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The electromagnetic fields produced by an electric dipole immersed in an aniso tropic medium are 
considered. Various approaches to the problem are outlined with special reference to a cold plasma. 
An attempt is made to show the close relationship between previously published work on this subject. 
It is shown that information on the radiation field in an anisotrop ic media may be obtained directly 
from the shape of the refractive index surface. 

1. Introduction 

There is now a vast amount of literature on the subject of electromagnetic waves in anisotropic 
media. However, until quite recently, only plane wave solutions have been considered in any 
detail. In most applications to the ionosphere, this approach has been justified since the trans­
mlttmg and receiving antennas were ground based. In recent years, the · situation is gradually 
changing since, increasingly often, the source is placed within the anisotropic medium. The best 
example is when a transmitter is located in a satellite whic h has an antenna attached to it in some 
manner. 

It is the purpose of this paper to review some of the recent theoretical investigations on the sub­
ject of radiation from sources in anisotropic media. It is assumed throughout that nonlinear 
phenomena may be ignored. Thus, the medium is c haracterized by a tensor dielectric constant 
and a tensor magnetic permeability whose elements are independent of the field. 

In the first part of this paper, the Green 's function for a generally anisotropic (i.e. , gyrotropic) 
media is considered. The results are then specialized to a medium whose magnetic properties 
are isotropic. This important special case corresponds to a cold plasma which may be described 
~~ a gyroelectric medium. Using this type of medium as an example, some alternative approaches 
to solving for the fields are described. The extensions required to treat stratified anisotropic 
media are also described briefly. Finally, the special problems associated with asymptotic evalu­
ation of the integrals are considered. 

2. Green's Functions for Generally Anisotropic Medium 

The present development of the Green's function is closely related to that of Bunkin [1957], 
Kogelnik [1960], Meecham [1961], Kuehl [1962], and Ament [1963]. In particular, following 
Ament [1963], we assume a Cartesian coordinate system (Xl, X2, X3) in which Ej, Hj, and}j represent 
the component of the electric field, magnetic field and source current density, parallel to the Xj 

axis. As usual, all field quantities vary according to exp (iwt). 

The medium itself is considered to be homogeneous and generally anisotropic . Thus, the 
dielectric constant and magnetic permeability arp denoted by tensors (E) and (1-'-), independent of 
position. For this situation, Maxwell's equation~ for the jth component are written 

(1) 
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(2) 

where J-Ljn = (J-L) and Ejn = (E) are three-by-three matrices or dyads with constant elements. 
Formally, the field Ei;j at the vector position 7 may be obtained via a Green's function - ~~ ~ ~ 

Gij(x, x') from the current density Jix ' ) at vector position x'. One should note that the compo-
~ ~ -

nents of x are Xl~X2' x~nd those of x' are x;, x~, x~. The Green's function Gij is a tensor and is a 
function of both x and x'. It is defined by the relation 

~ III - ~~ ~ Ei (x) = Gij (x, x ') Jj (x ') dx;dx~dx~, 

where the integration is over any volume which encloses the source current density. 
compact description of (3) is written 

(3) 

A more 

To obtain an expression for the Green's function, it is convenient to write Maxwell's equations 
in symbolic form. For example, if ai symbolizes the derivative ajaxi, it is evident that 

~ ~ ~ 

yo X E =- i(J-L)wH (4) 

is equivalent to 

J-L12 

J-L13) [H11 
J-L 23 H 2 , 

J-L33 H3 

(5) 

or, simply 

- ~ ~ a . E = - iw{.t . H. (6) 

Similarly, the other of Maxwell's equations, 

~ ~ ~ ~ 

yo xH =i(E)wE+ J (7) 

becomes 

- -4 ~ ~ 

a . H = iWE . E + J. (8) 

~ 

The vector H may now be eliminated from (6) and (8) to obtain 

- - ~ ~ ~ a . Ii . a . E - w2i . E = - iwJ, (9) 

where 

ii=~ is the matrix inverse to {.t. 
J-L 
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-7 -7 

To facilitate the solution of (9), it is assumed that both E and] have three-dimensional Fourier 
re prese ntations. These may be regarded as superpositions of plane waves propagating as exp 
[ - ikJxJ - ik2x2 - ik3X3] = exp [- ik:1] where kis the (vector) wave number. Thu s, 

(10) 

~ 

is the transform of En(x) when n = 1, 2, or 3. The inverse transform is given by 

(11) 

-7 -7 

which is a volume integral over. k space. The transform of J,,(x), which is denoted by j,,(k) , is 
defined in the same fashion. 

