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The electromagnetic fields produced by an electric dipole immersed in an anisotropic medium are
considered. Various approaches to the problem are outlined with special reference to a cold plasma.
An attempt is made to show the close relationship between previously published work on this subject.
It is shown that information on the radiation field in an anisotropic media may be obtained directly
from the shape of the refractive index surface.

1. Introduction

There is now a vast amount of literature on the subject of electromagnetic waves in anisotropic
media. However, until quite recently, only plane wave solutions have been considered in any
detail. In most applications to the ionosphere, this approach has been justified since the trans-
mitting and receiving antennas were ground based. In recent years, the situation is gradually
changing since, increasingly often, the source is placed within the anisotropic medium. The best
example is when a transmitter is located in a satellite which has an antenna attached to it in some
manner.

It is the purpose of this paper to review some of the recent theoretical investigations on the sub-
ject of radiation from sources in anisotropic media. It is assumed throughout that nonlinear
phenomena may be ignored. Thus, the medium is characterized by a tensor dielectric constant
and a tensor magnetic permeability whose elements are independent of the field.

In the first part of this paper, the Green’s function for a generally anisotropic (i.e., gyrotropic)
media is considered. The results are then specialized to a medium whose magnetic properties
are isotropic. This important special case corresponds to a cold plasma which may be described
as a gyroelectric medium. Using this type of medium as an example, some alternative approaches
to solving for the fields are described. The extensions required to treat stratified anisotropic
media are also described briefly. Finally, the special problems associated with asymptotic evalu-
ation of the integrals are considered.

2. Green's Functions for Generally Anisotropic Medium

The present development of the Green’s function is closely related to that of Bunkin [1957],
Kogelnik [1960], Meecham [1961], Kuehl [1962], and Ament [1963]. In particular, following
Ament [1963], we assume a Cartesian coordinate system (x, x2, x3) in which Ej, H;, and J; represent
the component of the electric field, magnetic field and source current density, parallel to the x;
axis. As usual, all field quantities vary according to exp (iwt).

The medium itself is considered to be homogeneous and generally anisotropic. Thus, the
dielectric constant and magnetic permeability are denoted by tensors (€) and (u), independent of
position. For this situation, Maxwell’s equations for the jth component are written

e
(VXE )it l.w/J«jan =0, (D
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(V xH)—iwepmEn=Jj, 2)

where wj, =(w) and €, = (6)_&)1‘6 three-by-three matr]ces or dyads with constant elements.
Formally, the field Ei(x) at the _vector position X may be obtained via a Green’s function
Glj(x, x) from the current density Jj(ﬁ)) at vector position x'. One should note that the compo-
nents of x are xi, x», X3 a and those of x’ are x}, x}, x;. The Green’s function Gy is a tensor and is a
%
function of both x and *. Itis defined by the relation

- —_ ==
_ f f f Cy(xox ) J; (x)) duldydzc, 3)

where the integration is over any volume which encloses the source current density. A more
compact description of (3) is written
— n —_ > —3
Ei@) = | G, o).

To obtain an expression for the Green’s function, it is convenient to write Maxwell’s equations
in symbolic form. For example, if 9; symbolizes the derivative 9/dx;, it is evident that

- — ) —
V X E=—i(wwH (4)
is equivalent to
0 —os d2 E, Mi1 M1z M3 H,
d3 0 —o E|l= —iow 21 22 23 i, , (5)
— 0s 01 0 E; M1 M2 33 H,
or,simply
JUE—. —
0 E=—iwa- H. (6)

Similarly, the other of Maxwell’s equations,

- = - —

V XH =ilewE+ J (7)
becomes

= = - —

0 -H=iwe-E+]. (8)

The vector ﬁmay now be eliminated from (6) and (8) to obtain

9 V9" E w2 - E——Lw,] 9)

where
- 1. .. ~
v=—is the matrix inverse to [&.
m
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To facilitate the solution of (9), it is assumed that both £ and J have three-dimensional Fourier
representations. These may l)e__;egarded a§_)superpositions of plane waves propagating as exp
. . . T i . e
[ —ikixy — ikox2 — iksxs] = exp [— ik - x] where kis the (vector) wave number. Thus,

=" = Sy
en( k ): (277)73 f En( X )‘eﬂk “rdPx (10)

-
is the transform of E,(x) when n=1, 2, or 3. The inverse transform is given by

—> —> =2 =x
E,,(x)———fen(k)e"k'ld?’k, (11)

— =
which is a volume integral over.k space. The transform of J,(x), which is denoted by j.(k), is
defined in the same fashion. B

The differentiations in (9), indicated by the d tensors, may be carried out under the integral
signs. Then, on equating coefficients of exp (—ik - x), we obtain

