in fact the basic
kinetic equation of Green’s theory of irreversible proc-
esses in fluids [6].

As in the usual hydrodynamic derivation of Stokes’
law, we assume all macroscopic processes to be so
slow that the time derivative in eq (5) can be neglected.

Fluctuations in the local stress tensor give rise to
fluctuations in the local pressure and velocity fields,
and consequently to fluctuations in the total force on
a sphere. When the fluid is at equilibrium, the mean
velocity vanishes and the mean pressure is spatially
uniform; so the mean force on the sphere vanishes.
Thus we need to take account of only deviations
from the mean behavior of the fluid.

To find the actual velocity and pressure fields as-
sociated with the fluctuating stress tensor, it appears
at first that we must solve the hydrodynamic eqs (4)
and (5) subject to the boundary condition v(r, t)=0
on the surface of the sphere. This calculation is a
moderately difficult one. Fortunately, however, one
can find the total force on the sphere using only the
“unperturbed” velocity field that prevails in the ab-
sence of the sphere, by means of a remarkable theorem
due to Faxen [7]. According to this theorem, the
force F(¢) on a sphere fixed at the origin, caused by
an unperturbed velocity field v(r, ), is

F(t)=6mna - %§ dQv(r, t). (7)

This equation evidently resembles Stokes’ law, ex-
cept that the velocity of the sphere has been replaced
by the negative of the unperturbed velocity of the
fluid, averaged over the surface of the sphere. ($dQ)/4
denotes an average over all angles.)

It is easy to see that Stokes’ law is a special case of
Faxen’s theorem.

The only conditions needed for the validity of
Faxen’s theorem are the ones we have already im-
posed: incompressibility, and omission of the time
derivative in the Navier-Stokes equation.

To apply Faxen’s theorem, we need the fluctuating
velocity field for a medium that is at equilibrium,
spatially uniform (no spherical particle present!),
and infinite in extent. The calculation of this velocity
field is performed easily by means of Fourier
transforms.

Thus, we write any function f{r) of position r as an
integral,

f(r)ZJ'd‘*kfk exp ik ‘r. (8)

In particular, the Fourier transform of eq (6) is

(Sir( k1, t1)Sim(ks, t2))
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The conservation law (4) becomes

k-v, =0,

and the Navier-Stokes eq (5) becomes (on omission
of the time-derivative)

0=—1ikp,—nk*v +ik - S(k). (11)
The pressure is found by multiplying eq (11) by k,

pr=kk : S(k)/k2. (12
Then the velocity is
1 . y
k=05 {ik - S(k) —ikkk : S(k)/k2}. (13)

The velocity correlation is found easily from eqs (13)
and (9),
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The mean force (F(¢)) vanishes, because the mean
fluctuating stress tensor vanishes. But the correla-
tion in the fluctuating force does not vanish. This is
precisely the quantity we need for the present calcu-
lation.
Let us rewrite eq (7) using Fourier components,

sin ka

F() = 6mma f PR (15)

On using eq (14) we obtain
(F(0) - F(z)) =(67ma)2fd3k1fd3kz

sin kja sin kga
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The remaining integral is elementary, and the result is

(v(ky, 0) - v(ke, t))

(F(0) - F(t)) = 36mksTmad(t). (17)

To complete the derivation, we need only to put (17)

into (3). Because the time integration runs from

t=0 to t=o, and not from t=—0o to t=oo, we pick
up only half of the delta function. This gives

{=6mma, (18)

in complete agreement with Stokes’ law.
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It should be noted that we have not actually derived
Stokes’ law from the time-correlation formula. In
fact, Stokes’ law (or rather, Faxen’s generalization)
played an essential role in the preceding discussion.
Nevertheless, the argument is not circular; the gen-
eralized Navier-Stokes-Langevin equation, together
with eq (6) for the correlation in the fluctuating stress
tensor, cannot be obtained from purely hydrodynamic
arguments. Similarly, the time-correlation formula
for the friction constant cannot be obtained from
hydrodynamics. A statistical theory is needed.

If one wished to derive Stokes’ law directly from
molecular theory, the most natural procedure would
be first to derive the fundamental hydrodynamic laws
from molecular theory. But having obtained the
hydrodynamic laws, one might as well use them to
get Stokes’ law. In other words, the time-correla-
tion formula is hardly necessary. All we have done
in this article is to show how the time-correlation
formula gives the same results as the hydrodynamic
theory under conditions where the hydrodynamic
theory is already available.
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