The differentiations in (9), indicated by the a tensors, may be carried out under the integral 
-7 -7 

signs. Then, on equating coefficients of exp ( - ik . x), we obtain 

- _ -7 _ -7 ~ 

K . ii . K . e + W 2E • e = iwj, (12) 

where K represe nts the matrix 

Equation (12) may be solved formally to yield 

-7-7 --7 -7 

e (k) = iwM ·j ( k ), (13) 

where 

1 M = _ _ 
K· ii· K +W2E 

(14) 

From (11) we the n find tha t 

(15) 

(16) 

This result can be written in the required form 

(17) 

if 

(18) 

and provided the order of the x' and the k integra tion may be interc hanged . In matrix notation, 
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the Green's function is written 

~~ . J -
Gij(X, x') = (;:)3 e-ik (19) 

~ 

which involves the k - dependent matrix Mij • . 
~ ~ 

It may be easily shown that Mij is an even function of k in that it has the same value when k 
~ 

(or kJ, k2, k3) is replaced by - k (or by - kJ, - k2, - k3)' Thus, on noting that Mij is an explicit 
function of (:t-'"1') and k, it is seen that 

~ ~ ~ ~ 

Gij(x - x') = Gij(x' - x). (20) 

3. Green's Function for Gyroelectric Medium 

The development of the 
generally anisotropic media. 
isotropic. In this instance, 

Green's function as given above is applicable to homogeneous but 
The important special case is when the magnetic properties are 

: ), 
/-to 

(21) 

where /-to is the usual magnetic permeability of the media. In most ionospheric-type plasma, it 
is permissible to regard /-to as the permeability of free space. However, this is not an essential 
restriction on the theory. 

A further simplification may be made if the doc magnetic field is directed along the z axis of 
,the Cartesian coordinate system. The tensor dielectric constant then has the form 

( 

E -ig 
(E)= ig E 

o 0 
(22) 

where the (complex) constants E, E, and g depend on the properties of the medium. 
While the specific form of the Green's function for the gyroelectric case may be obtained as 

a special case, it is instructive to derive it directly following the method of Kogelnik [1960]. 
The relevant wave equation, corresponding to (9), is now written in vector-dyadic notation, 

(23) 

::t~ - ~2 
where Ll = Y' V is the LaRlacian operator, 1 is the unit matrix or dyad, and V V and E are also 

~~ 

dyads. The elements of V V are the differential operators a 2/ aXi aXk. 

Plane wave solutions of (23) have the form 

(24) 

Then, since 

(25) 

it follows that 

(26) 
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where 

(27) 

is the "wave matrix." The homogeneous wave equation thus h as the form 

- ---?>~ -+---+ 

fl(k)Eoe- i k . x = o. (28) 

The condition for nonvanishing fields is 

-~ 
det fl(k) = 0 , (29) 

where det denotes the determinant of the elements of the tensor. The planes of equal phase are 
specified by the wave normal Ti= (nJ, n2, n3) such that It = krt. The components of the direction 
cosines may be expressed in terms of angles 0' and {3 by 

n, = sin 0' cos {3, 

n2 = sin 0' sin {3, 

n3=cos 0'. 

Using the specific form of the dielectric tensor defined above, it is not difficult to show that 

(30) 

where 

k~}= (E2_g2) sin2 O'+EE(1 +cos2 O')±r 
k~, 2(C2/W2)(E sin2 0' + E cos2 O')Eo ' 

(31) 

where 

(32) 

The roots, k, and kn, of (30), are the (complex) wave numbers for the "ordinary" and the "extraor­
dinary waves. They depend on the angle 0' between the wave normal and the doc magnetic field. 