- g = ==
K -7 K-e+w* - e=iwj, (12)
where K represents the matrix
0 —ks ko
k:i 0 _kl
_kz kl 0

Equation (12) may be solved formally to yield

- — -~ —>
e(k)=iwM-j(k), (13)
where
~ 1
M= (14)
K- -v-K+w%
From (11) we then find that
ST = 5~ —>—>
E(x)=iw fe"" “TM - j(k)d*k (15)
- ~ — - —
=iw f e ik-xf. fJ(x')e“’“x'(Zw)*d"x’dl‘k. (16)
This result can be written in the required form
- — ~— s >
E(x)=JG(x, x') J (" )dPx’, (17)
if
(;(—; 7) e o f e—?k . ‘?‘p’Md“k 18)
) (277_)3 > (

and provided the order of the x" and the £ integration may be interchanged. In matrix notation,
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. f ek - G = DMk, (19)

which involves the k dependent matrix M;;.

It may be easily shown that M,, is an even functlon of l{ in that it has the same value when lc
(or ki, ks, k3) is replaced by Ny g (or by — ki, — ks, —ks). Thus, on noting that M;; is an explicit
function of (x—x) and k it is seen that

— - -
Giflx — x') = Gij(x" —x). (20)
3. Green's Function for Gyroelectric Medium

The development of the Green’s function as given above is applicable to homogeneous but
generally anisotropic media. The important special case is when the magnetic properties are
isotropic. In this instance,

Mo O 0
w =0 wmw 0 |, (21)
0 0 Mo

where o is the usual magnetic permeability of the media. In most ionospheric-type plasma, it
is permissible to regard wo as the permeability of free space. However, this is not an essential
restriction on the theory. '

A further simplification may be made if the d-c magnetic field is directed along the z axis of
‘the Cartesian coordinate system. The tensor dielectric constant then has the form

€e —ig 0
©@=|we € 0], (22)
0 0 e

where the (complex) constants €, €, and g depend on the properties of the medium.

While the specific form of the Green’s function for the gyroelectric case may be obtained as
a special case, it is instructive to derive it directly following the method of Kogelnik [1960].

The relevant wave equation, corresponding to (9), is now written in vector-dyadic notation,

== = W é\ . —
(VV—A 1—'63'6-0>E=—‘1[L0w.], (23)

- = "
where A= V-V is the Laplacian operator, 1 is the unit matrix or dyad, and v 3 and € are also
dyads. The elements of A are the differential operators 9%/9x;dxk.

Plane wave solutions of (23) have the form

=2 == >
E@r)=Ee 2, (24)
Then, since
0 ik P ik T
é)_xie k&= _— jke-ik - x (25)
it follows that
VTV AL T A it - 7 ‘
(V W= Ml = 60) e =— QO (k)e , (26)



where

Ry (27)

is the “wave matrix.” The homogeneous wave equation thus has the form

T 2> >
Qk)Epe - = 0. (28)

The condition for nonvanishing fields is

~—>

det Q(k) =0, (29)

where det denotes the determinant of the elements of the tensor. The planes of equal phase are
specified by the wave normal 7= (n1, n2, ny) such that k=kn. The components of the direction
cosines may be expressed in terms of angles « and 8 by

n; =sin « cos B,
n, =sin « sin S,

ng = Cos .

Using the specific form of the dielectric tensor defined above, it is not difficult to show that

det fl(?) = pow?(€ sin® a + € cos® a)(k? — k) (k> —k2) =0, (30)

where
k%}z(ez—gz) sin? o+ €€(l +cos® a) =T 31
k2 2(c%/w?)(€ sin® o+ € cos? a)ey (31)

where

I'=[(e* — g*> —€€)? sin* a +4g% cos? a] *%. (32)

The roots, k; and %y, of (30), are the (complex) wave numbers for the “ordinary” and the “extraor-
dinary waves. They depend on the angle a between the wave normal and the d-c magnetic field.

Rather than using a Fourier representation to obtain the Green’s function, it is instructive to
utilize the properties of Dirac’s 8 functions. These are defined, in the usual manner, by

f_ﬂ’ )8 — x")dx' =fx) (33)
and
i e
8(x)=% fw e"#12dk,. (34)
Then, if
i
E@n=|G6(x,x")-J(x")dx, (35)
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it follows that G must satisfy

(v_v)—Ai—%g) e s = (36)
0
where
=
O x ) = 8(21)8(x2)8(x). (37)

This step may be readily verified if both sides of the equati())n are multiplied by I and then per-
formmg_tlle volume integration. It should be noted that V V and A operate on the variables X
and not x'.

