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The rank sum test for outliers advanced by W. J. Youden provides a method for detecting if the
measurement distribution of any one of a group of objects has a mean significantly different from

the rest.

a similar test on other parameters, such as the variance, with the same tables.

This paper discusses a more general application of the rank sum procedure which permits

Tables of the critical

values of the extreme rank sum and the corresponding significance levels for one-sided tests are given
in this paper to supplement similar tables for two-sided tests already published.

Introduction

W. J. Youden advanced in [1]' a nonparametric
rank sum procedure for detecting whether the dis-
tribution of measurements of any one of the rows of a
two-way table of measurements had a mean that was
noticeably different from the means of the other rows.
In Youden’s paper approximate 5 percent points for a
two-sided test were given. Because of the discrete
distribution of the rank sum statistic exact 5 percent
points ordinarily do not exist. This technique was
further investigated in [2], and there the tables were
extended to include approximate 3 percent and 1 per-
cent points along with the actual values of the
significance levels.

In all the writings and applications so far, this test
has been used to detect an object (or laboratory) whose
measurement distribution differs from the distribution
of the other objects in its mean or median. However,
the test, with the same tables, can often be used to
detect an object whose distribution is different with
respect to another parameter, for instance, the variance.
The purpose of this note is to point out and illustrate
the scope of possible applications of Youden’s rank
sum test, and to give a table of critical regions and
significance levels for one-sided tests.

1. The Ordinary and the General
Application

The ordinary application of Youden’s test as dis-
cussed in [1] and [2] is as follows: Suppose there are [
objects and Jjudges. Each judge independently ranks
the I objects according to some property. Thus, each
object receives a rank, an integer between 1 and I,
from each judge, and the J ranks for each object are
summed. Then if any object has a rank sum that is
extremely high (or low) it can be concluded that the
ranks were not assigned just by chance but that the
objects tends to rank higher (or lower) than the rest.

! Figures in brackets indicate the literature references at the end of this paper.
* University of Maryland, College Park, Md.; part time at the National Bureau of Standards.

In many cases the rankings are assigned on the basis
of measurements. That is, there is a measurement for
each object-judge combination, and, for a given judge,
the object with the highest measurement gets a rank of
1, the object with the next highest gets a rank of 2,
etc. (The ranks can be assigned in the reverse order
if that is more convenient.) Then if an object gets an
extreme rank sum it can be concluded that its measure-
ments tend to be high or low accordingly. This appli-
cation is actually a test on the means or medians of the
measurement distributions for the different objects.

The general application of this technique provides a
test on other parameters, and it can be described in the
following way. Suppose we have a two-way classifi-
cation (IX)J) with Kj; observations in cell (i, j). The
range of the subscripts i and jwill be 1,2,. . ., I, and
1, 2,. .., ] respectively throughout the paper. Let
the rows correspond to objects being judged and the
columns correspond to judges. Now fix attention on
the jth column. Suppose the K;; measurements for
row ¢ are each distributed with a probability density
function, fj(xi; 6;(i)), which depends on a row parameter
0; that has the value 6;(i) for the ith row. Note that
each column may have its own distribution, fj, and its
own set of row parameters 6(i).

We wish to test the hypothesis that all the row param-
eters for any given column are the same,

Hy: 0J(1)=01(2)= 0 :01(1), j:],,l
against the alternative that one of the rows has param-
eters consistently higher or lower than the rest.

_ To use the rank sum test there must be an estimate
0;(i) of the row parameter 6;(i) for each cell (i,j,). The
distribution of these estimates must be continuous and
must satisfy the following conditions.

_a) For each j, the joint distribution of 0(1), 6;(2) . ..
0i(I) under H, is symmetric with respect to the row
indexes.

b) The estimates in one column must be independ-
ent of the estimates in every other column, i.e., the
estimates are mutually independent columnwise.
This is the only between-column restriction.
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When the above requirements are satisfied, then the
rank sum test can be used for H, as follows Within
each column compute the estimates 6;(1), GJ (1)
of the row parameters and rank the rows accordmgly
Then sum the ranks for each row. An extreme (large
or small) value of the rank sum leads to rejection of H,.
The earlier papers, [1] and [2], treated the case K;;=1,
in which the single observation in each cell is an esti-
mate of the mean or median of the distribution in that
cell. In the general application of the test, instead of
ranking the rows (or objects) according to the measure-
ments, we rank them according to estimates computed
from the measurements. If (a) and (b) are fulfilled
then every permutation of the ranks is equally likely
and the original tables for the rank sum test apply.
If one of the rows has parameters consistently higher
(or lower) than the rest, then that row will tend to re-
ceive high (or low) ranks and hence an extreme rank
sum. Of course, the efficacy of the test depends on
the quality of the estimators, 6;(i).