Rather than using a Fourier representation to obtain the Green's function, it is instructive to 
utilize the properties of Dirac's 8 functions. These are defined, in the usual manner, by 

J+:O 
_00 fix')8(x - x')dx' = fix) (33) 

and 

(34) 

Then, if 

~ J -~ --7 ~ E (r)= G( x , x') . J (x')d3x', (35) . 
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~ 

it follows that G must satisfy 

where 

(~ ~ ~ w2 E) ~ ~ ~ ~ ~ ~ 
"il "il - ~ 1-2 - G(·x, x') = - iJLow18( x - x') , 

C Eo 
(36) 

(37) 

~ 

This step may be readily verified if both sides of the equation are multiplied by J and then per-
~~ ~ 

forming the volume integration. 
~ 

and not x/ _ 
It should be noted that "il "il and ~ operate on the variables x 

To complete the derivation , (26) is rewritten in the form 

(38) 

where D-I is the inverse of the "wave matrix." Both sides of this equation are now multiplied 

by exp (11·1) and the integrations f d3k = f f f dkl dk2dk3 are performed. On identifying this 

equation with (36), it readily follows that 

(39) 

which establishes the desired result. As indicated, this is a special case of (19) for the generally 
anisotropic medium. Equation (39) was also given by Bunkin [1957] in slightly modified form. 

The explicit form for the inverse of n is obtained from Cramer's rule; thus 
~ 

D-I=~ 
det f! ' 

(40) 

where the matrix A is the "adjoint" of D. For a gyroelectric medium of the kind described, it is 

found that 

where ,1/ is the adjoint of E , given explicitly by 

~ 

and J Eo= 

( 

E(n~ + nD + E(n~ + n~) 

ig(ni + n~) + Enln2 

Enln3 + ign2n3 
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En2n3 + ignln3 

E(l + n5) 

(41) 

(42) 

(43) 



III 4. Modified Field Solution 

A three-dimens ional transform technique for solving the dipole problem has also bee n gi ven 
by Mittra and Desc hamps [1963]. Their results have a number of unique features whic h should 
be mentioned. In particular, some ingenious manipulations are made in order to carry out the 
inversion of the transforms. Furthermore, their final expressions are not restricted to the far zone 
or to a lossless medium. 

The starting point, in Mittra's and Deschamps' analysis, is Maxwell's equations written for 
~ 

impressed electric current sources J and the tensor dielectric constant E as given in (22) while the 
- ' - - ~ 

permeability J-to is assumed to be that of free space. The eliminating H from Maxwell's equations 
leads readily to the usual inhomogeneous wave equation for E given by 

(44) 

A coordinate system is now introduced which diagonalizes the tensor E. 
system are denoted U I, U2 , and U3 , and are defined by 

The unit vectors in this 

(45) 

in terms of the unit vec tors :t, y, and z in the conve ntional Cartes ian syste m. It is unders tood , ~ 

that the d-c magnetic field remains orie nted in the axial z or V3 direc tion. An arbitrary vec tor F 
may be written in the V-sys te m as 

(46) 

where 

(47) 

In terms of the compon ents F x, F II , a nd Fz in the co nve ntional Cartesian sys te m, it is seen that 

(48) 

Th e diagonal nature of the V-sys tem is immediately evid e nt from the ide ntity 

(49) 

where 

The corresponding expression for the gradient operator in the V-system is 

(50) 

where the derivative operators are defi ned by 

(51) 

~ 

After some algebraic manipulations, the inhomogeneous wave equation for E may be written in 
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convenient m~~x form. Thus, In ter,rns ot" the diagonalizing coordinate system, 

(d'd'+dl) d1 d1d3 

(:' 
0 

~) ,[::] ~-;~~ [~J d~ -(d1d2 +d~) d2d3 - /-LoW2 E2 (52) 

d3d2 d 1d3 -2d1d2 0 E3 J3 

These are matrix equations for the fields; first given in this form by Mittra and Deschamps [1963]. 
To solve these, it is necessary to employ Fourier representations which transform the differential 
operators d 1 , d2, and d3 to algebraic quantities. 

The three-dimensional Fourier transform of E1(i = 1, 2, 3), denoted !/i(i = 1,2,3), is defined by 

f +OO f+oo f+oo 6-'; = (27T)-3 -00 -00 -00 Ei(x,y,z) exp [+ i(k."X+kyy+kzz] dxdydz (53) 

The differential operators now transform in the following manner 

For convenience of field calculations, it is desirable to introduce the usual polar form defined by 
kx = k sin a cos {3, ky = k sin a sin {3, and kz = k cos a, whereupon 

The transform of the matrix equation (52) now has the form 

- (~+C2) 1 '{3 0 - s2e-2' 
2 

[6"] f'] ~' 
-/-LoW2 0 E2 t-P _(~+C2) 

:: ~- i,., ;' (54) 

~ 0 2-1/2sce- i13 -S2 

where s = sin a and c = cos a. 