To complete the derivation, (26) is rewritten in the form

> — - w?\ =~ g ~ > -
W Y = Nl ==|| QF ¥ == llgol¥« & (38)
c2

where -1 is the inverse of the “wave matrix.”” Both sides of this equation are now multiplied

by exp (ZZ-;’)) and the integrations f d*’k= f j f dkidksdks are performed. On identifying this
equation with (36), it readily follows that

G(x x ) — 2/2"'0()1; f é—le—il? . (?—?’)dSk, (39)

which establishes the desired result. As indicated, this is a special case of (19) for the generally
anisotropic medium. Equation (39) was glso given by Bunkin [1957] in slightly modified form.
The explicit form for the inverse of () is obtained from Cramer’s rule; thus

= __A
det Q°

(40)

where the matrix A is the “adjoint” of Q. For a gyroelectric medium of the kind described, it is
found that

- 2 = 4 5
i = 1)

where & is the adjoint of €, given explicitly by
€€ ige 0
& e=|—igé e 0 (42)

0 0 =g

and /" €o=
€(n3+ n3)+ €(n? +n3) —ig(n3+ n3) + énin, €ning — ignans
ig(n?+n3) + énin, €(n3+n3) + é(ni+nd) €nsns +ignin; (43)
ening+ignsns €nsnz — 18NN e(1+n?)
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4. Modified Field Solution

A three-dimensional transform technique for solving the dipole problem has also been given
by Mittra and Deschamps [1963]. Their results have a number of unique features which should
be mentioned. In particular, some ingenious manipulations are made in order to carry out the
inversion of the transforms. Furthermore, their final expressions are not restricted to the far zone
or to a lossless medium.

The starting point, in Mittra’s__a)nd Deschamps’ analysis, is Maxwell’s equations written for
impressed electric current sources J and the tensor dielectric constant € € as given in (22) while the
permeability wo is assumed to be that of free space. The eliminating H from Maxwell’s equations
leads readily to the usual inhomogeneous wave equation forfgiven by

7 P 7 X E? = ,uowze'z =— ip,owf (44)

A coordinate system is now introduced which diagonalizes the tensor €. The unit vectors in this
system are denoted U1, UL, and U;, and are defined by

U,=2- 112(% + iy), U,=2- 112(x — 1y), and U,=3, (45)
in terms of the unit vectors x, y, and z in the conventional Cartesian system. It is underslmii>
that the d-¢c magnetic field remains oriented in the axial z or U; direction. An arbitrary vector ¥
may be written in the U-system as

—> A x A
F =UF,+UFs+UsFs, (46)
where
— A - A —_ —
F1=F-U2,F2=F-U1,andF;;ZF'U;;. (47)
In terms of the components F, F,, and F. in the conventional Cartesian system, it is seen that
Fi=2-1%F,—iF,), Fo=2"V%F,+iFy), and F3=F,. (48)
The diagonal nature of the U-system is immediately evident from the identity
€2010|€|+ Azl)zéz*‘(]xf]xéx» (49)
where
e1+etg, ea=e—g, and e3=¢€.
The corresponding expression for the gradient operator in the U-system is

V = ﬁ1d1 aF ﬁzdz ar []3d3, (50)

where the derivative operators are defined by

ad
W= <%—L : ) do=2"12 (%-i—ia—};), and d:;::%' (51)

=
After some algebraic manipulations, the inhomogeneous wave equation for £ may be written in
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convenient matrix form. Thus, in terins of the diagonalizing coordinate system,

"(dldz‘*‘d?;) d% d1d3 € 0 0 El Jl
& —ddtd) dds |—peo | 0 e 0 | M E | =—inew | L. (52
dsd» did; —2dyd, 0 0 e ‘7 E, I

These are matrix equations for the fields, first given in this form by Mittra and Deschamps [1963].
To solve these, it is necessary to employ Fourier representations which transform the differential
operators di, d», and d; to algebraic quantities.

The three-dimensional Fourier transform of Ey(i=1, 2, 3), denoted £i(i=1, 2, 3), is defined by

o0 +o0 +oo
&= (2m)~3 f_ f, f Ei(x,y,2) exp [+ i(kax + kyy + k.z | dxdydz . (53)
The differential operators now transform in the following manner
di—> 27 2i(ky —iky), d2 —> 272(k, +iky), d3s— ik..

For convenience of field calculations, it is desirable to introduce the usual polar form defined by
ky=Fk sin a cos B, ky=Fk sin « sin B, and k.= k cos a, whereupon

di — 12712k (sin a)e~#, dy — 12712k (sin a)e®, ds — ik cos a.