The conditions (a) and (b) are sufficient for the tables
in [1, 2], and in this paper to apply. It is interesting
to note in what situation (a) is fulfilled.

For instance, (a) is implied by

(a’) Foreachj, 9}(1), s éj(D are mutually inde-
pendent and identically distributed.

Thus, consider the common situation where (1) Kj; = Kj,
that is, there is the same number of measurements in
each cell in the same column, (2) the measurements are
all independent between cells, and (3) 6,(i) is computed
only from the measurements in cell (i,j)) and is com-
puted in the same way for every cell.- Then (a’) holds
and the test can be used. It is not necessary that
there be the same number of measurements per cell
from column to column. For example, suppose the
test is on medians and 6;(i) is the sample median for
each cell. Then it is permissible to have, say, three
measurements per cell in the first column, one per cell
in the second column, four per cell in the third, etc.

There are other situations where the 6;(i) are not
computed from the measurements in cell (i, j) only.
For example, suppose K;;=1 and 6j(i) is the absolute
deviation of the measurement in (i, j) from the column
mean. Then (a’) does not hold because the 6(i)’s are
not independent; however, (a) may still hold and then
the test can be used. In this example, if the measure-
ments in the cells are identically and independently
distributed under H,, then (a) is fulfilled because the
joint distribution of the (i) for each j, although not
independent, is still symmetric with respect to the row
indices.

Example 1, Test on Means: Consider the usual test
on the means. If Kj; =1, and x;; is the measurement in
cell (i, j), then (i) = x;; is the estimate of the ith row
mean for columnj. If Kj=K; > 1, then the cell aver-
age or the cell median would be used for 6().

Example 2, Test on Variance: Suppose the measure-
ments have the same distribution, row to row, except
possibly for the variances o §. We wish to test

2 ~ .
Hy:of= 0'»1 .=oy, forj=1,...,J

Here we need Kij=K; > 2, then we can take 0)(i)=s%,
the sample within- cell variance. In this case the
estimates are independent, hence (a’) holds, and the
rank sum test can be applied. A one-sided test might
be appropriate here.

An alternative test for equality of variances could be
based on the within-cell sample ranges, or any other
dispersion measure.

Example 3, Test on Accuracy: Suppose Kij=1 and
we wish to discover whether any row is substantially
less accurate than the others. By this is meant that
its means differ from the other row means, or it has
larger variances, or any combination of these such that
its measurements tend to differ from the measure-
ments of the other rows.?

The measurements x;; are assumed to have two para-
meter distributions with means w;; and variances o 3
We test

Ho: prj= poj = S ]
=l o ool
01j= 02 = - =01,
against the alternative described above. The rank
sum test can be used by letting

0; ()= | xy— x|

where x ;= 7. Ex,,, and then ranking the rows accord-
i=1
ingly. If some row’s measurements deviate con-
sistently from the column averages, it will receive
an extreme rank sum. Notice that the statistics 6;(i)
satisfy condition (a), hence the regular rank sum
tables apply. A one-sided test is appropriate,_here.
It is interesting to see just what the statistics ;i) do
estimate. First, it clearly does not matter whether we
rank by using 0,(1) or 92 (z) so we look at the latter. It
turns out that

E[636)] = E[(xj— x)*]
1 2
== {(1 Sizal et [E(w - /U«i'j)]
+ EO';Z;J}

where 3 means the sum over i’ # i.
5
Consider the special case where all but one of the
rows are the same. Let

M2j = M3j = TG
2 — 2. — 2 — 2
0'2]—‘(7'3]— .O',j—(rj
and
M=t

P, = 5L (B,
oi=07+B;