The determinant Ll of the coefficients inside the curly brackets of (54) is seen to be of the form 

(55) 

which is identical to (30) as it must be. The roots of the equation Ll = 0 are kJ and kn and they are 
given explicitly by (31). As indicated previously, kdko and ku/ko are the indices of refraction for 
plane ordinary and extraordinary waves, respectively. 

Since the matrix equation (54) involves only algebraic quantities the solution may be obtained 
directly. Thus, in matrix notation, 

[~]=- i/-Low[A] Lf]' 

where the elements of the inverted matrix are given by 

AmI! = amn/Ll. 

The coefficients amn are given by 

all = (1/2)k4s2 - k2/-LoW2 {E2S2 + E3 (~+ c2) } + /-LoW4E3E2' 
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OZl = eZif3(1/2)kZs2(k2 -ILOW2E3), 

azz=(1/2)k4sz-k2ILowz [ElSZ+E3 (¥+CZ) ]+1L5W4E1 €3, 

The explicit evaluation of the three-dimensional inverse transforms remains to be done . The 
usual approach is to carry out a stationary phase type calculation which is stated to be valid in the 
far zone. This aspect of the subject is discussed below, but first, it is appropriate to describe the 
approach by Miura and Deschamps [1963], which is not res tricted to the far field. 

To be explici t, an electric dipole source is located at the origin and, to achieve simplicity, the 
dipole is oriented in the z-direction which is parallel to the d-c magnetic field. Thus 

~ 

] = pliS(x)S(y)S(z), (58) 

where z is a unit vector in the z (or U,) direction. Th us, from (55), (56), and (57), 

/ . a,dk, a, (3) 
r5n=-~lLoWPo !:!.(k, a) for n=l, 2,3, (59) 

and the inverse transform may be written in the form 

1'" lTT lZTT E/I = Po 0 0 0 t5'lIe-iA'TlI sin e sin a cos (/3-<1» + cos e cos niX k2 sin ad{3dadk, (60) 

where (R, e, cf» are the spherical coordinates of the observer. 
In the special case n = 1, the {3 integration is effec ted immediately since a33 is independent of (3. 

Thus, it follows that 

(61) 

where 

I(R, e)=kJ L'" fa~3 e - ikRcose cos a]o(kR sin e sin a) sin adadk. (62) 

To evaluate this integral, Miura and Deschamps [1963] recognize that I may be written as a sum of 
a singular part Is and a finite part h. That is, Is is of order (l /R ) for R tending to zero, whereas 
h is finite for all R and e. Following some ingenious manipulations, they find that 

'i; 2Is=- '!!... (EO) 1/2 .! ~ ~...L 
2 E p fJp P fJp R I , 

(63) 
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[
E E J1 /2 where R' = - Z2+- p2 . 
Eo Eo 

This result has the correct singularity and, in addition, it demon-

strates that Is is independent of g, the off-diagonal factor in the expression for the tensor dielectric 
constant (e.g., (22)). 

The evaluation of r;;2h appears to be more complicated. It turns out that while If is finite at the 
origin, y'~If does have a singularity of the type O(l/R). Mittra and Deschamps [1963] have given an 
explicit expression for r;;2h but it involves double integrals which, fortunately, have finite limits. 
Apparently, a great deal of numerical work is required in order to obtain useful numerical results 
from this approach. It is rather surprising that they do not carry out the (\' integration explicitly 
by using contour integration methods. This requires that one evaluate the residues of the poles 
of the integrand which occur at the zeroes of A for a fixed value of k. This operation will not 
be carried through since it leads directly to the (single) integral representation, given by Barsukov 
[1959] and Arbel and Felsen [1963], which may be obtained in a more direct fashion as outlined 
below. The latter approach is particularly appropriate when dealing with horizontally stratified 
media. 

5. Sources in Stratified Anisotropic Media 

Before tackling the generally stratified medium, the appropriate expressions for the (primary) 
field of a point source in a homogeneous medium are derived. With respect to the Cartesian co­
ordinate system, an electric. dipole is located at (0, 0, zo). The d-c magnetic field is oriented along 
the z axis and thus the dielectric dyadic E has the tensor form. 