The transform of the matrix equation (52) now has the form

& 0 0 — <S2;+ c2> ;— s2e—2i8 2-1125ce~ib &1 S,
— pow?| 0 € 0 |+42 % s2e%ib = <'§2 + cz) 2-125cetiB &y |=— i S|, (54)
0 0 €3 2-12gcetiB  2-125ce~1B =52 &' A

where s=sin « and c=cos a.
The determinant A of the coeflicients inside the curly brackets of (54) is seen to be of the form

A= pow*(e sin® a+ € cos® a)(k*—k2)(k*— k%), (55)

which is identical to (30) as it must be. The roots of the equation A=0 are k; and %; and they are
given explicitly by (31). As indicated previously, k;/ko and ky/ko are the indices of refraction for
plane ordinary and extraordinary waves, respectively.

Since the matrix equation (54) involves only algebraic quantities the solution may be obtained
directly. Thus, in matrix notation,

[£]1=—ipowld] [.7], (56)
where the elements of the inverted matrix are given by
Amn:amn/A- (57)

The coeflicients am, are given by

2
ain— (1/2)]6482 e kZ[,L()(OZ {6282 = €3 (% = C2> } a9 ,U«O(U4€3€2,
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a1z = e~ 28(1/2)2s*(k?* — pow?€s),
a3 =e B2712f2sc(k? — pow?es),
az1 = e2B(1/2)k2s2(k> — pow?es),

2
az: = (1/2)k*s* — B2 uow? [6182 +€; (SE ¢ c2> ] + ujwie€s,

Q23 = eP212f2sc(k2 — pow?e),
dzi— eiB2"/2kZSC(k2 = [.L()(l)2€2),

az» = 2" 12e~Bf25c(k2 — wow?e;),

ass = kic® — pow?k*(€: + €;) (%2 + cz> + ndwte €.

The explicit evaluation of the three-dimensional inverse transforms remains to be done. The
usual approach is to carry out a stationary phase type calculation which is stated to be valid in the
far zone. This aspect of the subject is discussed below, but first, it is appropriate to describe the
approach by Mittra and Deschamps [1963], which is not restricted to the far field.

To be explicit, an electric dipole source is located at the origin and, to achieve simplicity, the
dipole is oriented in the z-direction which is parallel to the d-c magnetic field. Thus

.
J = pozd(x)d(y)d(2), (58)

where Z is a unit vector in the z (or Us) direction. Thus, from (55), (56), and (57),

n: k7 ’
&'n=—"1 owpPo %k——%)—@ for n=1, 2, 3, (59)

and the inverse transform may be written in the form

2 i 2
E" = Do f f J’ //)716’7“\.“' sin @ sin a cos (B—¢)+ cos § cos alx k2 sin adﬁdadk, (60)
0 0 0

where (R, 6, ¢) are the spherical coordinates of the observer.
In the special case n=1, the B integration is effected immediately since as; is independent of B.
Thus, it follows that

_ _LowPo o,
where
IR, )=k J'x fﬂ% e~ ikR cos 6 cos a [ (LR sin @ sin «) sin adadk. (62)
o Jo

To evaluate this integral, Mittra and Deschamps [1963] recognize that / may be written as a sum of
a singular part I; and a finite part ;. That is, I is of order (1/R) for R tending to zero, whereas
I; is finite for all R and §. Following some ingenious manipulations, they find that

oy —_T(€\”19 9 1
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€ € L2 . ; . . 5L ;
where R’=L— z2+€— p2] . This result has the correct singularity and, in addition, it demon-
0 0

strates that I is independent of g, the off-diagonal factor in the expression for the tensor dielectric
constant (e.g., (22)).

The evaluation of V2[; appears to be more complicated. It turns out that while Iy is finite at the
origin, V?I; does have a singularity of the type O(1/R). Mittra and Deschamps [1963] have given an
explicit expression for V2I; but it involves double integrals which, fortunately, have finite limits.
Apparently, a great deal of numerical work is required in order to obtain useful numerical results
from this approach. It is rather surprising that they do not carry out the « integration explicitly
by using contour integration methods. This requires that one evaluate the residues of the poles
of the integrand which occur at the zeroes of A for a fixed value of k. This operation will not
be carried through since it leads directly to the (single) integral representation, given by Barsukov
[1959] and Arbel and Felsen [1963], which may be obtained in a more direct fashion as outlined
below. The latter approach is particularly appropriate when dealing with horizontally stratified
media.

