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Suppose it is desired to generate some particular function, from a specified set of initial functions,

using operations from a specified repertoire.

Hypotheses are given which ensure that the process can

be so arranged, that the intermediate functions arising at certain stages have no more arguments than

does the final function sought.

Operations for producing new functions from old are
studied in many branches of mathematics. (In anal-
ysis, for example, many of the standard elementary
theorems concern the preservation of smoothness
properties by such operations.) This topic is espe-
cially significant in both the theoretical and the con-
crete aspects of effective computation, e.g., in
recursive-function theory on the one hand and in the
programing of digital computers on the other.

Suppose it is desired to generate some particular
function, from a specified set of initial functions, using
operations from a specified repertoire. It is natural
to ask whether the process could be so arranged, that
the intermediate functions arising at certain key stages
are no more complex (in some appropriate sense)
than the final function sought. The present paper
deals with some simple topics relating to this ques-
tion, the “‘complexity’”” of a function being measured
merely by the number of its arguments.

All functions to be considered take values in a com-
mon set S, and have finitely many variables which
range independently over S. (This last restriction,
though awkward in some cases, can sometimes be
circumvented by adjoining to S a new element cor-
responding to “‘undefined.”) A function of £ variables
will be called a k-function. If N is a subset of the
natural numbers, then a function which is a k-function
for some keN will be called an N-function.

An operation o is defined to be a mapping whose
domain is some subset of the collection of all finite
sequences (fi, . . ., fu) of functions, and whose range
is a subset of the collection of functions. We call
o an N-operation if o(fi, . . ., fu) is defined only if—
but not necessarily always if—each f; is an N-function.
For example, if the set S (in which our independent
and dependent variables assume their values) happens
to be well-ordered, then the operation of inversion
given by

[oo(N](x) = min {y:Ay)=x}

*Helpful comments by R. Kirsch and K. Kloss are gratefully acknowledged.
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is a {1}-operation; o(f) is defined if and only if f'is a
l-function which assumes all members of S as values.

In any application of an operation o to a sequence
(fi, - . ., fu) in its domain, we call the f; the inputs
and o(fi, . . ., fu) the output. If ® is a family of
operations, we say that a function f can be obtained by
® from a class C of functions if either feC or there
exists a finite sequence 3 of applications of operations
in @, the last of which has f as output, such that the
inputs to any of these applications are “available” by
virtue either of lying in C or of being the output of
some previous application in X

Our final preliminary definition pertains to a family
®,y={04:aeA} of operations and a transformation 7
which associates to each o,e®, an operation 7(oy).
The pair (®4,7) will be called N-special, if for each
set C of functions closed under all the operations of
7(Dy), it is true that all N-functions obtainable by ® 4
from C already lie in C. This definition is difficult to
motivate here; the reader may wish to look ahead at
the definitions preceding Theorem 2, and then at the
final paragraph of the paper.

THEOREM 1. Let the collection ® of operations con-
sist only of N-operations and of the operations o, from
some N-special pair (®,,7). Then all N-functions
obtainable by ® from a set C of functions are also
obtainable if each o.e®, is replaced in ® by the cor-
responding (o).

Proof. Let C; consist of all functions obtainable
by (& —®)Ur(d,) from C, C, consist of all functions
obtainable by ®, from C; (sic), and C3 consist of all
functions obtainable by ® from C. If Ci(N) denotes
the class of N-functions in C; (i=1, 2, 3), then the
statement to be proved is C3(N) CCy(N). This will be
done by showing that

Cy(N) CCy, so that Co(N)C Cy(N); (1)

C':;CCQ, SO th'dt C;(N)CCZ(N). (2)

To prove (1), let feC» be an N-function. By construc-
tion C; is closed under all 7(o0,), and so the definition
of “N-special pair” can be applied to C; to assert that



all N-functions obtainable from C; by ®,, already lie
in C;. Hence feC; as desired.

To prove (2), observe that C» includes C; and thus
the initial class C, and also is closed under all o,edy;
we need only show in addition that it is closed under
each 0e®—®,. But if o (which by hypothesis is an
N-operation) is to be applicable to (f1, . . ., fu) where
each fieC,, then each f; must be an N-function and
hence fieCy by (1), implying

olfi, - . ., f)eCiCCs

as desired. This completes the proof of the theorem.
To see how theorem 1 is relevant to the question
raised in the second paragraph of the paper, suppose
7 can be so chosen relative to @, that the output of
any application of any 7(o) is an N-function. If fis
any N-function obtainable by ® from C, then by the
theorem f is also obtainable by (®— ®4)U7(P,) from
C, and in the latter process the intermediate functions
resulting from the use of 7(®,) are all N-functions; if
for example N={1, 2, . . ., m} where f is an m-
function, then these intermediate products are at
most m-functions. If in addition the operations in
® —®d, produce only N-functions, then all the inter-
mediate products are at most m-functions.
Justification of the previous material requires pres-
entation of at least one significant instance to which
theorem 1 and the comments of the last paragraph

apply. For this purpose we consider the operation
oc of composition, given by
loe(ft, - - o fllxa, . . ., %K)

=f1(f2(X1, 5o 00 xk), . . .,fn(X1, o o .,xk))

where n > 1; here f; will be called the outer input and
the other f; will be called the inner inputs. For any
subset N of the natural numbers, we let 7y(0¢) be the
restriction of o, to those sequences (fi, . . ., fa) for
which all the inner inputs are N-functions.