-~g 

E (64) 

where E , €, and g are specified constants for each homogeneous region. For convenience, Max­
well's equations 

~ ~ ~ ~ 

r;; X H = iWE . E + ] (65) 

and 

~ ~ 

r;; X E = - il-'-ow H (66) 

are supplemented by the divergence relations 

~ - i ~ ~ 
V . (E . E)=p=- r;; . ] 

W 
(67) 

and 
~ 

V· H=O, (68) 

where p is the charge density. 
The preceding equations may be written out explicitly in terms of cylindrical coordinate sys­

tems. Then, it is a straightforward matter to eliminate the Er , Eq" Hr , and Hq, components. It 
is found that 
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E a2Ez k~EEz f.Lowg aHz . ] + 1 ap 
'1 2E + - --+----- - - = ~f.Low z --

I z E aZ2 Eo E aZ E aZ 
(69) 

and 
(70) 

where 
~ ~ alct, 1 alp 
['1 x]] =----, 

z ap p ac/> 
(71) 

and 
'12=.! ~ p ~+~_a_ 

t p ap ap p2 a2c/> 
(72) 

is the transverse Laplacian operator. In this section ko = w/c = 27T/wavelength and Eo is the di­
electric constant of free space. 

The above coupled equations for Ez and Hz will hold for any (piecewise) homogeneo us region. 
A subscript mis added to the fi eld quantities when reference is to be made to the mth homogeneous 
region. The integer m is allowed to ran ge from 1 to M. Th e source dipole is taken to be in the 
pth layer where p is an integer equal to or between 1 and M. 

To facilitate matching of boundary conditions, it is conve nient to employ the following spec tral 
repr~se ntation s of Dirac delta fun ctions: 

and 

1 J +oo . 8(z -zo)=- e'll(z-zo)du 
27T _'" 

o(p) = f 00 }o('Ap)AdA . 
P 0 

(73) 

(74) 

Therefore, if the dipole of mome nt Po, located at z=zo, is orie nted in the z direc tion the curren t 
de nsity has the following form: 

iwp ( '" J +oo ] z = iwp08(z - zo)8(p)/(27Tp) = (27T)2 Jo _'" } o(Ap)eiU(Z- zolAudAdu. (75) 

The corresponding formula for the c harge density is 

- ipo J '" J +00 P =---2 ]o(Ap) e ill(z - zol AudAdu. 
(27T) 0 - " 

(76) 

In the 5th region, which contains the source, the axial field components are written in the form 

(77) 

and 

Hz= Hf+H;, (78) 

where the primary and secondary fields are indicated by a superscript p and s, respec tively. It 
is understood that, if the 5th region were unbounded, the secondary fields would not be present. 

Taking a clue from the appearance of (75) and (76), the axial components of the primary field 
are written in the form 

(79) 
and 

(80) 
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Substituting (75), (76), (79), and (80) into (69) and (70), explicit expressions may be found for the 
functions A and B. The integrations, with respect to u, may be easily carried out and the final 
result is 

(81) 

and 
(82) 

where 
(83) 

where UI and U2 are roots of the equation 

(84) 

chosen so that Re UI > 0 and Re U2 > o. 
Expressions for the other components of the primary field may be readily found from the 

axial components given here. 
Expressions for the secondary field, in the sth region, are now sought in the form 

and 

where the functions CPI(A), CP2(A), I/11(A), and ~i2(A) are undetermined. 
The axial field components, E~ and H~, in the other homogeneous slabs would have the same 

form as the above expressions if the appropriate material constants of the medium are employed 
(e.g., for the nth slab E, E, and g are replaced by Ell, En, and gil, respectively). In each slab, there 
are four unknown functions (i.e., cP;" cP~, 1/1;', and 1/1~), and these may be found from the matching 
of the four tangential field components at each interface. In addition, it is required that only 
outgoing waves are permitted at z=±oo. Thus, in principle, the complete formal solution is 
available. 

Using the method outlined here, Barsukov [1959J has given an explicit expression for the 
field of a vertical electrical dipole at Z=Zo, which is immersed in a semi-infinite anisotropic medium 
(z> 0). In the region below (i.e., Z < 0), the medium is assumed to be free space with electrical 
constants Eo and fLo. 