5. Sources in Stratified Anisotropic Media

Before tackling the generally stratified medium, the appropriate expressions for the (primary)
field of a point source in a homogeneous medium are derived. With respect to the Cartesian co-
ordinate system, an electric dipole is located at (0, 0, zp). The d-c magnetic field is oriented along
the z axis and thus the dielectric dyadic € has the tensor form.

e —ig O
@=|ig e 0], (64)
0 0 e

where €, €, and g are specified constants for each homogeneous region. For convenience, Max-
well’s equations

- - I —
VXH=iwe- E+ ] (65)
and
— =
VX E=—ipwH (66)
are supplemented by the divergence relations
V-E - B)y=p=<V-7 (67)
and
==
V-H=0, (68)

where p is the charge density.

The preceding equations may be written out explicitly in terms of cylindrical coordinate sys-
tems. Then, it is a straightforward matter to eliminate the E,, E4, H,, and Hy components. It
is found that
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€ I°F, +k}l,éEz_;L0wg Gk lap

2 i = - 69
V,Eere Py & - o =ipow/- 0 (69)
and H. k2 e JE. = wgp
ViH, +—+— (€ —g)H.+—wg —=—[V J]z+—— (70)
dz> €€ € 0z
where N aJd, l ajp
[VXJ],= (71)
p pod’
and
v=12 _+_1_2_a_ (12)
p dp Pop 0%

is the transverse Laplacian operator. In this section ky=w/c=2m/wavelength and ¢, is the di-
electric constant of free space.

The above coupled equations for E. and H. will hold for any (piecewise) homogeneous region.
A subscript m is added to the field quantities when reference is to be made to the mth homogeneous
region. The integer m is allowed to range from 1 to M. The source dipole is taken to be in the
pth layer where p is an integer equal to or between 1 and M.

To facilitate matching of boundary conditions, it is convenient to employ the following spectral
representations of Dirac delta functions:

+ o0
8(2—20):;] piu(sz()ldu (73)

27 =
and 5(p) .
—p—=J'0 Jo(Ap)NdX. (74)

Therefore, if the dipole of moment py, located at z=z, is oriented in the z direction the current
density has the following form:

J:=1wped(z — 20)8(p)[(2mp) = (lzup)()’ jx J' ) ‘]"(}‘P)eill(rz“’)‘ud)\du' (75)
0 %

The corresponding formula for the charge density is

e L
T (Zfrof f Jo(Ap)ez=20 \ydrdu. (76)

In the sth region, which contains the source, the axial field components are written in the form

it (17)

and
H.=Hp+Hy, (18)

where the primary and secondary fields are indicated by a superscript p and s, respectively. It
is understood that, if the sth region were unbounded, the secondary fields would not be present.

Taking a clue from the appearance of (75) and (76), the axial components of the primary field
are written in the form

Er= f f AN, w)Jo(Ap)eiz =20 d\du (79)

(277'

and e
He =L f f B(\, w)Jo(Ap)eitz =20 d\du. (80)
(ar)iond e s

129



Substituting (75), (76), (79), and (80) into (69) and (70), explicit expressions may be found for the
functions 4 and B. The integrations, with respect to u, may be easily carried out and the final
result is

i € “ 9 o = o —uy | 2—20| Jo(}\P)
Ep== po fo [1(u2 + s2)e~112=%0] — uy(u2 + s2)e~t2l2-20l] Xs——_%(ug_ ) A*dA @1
and o (z2—20) Jo(Ap)A3d\
Hll_ 'ZTZZ_I [e~u1|z—zol_e~ugjz—z0|]Xw, (82)
where
= ki(€/eo)— N, s3= (/&) [k§(é]e0) — N\°], 83)
where u; and u» are roots of the equation
2 o2
u4+u2(5%+33)+8%32_53%€gj—_—0 (84’)

chosen so that Re u; > 0 and Re u, > 0.

Expressions for the other components of the primary field may be readily found from the
axial components given here.

Expressions for the secondary field, in the sth region, are now sought in the form

Bi= 5 o | (sl 1=+ e -]
0

Jo(Ap)A3dA
F a5l e -] LDRIEL g,
and
Hy=— po | "(Loithe17 = M)e 1%) — [gahle 0= aeruss IR g
1

where the functions ¢i(\), ¢2(N), Yii(X), and Y(A) are undetermined.

The axial field components, £? and H%, in the other homogeneous slabs would have the same
form as the above expressions if the appropriate material constants of the medium are employed
(e.g., for the nth slab €, €, and g are replaced by €,, €,, and g, respectively). In each slab, there
are four unknown functions (i.e., ©?, ¢4, ¥, and %), and these may be found from the matching
of the four tangential field components at each interface. In addition, it is required that only
outgoing waves are permitted at z==o. Thus, in principle, the complete formal solution is
available. .