[For the following proof, we shall need the observa-
tion that the output of an application of composition
is a k-function if and only if every inner input is a
k-function. The “only if”” may seem unduly restric-
tive; e.g., if

S1(x1, 22) = 21+ %2, folx1, X2) = 2122, f3(x1) =21,

one would expect to be able to obtain the function
Sfalx1, x2)=2x1x2 +x; by composition. This is not in
general possible with our definition of composition,
essentially because there is no mechanism provided
for “inflating” f3 (by adjunction of a dummy variable)
to f¥(x1,x2)=x1. Such inflations would be possible
if, as is usually assumed in recursive-function theory,
the stock of ‘“‘available” functions includes the gen-
eralized identity functions U¥ defined by

Pilbay o < =12, ... k.

oy xk)=xi

Then we would use two applications of composition,
ﬂ :UC(ﬂ’fé’f;) = O'c(fl,_ny O-L‘(f;b U%))s

to obtain f; from fi, fo, and f;. The functions U%
are also necessary if, for example, we wish to obtain
J5(x1, %2, x3) = 21202 + 22203 from f; and fo:

f‘5 == O-C(ﬁ’ (TC(.f:lv U:i;’ U%)’ O-C(.f29

In summary, the composition operation defined above
appears “‘weaker” than usual simply because we do not
supplement it by explicitly postulating the avail-
ability of the generalized identity functions.]

THEOREM 2. The pair ({o.}, ry) is N-special.

ProOF. Let C be a set of functions closed under
7v0¢), and let f be an N-function obtainable by {o}
from C. We are to prove that f is obtainable by
{r™oe)} from C. It will be convenient to refer to
an application of o, as an N-composition or an N-
composition, according as all the inner inputs (and
hence the output) are N-functions or not.

If feC, or if there is a sequence of N-compositions
leading from C to f, then by the hypothesis on C we
have feC as desired. (A formal proof would involve
induction on the length of the shortest such sequence.)
If however every sequence of applications of composi-
tion leading from C to f contains at least one N-
composition, then consider such a sequence X for
which the number of N-compositions is minimum,
and let

G(yl, G o

5, U3)).

) ym)=H(h1(y1, 5 o ap B0k o o og

hp(}’l, e ey J’m)) 3)

be the last N-composition in 3. Thus m is not in N.

By the minimality of 2, G must be used as an outer or
inner input in at least one composition of ¥ appearing
after (3). It cannot be used as an inner input, since
the outputs and hence the inner inputs of all composi-
tions following (3) in 2 are N-functions. Let its first
use be in
F(X1, ..

) =G(gi(x1, . . . xk), - . .,

gnlx1, . . - ax).  (4)

Then kelN, and the availability of the g; for use just
before (4) would not be affected if (3) were deleted
from X. In addition, the functions H and h; were
available just before (3), and hence would be avail-
able just before (4) even if (3) were deleted from X.

We show in the next paragraph how to replace (4)
in £ by a sequence of N-compositions, the last of
which has F as output. It will follow from the previous
remarks that the functions used are in fact available,
and would remain so even if (3) were deleted. None of
these N-compositions will involve G, so that in the
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resulting modification X" of X (which still leads from
C to f) there is one less use of G and the same number
of N-compositions. Continuing the process, we
arrive at a sequence X" leading from C to f, with the
same number of N-compositions as in X, and such
that (3) appears in X" but is never used subsequently.
Thus deletion of (3) from X" yields a sequence leading
from C to f which contradicts the minimality of X.

The sequence of N-compositions which can replace
(4) in X is given by

Sfilxr, « . o x) =hdgilxn, - oL oxk), ..

gmlx1, . . ., xx)
fori=1,2, . . ., p, followed by
Fxi, .. ,x)=H(filx1, . . ., xx), . . .,

Sox1, . . .y ).

This completes the proof.
Theorems 1 and 2 together immediately imply the
following result.

COROLLARY. If ® consists of o, and N-operations,
then all N-functions obtainable by ® from a set C of
Jfunctions, are also obtainable if T(o.) replaces o,
in ®.

The special case of this corollary in which S
consists of the natural numbers, N={1}, and &
consists of o, and the inversion operation o, defined
earlier, appears in a paper of J. Robinson.! The
present paper was motivated by a desire to abstract the
essentials of this special case. Our proof of Theorem
1 was patterned after the proof given by R. M. Robin-
son? of a precursor of J. Robinson’s theorem. Ad-
ditional interesting applications seem likely to exist,
but are apparently difficult to recognize. The subject
arose in connection with Davis’ characterization ®
of universal Turing machines.

’J Robinson, General recursive functions, Proc. Amer. Math. Soc. 1 (1950).
Robinson, Primitive recursive functions, Bull. Amer. Math. Soc. 53 (1947).
” Princeton

3 M. Daws A note on universal Turing machme< in “Automata Studies,

Annals of Math. Study No. 34.

(Paper 68B3-122)

101



	jresv68Bn3p_99
	jresv68Bn3p_100
	jresv68Bn3p_101
	jresv68Bn3p_102