For z > 0, the axial fields have the form 

(87) 

(88) 

Here, E~ and H~ are the primary fields given by (81) and (82), while E~ and H~ are the secondary 
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field s which have the form of (85) and (86) with th e condition that 1jJ,(>") and 1jJ2(>") are both zero. 
For the isotropi c region z < 0, it is conve nient to represent the fi eld in terms of electri c and 

~ ~ 

magnetic Hertz vectors, TIe and IIm. Thus 

~ ~ ~ ~ 

E = k~ne+ V(V . TIe) - i/-LowV X II"" (89) 

~ ~ ~ ~ 

H = iEoW V X IIe + k~IIm + iEow V X IIe , (90) 
where 

~ ~ 

TIe = (0, 0, IIe) and IIm = (0, 0, TI",). 

The following representations are employed: 

(91) 

and 

(92) 

where Uo = (>..2 - k~) ' / 2 with Re uo > 0. The scalar fun c tion s, IIe and II"" sati sfy the wave equation 
( V2+kJ)IIe,m= 0; they behave as ou tgoing waves at z=- oo, and they are independe nt of the azi· 
muthal coordinate cp. The function s 4' ,(>"), 4'2(>"), F, (>.. ), and F2( >") can be determined explicitly 
from the four boundary conditions (requiring the continuity of the tangenti al fields) at z = 0. 
Barsukov [1959] gives 

4' ,(u" U2) = - o( I ) [0(- u, ,u2)e - !l( Z O + 2 ~ U2>" 2( t - E)(U~ + sf)e - u 2Z0J . 
U " U2 E 

(93) 

(94) 

(95) 

(96) 

where 

This constitutes the complete formal solution of the problem. Explicit expressions for the 
field components are obtained by differentiation according to (89), (90) , (91), and (92). 

The general results are rather complicated; however, some simplicity is achieved by consid· 
ering the radiation fields in the lower half space. Physically, thi s corresponds to the situation 
where the observer is at a distance, below the interface, whic h is large compared with the wave· 
length. The integrals to contend with are of the form 

LX A(>")}o(>"p)e- ulzol>..dA = l(p, z), (98) 

where A(A) 's a slowly varying function of A. A saddle point e valuation of the integral yields 

I(p, z) - iko cos 8A(ko sin 8)e - ikoR/R, (99) 

733 - 195 0 - 64- 3 
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where 
R=(p2+Z2)1/2 and tan (}=-(p/z). 

As indicated, the saddle point or principal value occurs at 'A = ko sin () where () is the angle ,I 
subtended by the direction to the observer and the negative z-axis. This asymptotic result is valid 
provided IkoZl > > 1 and Izl > > zoo The first inequality appears to be very important since if 
kz is small, the contributions from the poles of A('A) lead to surface waves which have a significant 
amplitude compared with the space wave. The pole wave contributions were not considered by 
Barsukov [1959]. 

6. Radiation Fields in Anisotropic Media 

An important aspect of this subject is the nature of the radiation or far-zone fields when both 
source and observer are within the anisotropic medium. This particular problem has been con­
sidered in some detail by Arbel and Felsen [1963]. In their work they make extensive use of the 
geometrical properties of the refractive index surfaces. For purposes of this discussion, the me­
dium will be considered homogeneous and unbounded. Furthermore, the source is an electric 
dipole of moment Po located at the origin of a cylindrical coordinate system (p, cp, z) and oriented 
in the z direction. The applied doc magnetic field is also directed in the z direction. The medium 
is nonmagnetic with permeability /-to, while the electric properties are described in terms of a ten­
sor dielectric constant E of the form given by (22). Losses in the medium are assumed to be zero. 
The Fourier-Bessel representations 0f the fields given by Arbel and Felsen [1963] are closely re­
lated to (81) and (82) first given by Barsukov [1959]. The essential modifications to (81) and (82) 
are to replace the variable 'A by koS where 5 is now a dimensionless variable and ko=w/c. By 
using identities ]o(x) = ! [Hbl)(X) + Hb2 )(X)] and Hb2l(X) = - HbI)( - x), the integration contour may be 

changed from along the positive real axis to a straight line running from 5 = - 00 to + 00, Because l 
of a branch point singularity at 5 = 0, the integration path is indented around this point by a small 
semi-circle in the lower half plane of the complex 5 plane. Additional substitutions in (81) and (82) 
are to replace the axial propagation constants u, UJ, and U2 by ikoC, ikoCJ, and ikoC 2 , respectively. 
The subscripts 1 and 2 may be identified with the ordinary and the extraordinary waves in the clas-
sical magneto-ionic theory. 