Using the method outlined here, Barsukov [1959] has given an explicit expression for the
field of a vertical electrical dipole at z=z,, which is immersed in a semi-infinite anisotropic medium
(z>0). In the region below (i.e., z<0), the medium is assumed to be free space with electrical
constants €, and uo.

For z> 0, the axial fields have the form

E.=E2+E:, (87)
H.=Hpr+ Hs. (88)

Here, E2 and H? are the primary fields given by (81) and (82), while £% and H¢ are the secondary
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fields which have the form of (85) and (86) with the condition that yi(A) and yi(A) are both zero.
For the isotropic region z < (), it is convenient to represent the field in terms of electric and
magnetic Hertz vectors, Il and I1,,. Thus

- - — =
E‘ = k%ng == V(V 'H()) S i/J«()wV X Hm N (89)
—> — —> —

=i€eow V X Il + k311, + ieow V X I1,, (90)

where

— —
[l.=(0, 0, Il,) and IL,=(0, 0, IL,).
The following representations are employed:

He:% f “Fi(\Jo(Ap)ew:NdA 1)
0 Jo0
and

11, =2 f " FaJo(Ap)eroondi, ©92)
0 0

where uy=(\2—£3)"?> with Re up > 0. The scalar functions, I, and I1,,, satisfy the wave equation
(V24 k)., =0: they behave as outgoing waves at z=—0%, and they are independent of the azi-
muthal coordinate ¢. The functions ¢i(N), ¢2(\), Fi(N), and F(A) can be determined explicitly
from the four boundary conditions (requiring the continuity of the tangential fields) at z=0.

Barsukov [1959] gives

ei(ur, us)=— | [8(—- wy,uz)e —“1%0 +2§ug)\2(é—6)(u1§+s$)e*“220} . (93)
Olur, us) €

@aluer, u2) = @i(us, uy), (94)

2€ky 9 9 _ 9 9 »
Fi(u, us) :m wi(wf + sP)(uo + uz)e 120 — us(uf + s3)(uo + ur)e 2% | , (95)

]‘ — 2Lgkl 2\ p—U1 2 2\ p—UgZ,
oy, ws) _—O_éﬁ(ul %) ui(€uius — €9s3)e"170 — us(€uruz — €s3)e 2% |, (96)

where

Swr, wo)=(u2—u1) [€osHures — s3) — e€ud(wius — s3) + uolur + us)(€ps3 — eurus) | . (97)

This constitutes the complete formal solution of the problem. Explicit expressions for the
field components are obtained by differentiation according to (89), (90), (91), and (92).

The general results are rather complicated; however, some simplicity is achieved by consid-
ering the radiation fields in the lower half space. Physically, this corresponds to the situation
where the observer is at a distance, below the interface, which is large compared with the wave-
length. The integrals to contend with are of the form

fo " AMople-ndN = I(p, 2), 98)

where A(M\) is a slowly varying function of A. A saddle point evaluation of the integral yields

I(p, z) ~ iko cos OA(ky sin B)e—ikR|R (99)
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where
R =(p%2+2z2)"2 and tan 6 =—(p/z).

As indicated, the saddle point or principal value occurs at A=k sin # where 6 is the angle
subtended by the direction to the observer and the negative z-axis. This asymptotic result is valid
provided |koz| > >1 and |z| > >z,. The first inequality appears to be very important since if
kz is small, the contributions from the poles of A(\) lead to surface waves which have a significant
amplitude compared with the space wave. The pole wave contributions were not considered by

Barsukov [1959].

6. Radiation Fields in Anisotropic Media

An important aspect of this subject is the nature of the radiation or far-zone fields when both
source and observer are within the anisotropic medium. This particular problem has been con-
sidered in some detail by Arbel and Felsen [1963]. In their work they make extensive use of the
geometrical properties of the refractive index surfaces. For purposes of this discussion, the me-
dium will be considered homogeneous and unbounded. Furthermore, the source is an electric
dipole of moment p, located at the origin of a cylindrical coordinate system (p, ¢, z) and oriented
in the z direction. The applied d-c magnetic field is also directed in the z direction. The medium
is nonmagnetic with permeability wo, while the electric properties are described in terms of a ten-
sor dielectric constant € of the form given by (22). Losses in the medium are assumed to be zero.
The Fourier-Bessel representations cf the fields given by Arbel and Felsen [1963] are closely re-
lated to (81) and (82) first given by Barsukov [1959]. The essential modifications to (81) and (82)
are to replace the variable X by koS where S is now a dimensionless variable and ky=w/c. By
using identities Jo(x) = 3 [H{P(x) + HP(x)] and HP(x) =— H{’(—x), the integration contour may be
changed from along the positive real axis to a straight line running from S=—o to +. Because
of a branch point singularity at S=0, the integration path is indented around this point by a small
semi-circle in the lower half plane of the complex S plane. Additional substitutions in (81) and (82)
are to replace the axial propagation constants u, ui, and us by ikoC, ikC1, and i£oC 2, respectively.
The subscripts 1 and 2 may be identified with the ordinary and the extraordinary waves in the clas-
sical magneto-ionic theory.