The resulting vector electric fields may be written in the form 

(100) 

(101) 

and 

(102) 

where 

(103) 

and 

.1=~ 54 +4 ~ (1-52) . - [ ()2 ] 1/2 
IE-Eol E-l . 

(104) 
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The functions C 1 and C2 are proportional to UI and U2 as noted. Th e latter may be obtained from 
t~e roots of the quadratic equation in u2 given by (84), which is eq uivale nt to the Appleton­
Hartree equation. Explicitly, 

(105) 

where 

(106) 

W=- (1-S2) __ -S2 E [E2 - g2 ] 
Eo EEo 

(107) 

Arbel and Felsen [1963] have devoted a great deal of attention to the proper definition of the 
multivalued function C and the disposition of the integration path in relation to the singularities 
of the integrands in (100), (101), and (102). In the first place, it is to be observed that C1 and C2 

are associated respectively with the + and - signs in (105), and that (U2 - W)1 /2 is defined to be posi­
tive when real. The definition of C1 given above impli es that C 1 has branch-point singulariti es at 
U2 = W (or at 11 = 0) , and at those values of S for which C 1 = O. Similarly, Cz has branch-point 
singul~rities at 11 = 0, and at those values of S for which Cz=O. However, a series expans ion of 
the total integrand about 11 = 0 contains only even powers of 11, which means that 11 = 0 is a regular 
point. Thus, no special care need be take n in the definition of C 1• z at 11 = 0 if the "ordinary" and 
"extraordinary" are combined and treated together. Also, it should be mentioned that the factor 
(1-S 2)- 1 in the integrand of (102) does not give ri se to a pole co ntribution since it is canceled by 
other factors. 

If C1 or C 2 are real, the quantity exp ( - ikoC 1• 27.) represents a propagating plane wave in the 
positive z-direc tion away from th e source. On physical grounds, it may be supposed that each 
component plan e wave, in th e tolal spectrum, has a positive co mpon ent in the z-direc tion . This 
radiation co ndition permits the unique de termination of C1, 2 over the range of S for which the 
propagati on co ns tants are real. As Arbel and Felsen [1963] show, the co ntributions to the power 
flow, wh en the propagations are co mplex , are zero. Th e resulting "energy radiation co ndition" 
is that, whe n C. 2 is real, 

(108) 

where Y1 and Y2 may be interpreted as admittances for ordinary and extraordinary waves traveling 
in the positive z-direction. 

It is evident from the above inequality that the sign of C 1, 2 is identical with that of 112 - S21l. 
This condition for real C1 , 2, when supplemented with the co ndition 1m C1, 2 < 0 for CI , 2 compJe x, 
may be used to determine the analytic continuation of the function CI. AS) around branch-point 
singularities on the real axis of the S plane. 

As indicated above, the propagating modes correspond to the s ituation where 

q , 2 = U± (U2- W)1 /2 (109) 

is positive real. Thus, it is evident that ordinary and extraordinary modes propagate when U> O. 
On the other hand, if (U2 - W) > lUI, i. e ., W < 0, the ordinary mode propagates for U~ 0, while 
the extraordinary mode does not propagate. 

There is actually a very simple graphical procedure whi ch utilizes the dispersion curves of 
C(S) versus S. For example, the plane wave, characteri zed by the variation 

exp [ - iko(Sp + Cz)], 
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carries power in the direction perpendicular to the di spersion curve at the point S, C. The radia­
tion condition corresponding to choosing those values of C, and C2 for which the outward normal 
to the di spersion curve, has a positive component in the z-direction. 

The integrals in (100), (101), and (102) may be evaluated asymptotically by the method of saddle 
points . This has been de mons trated by Arbel and Felse n [1963] in an elegant manner. 

It is convenient to introduce spherical. coordinates (r, 8) which are defi ned by p = r sin 8 and 
z = r cos 8. Then, under the assumption that kor sin 8 > > 1, the asymptotic approximation 

H,\2)(koSp) - (7TkoS~ sin 8)"2 exp [ - ikoSr sin 8 + in7T/2 + i7T/4] (1l0) 

IS introduced. Thus, for mos t practical purposes, the integrals to contend with are of the form 

where 

J+x 

B = - x L(S) exp [- ikorM(S)]dS, (Ill) 

M(S) = C(S) I cos 81 +S sin 8, (11.2) 

and kor is to be regarded as a large parameter. 
The principal contributions to the integrand occur at the vicinity of the saddle points Si deter­

mined by 

M' (Si) = O, (113) 

or 

C'(Si)=-ltan 81. (14) 

Propagating waves correspond to the saddle points where both C(Si) and Si are real. If these quan­
titi es are complex, the associated fields are highly attenuated and need not concern us further. 

The technique to evaluate the integral asymptotically consists of deforming the integration 
path to the steepes t descent paths through each saddle point. The ends of these paths are con­
nected up in the valley regions of the S plane where -1m C(S) is a large positive quantity. Thus, 
because of the heavy exponential damping, these portions of the path contribute a negligible 
amount and may be ignored for the present analysis. In the vicinity of a real saddle point Si, the 
factor exp [ - ikorC(S)] decays most rapidly along the steepes t descent path which is inclined at 
angles of ± 45° with the real axis. 

The asymptotic representation for the integral is then found to be of the form 

(1l5) 

where the contribution from an individual saddle point is 

(1l6) 

where the argument - £7T/4 is used when MI/(Si) > 0, and + i7T/4 is used when MI/(Si) < O. It is 
assumed that the integrals are of the form such that the saddle points have alternating signs along 
the real axis of S. 

To express the final results for the radiation fields, the unit vectors, p, 1>, and z are introduced 
along with the polarization vectors 

~ AS' AC' d~ AS' A 1- (Si)2 p' =p '+z 'an qi=P ,+z Ci (117) 
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Then, following Arbel and Felsen [1963], it is found that the asymptotic versions of (100), (101), 
and (102) may be written 

(lIS) 

and 

(119) 

where Ni(e) is the "ray refractive index" defined by 

M(Si) = Ni(e). (120) 

The radius of curvature Hi of the dispersion curve (i .e., C(S) versus S for real S) at the saddle point 
Si is obtained from 

(121) 

In (lIS) and (119) ,Bi = 1 if M"(Si) < 0 and ,Bi = i if M"(Si) > O. Finally, the amplitude fC'.ctors are 
obtained from 

F' = -.- - -- cos e . (Si) 2Si ( g ) 
Sill e 0 .E - Eo ' (122) 

and 

i _ + (~)1/2 CiSi (Si)2-0 
G - - sin e 1- (5i)2 0 cos e, (123) 

where 

(124) 

It is understood that (lIS) and (119) both hold individually for ordinary and ex traordinary waves . 
The summations extend over all contributing saddle points in eac h case. The expone ntial factors 
involve the ray refractive inoex Ni(e) which is related to the polarization vector Pi = pSi + ZCi by the 
scalar identity Ni(e) = -;. -;:; where ~ is a unit vector parallel to the ray direction which points from 
the source to the observer. 

For the results given above, it is specifically assumed that e/Eo > o. If e/Eo < 0, then the rele· 
vant field expressions are obtained by making the substitutions 

(e)I /2 ~ - i( - e) 1/2, C ~ iC, and S ~ is. 

The characieristics of the radiation field in an anisotropic medium are critically dependent on 
the shape of the dispersion curve (or refractive index surface). It is evident that the number of 
contributing rays and their amplitude may be determined by a careful examination of the dispersion 
curve. The presence of open branc hes on the dispers ion curve indicates presence of shadows 
where no rays may propagate. Howe ver, the field in the shadow region may be finite as a result of 
diffraction [Brekhovskikh, 1960]. This aspect of the subject is outside the scope of the present 
survey. Also, the presence of points of inflec tion in the dispersion curve (i.e., C"(Si) = 0) will lead 
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to focusing effects which may be described by a modified saddle point procedure involving Airy 
functions [Wait, 1962]. This topic is also outside the scope of this discussion. However, the 
interested reader may find an elegant treatment of this particular problem in the paper by Arbel 
and Felsen [1963]. 

7. Final Remarks 

The present expository paper has been a self-contained treatment of the theory of radiation 
from sources in cold magnetoplasma media . 

In this review, no mention has been made of antenna impedance for anisotropic media. While 
this would seem to be a natural topic for thi s di scussion, it has been deferred until a later time. 
One reason for this is the need to consider thermal effects and sheath phenomena, which are 
important near the source. Consideration resulting from the finite temperature leads to contribu­
tions from the acoustic-type waves not usually considered part of magneto-ionic theory. 

I am grateful to Dr. K. Furutsu for making a number of corrections in the manuscript. I also 
thank Mrs. Eileen Brackett for help in preparing this material. 
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