The resulting vector electric fields may be written in the form

e
E :El +E1
where the field components are given by
(Ep)h, 2= | | f S’ A H®(kSp) exp [—ikoCy, »|z|] dS, (100)
. € [ 5 Ho) . N
Eon,2=24 255 | 25 HuSp) [ ikoC.2l2]] S, (101
and
+o0 2 3
(Ez)l’ZZA Si—.-AA ?1 S H (kSp) exp [_ lk0C1 )|Z” dS (102)
where
A= pow’po/(167), (103)
and
€— L2
A=|€_€0| [S4+4 ( > (1-5%) ] . (104)

132



The functions C; and C. are proportional to u; and u» as noted. The latter may be obtained from
the roots of the quadratic equation in u® given by (84), which is equivalent to the Appleton-
Hartree equation. Explicitly,

Cl,g:IUi(UZ—W)l/Z]l/Zz[Ui<€£0—1) %]”2, (105)

where
szo—% s?, (106)
erio (1—S? [%ng—y] : (107)

Arbel and Felsen [1963] have devoted a great deal of attention to the proper definition of the
multivalued function C and the disposition of the integration path in relation to the singularities
of the integrands in (100), (101), and (102). In the first place, it is to be observed that C; and C»
are associated respectively with the + and — signs in (105), and that (U2 — W)"2 is defined to be posi-
tive when real. The definition of C; given above implies that C; has branch-point singularities at
U?=W (or at A=0), and at those values of S for which C;=0. Similarly, C. has branch-point
singularities at A=0, and at those values of S for which C,=0. However, a series expansion of
the total integrand about A=0 contains only even powers of A, which means that A=0 is a regular
point. Thus, no special care need be taken in the definition of C;, » at A=0 if the “ordinary’ and
“extraordinary” are combined and treated together. Also, it should be mentioned that the factor
(1—S?%""in the integrand of (102) does not give rise to a pole contribution since it is canceled by
other factors.

If C; or C. are real, the quantity exp (—ikoC\, »2) represents a propagating plane wave in the
positive z-direction away from the source. On physical grounds, it may be supposed that each
component plane wave, in the total spectrum, has a positive component in the z-direction. This
radiation condition permits the unique determination of C; 2 over the range of S for which the
propagation constants are real. As Arbel and Felsen [1963] show, the contributions to the power
flow, when the propagations are complex, are zero. The resulting “energy radiation condition”
is that, when Cy. s is real,

Ko\ _4_< g )2
(60) Vie=C: mrgn 1) =0 (108)

where Y; and Y, may be interpreted as admittances for ordinary and extraordinary waves traveling
in the positive z-direction.

It is evident from the above inequality that the sign of C;, . is identical with that of Az2—S2A.
This condition for real Cy,», when supplemented with the condition Im C; » < 0 for C;,» complex,
may be used to determine the analytic continuation of the function C;, »(S) around branch-point
singularities on the real axis of the S plane.

As indicated above, the propagating modes correspond to the situation where

G =Ux2—-W)2 (109)

is positive real. Thus, it is evident that ordinary and extraordinary modes propagate when U > 0.
On the other hand, if (U>*—W)> |U|, i.e., W <0, the ordinary mode propagates for US 0, while
the extraordinary mode does not propagate.

There is actually a very simple graphical procedure which utilizes the dispersion curves of
C(S) versus S. For example, the plane wave, characterized by the variation

exp [ —iko(Sp + Cz)],
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carries power in the direction perpendicular to the dispersion curve at the point S, C. The radia-
tion condition corresponding to choosing those values of C; and C, for which the outward normal
to the dispersion curve, has a positive component in the z-direction.

The integrals in (100), (101), and (102) may be evaluated asymptotically by the method of saddle
points. This has been demonstrated by Arbel and Felsen [1963] in an elegant manner.

It is convenient to introduce spherical coordinates (r, ) which are defined by p=r sin 6 and
z=rcos 6. Then, under the assumption that kor sin § > > 1, the asymptotic approximation

H{?(koSp) ~ (?/meT())w exp [ —ikoSr sin O+ inm/2+ im/4] (110)
is introduced. Thus, for most practical purposes, the integrals to contend with are of the form
= f;x L(S) exp [ — ikerM(S)]dS, (111)

where -
M(S)=C(S)|cos 6] + S sin 6, (112)

and kor is to be regarded as a large parameter.

The principal contributions to the integrand occur at the vicinity of the saddle points Si deter-
mined by

M'(SH=0, (113)
or

C'(S))=—|tan 6]. (114)
Propagating waves correspond to the saddle points where both C(S?) and S’ are real. If these quan-
tities are complex, the associated fields are highly attenuated and need not concern us further.
The technique to evaluate the integral asymptotically consists of deforming the integration
path to the steepest descent paths through each saddle point. The ends of these paths are con-
nected up in the valley regions of the S plane where —Im C(S) is a large positive quantity. Thus,
because of the heavy exponential damping, these portions of the path contribute a negligible
amount and may be ignored for the present analysis. In the vicinity of a real saddle point S;, the
factor exp [ —ikorC(S)] decays most rapidly along the steepest descent path which is inclined at
angles of +=45° with the real axis.
The asymptotic representation for the integral is then found to be of the form

B=Y B, (115)
where the contribution from an individual saddle point is

. . 2 1/28800 : i
BO~ L5 [kor|M"(S")|] RS e, e

where the argument —im/4 is used when M"(S?) >0, and +im/4 is used when M"(S?) < 0. It is
assumed that the integrals are of the form such that the saddle points have alternating signs along
the real axis of S.

To express the final results for the radiation fields, the unit vectors, p, <13, and z are introduced
along with the polarization vectors

1—(Si)2 .

= i = s
pt=pS' +2Ct and qi=pSi+z Ci

(117)
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Then, following Arbel and Felsen [1963], it is found that the asymptotic versions of (100), (101),
and (102) may be written

e ikorNi(0) —> A

pE,+zE, ~ 2iA 2 BYRH G ———k——(q X o), (118)
and
tkorNi(9)
<2 3 BRI = (119)

where N;(0) is the “ray refractive index” defined by
M(Si)= Ni(6). (120)

The radius of curvature R’ of the dispersion curve (i.e., C(S) versus S for real S) at the saddle point
St is obtained from

{1+[C'SHPF">

Ri= RS
|C"(Sh]

= {|C"(S})|cos® 9} 1. (121)

In (118) and (119) Bi=1 if M"(S") <0 and Bi=i if M"(S')> 0. Finally, the amplitude factors are
obtained from

) Si \ 2S¢
Fl:(sin 0) 0 (6 fq,) gesi0; (122)
and
i S: W2 CiSi (S)2—Q
¢ :i<sin 9) I—cE a %9 e
where
l:CZ( ) 6 S €() S )2
@) = Eo 2€ € J
= : (124)
(a‘ )

It is understood that (118) and (119) both hold individuaily for ordinary and extraordinary waves.
The summations extend over all contributing saddle points in each case. The exponential factors
involve the ray refractive inaex Ni(6) which is related to the polarization vector p;=pSt +2zC' by the
scalar identity N(@)=p - ry where_r_; is a unit vector parallel to the ray direction which points from
the source to the observer.

For the results given above, it is specifically assumed that €/, > 0. If €/e; < 0, then the rele-
vant field expressions are obtained by making the substitutions

@V2——i(—&)'? C—iC, and S—iS.

The characteristics of the radiation field in an anisotropic medium are critically dependent on
the shape of the dispersion curve (or refractive index surface). It is evident that the number of
contributing rays and their amplitude may be determined by a careful examination of the dispersion
curve. The presence of open branches on the dispersion curve indicates presence of shadows
where no rays may propagate. However, the field in the shadow region may be finite as a result of
diffraction [Brekhovskikh, 1960]. This aspect of the subject is outside the scope of the present
survey. Also, the presence of points of inflection in the dispersion curve (i.e., C"(S?) = 0) will lead
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to focusing effects which may be described by a modified saddle point procedure involving Airy
functions [Wait, 1962]. This topic is also outside the scope of this discussion. However, the
interested reader may find an elegant treatment of this particular problem in the paper by Arbel
and Felsen [1963].

7. Final Remarks

The present expository paper has been a self-contained treatment of the theory of radiation
from sources in cold magnetoplasma media.

In this review, no mention has been made of antenna impedance for anisotropic media. While
this would seem to be a natural topic for this discussion, it has been deferred until a later time.
One reason for this is the need to consider thermal effects and sheath phenomena, which are
important near the source. Consideration resulting from the finite temperature leads to contribu-
tions from the acoustic-type waves not usually considered part of magneto-ionic theory.

I am grateful to Dr. K. Furutsu for making a number of corrections in the manuscript. I also
thank Mrs. Eileen Brackett for help in preparing this material.
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