2This application of Youden’s test was first suggested by Robert B. Dean of the Borden
Chemical Co. In a recent paper [3] T. W. Lashof proposed a “center outward” ranking
procedure of a similar nature. He suggested that, say, for n odd, the median measure-
ment be awarded a “rank” of 1, the next larger and the next smaller both a “rank” of 2
and so on. No tables are available for Lashof’s technique.
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then Thus

o= (I e (22 (24 B2 — Elaz = L= 2 (42
E[(xu x.)%] I 0'j+ I (aj +Bj) E[ej(l)] El6 i(2)]= Vi (aj+.8j)
and for i # 1,
Hence, if either the B; > 0 and they are large, or if
the ;s are large, then 6;(1) will tend to be larger
than 6;(2), . . . , 6;(I) and the first row will receive an
extreme rank sum.

I—1 1
E(xij—x,)?= <_I—) oi+ Iz (a5 + By)-

TABLE 1.—Tables for a one-sided rank sum test at nominal significance levels of 1, 3, and 5 percent
a=Prmyn<J +R) =Plrmx =1J — R)

No. of _ _ No. of _ -
objects 1 1=3 I=4 objects I 1=9 =10
0.01 0.03 0.05 0.01 0.03 0.05 0.01 0.03 0.05 0.01 0.03 0.05
No. of No. of
judges judges
J R a R a R a R a R a R « J R a R a R a R « R a R a
3 0 0.062 310 00123| 0 0012 1| 0049 | 0| 0.0100 | 1| 0.040| 2* 0.100
4 0 |0.037 [0 [0037| 0 0.0156| 0| 0.016 | 1 078 41 L0069 | 2 021 3 048 | 2 0150 | 3 .035| 4* 070
51 0] 0.0123 | 0 012 | 1 0741 0 0039 | 1 .023 | 2* 082 SRS .0085 | 5 .038| 6% .070| 4 0126 | 5 025 6 046
6| 0 L0041 1 029 [ 2% 115 1 0068 | 2 .027 | 3* 082 6| 5 0078 | 7 029 8 051 | 6 0092 | 8 030 9 .050
711 0110 | 1 011 | 2 049 | 2 0088 | 3 029 | 4* 079 718 0121 | 10 036 | 11 059 | 9 0114 | 11 .032 | 12 .050
8| 1 0041 | 2 021 | 3 072 3 0101 | 4 030 | 5* .074 8110 .0091 | 12 026 | 13 042 | 11 L0076 | 14 032 15 .048
9| 2 L0084 | 3 032 | 4* | .095| 4 0108 [ 5 029 | 6 069 913 0114 | 15 029 | 16 045 | 14 .0081 | 17 .030 | 18 .044.
10| 3 0140 | 4 .045 | 5* | .119| 5 0110 6 028 | 7 063 10 |15 .0082 | 18 0311 19 047 | 17 .0082 | 20 .028 | 22 .058
11| 3 .0060 | 4 021 | 5 059 6 0110 7 026 | 8 058 11 |18 .0094 | 21 033 | 22 047 | 20 .0081 | 23 .026 | 25 051
12| 4 0094 | 5 029 | 6% | 074 7 0107 | 8 025 | 9 .053 12 | 21 .0103 | 24 033 25 047 | 24 0114 | 27 .033 | 28 045
13| 5 0136 | 6 038 | 7* | 090 | 8 0103 9 023 |10 .048 13 |24 0109 | 27 .033| 28 .046 | 27 L0105 | 30 .029 | 32 054
14| 5 0062 | 6 018 | 7 047 | 9 .0098 | 10 021 |11 043 14 | 27 0113 | 30 .033 | 31 045 | 30 .0096 | 33 026 | 35 .047
15| 6 .0088 | 7 024 | 8 057 | 10 .0092 | 12 039 [13* 072 15 | 30 0115 | 33 032 34 044 | 33 .0087 | 37 031 | 39 054
No. of _ . No. of _ -
objects 1 1=5 1=6 objects [ I=11 =12
0.01 0.03 0.05 0.01 0.03 0.05 0.01 0.03 0.05 0.01 0.03 0.05
No. of No. of
judges judges
J R « R @ R @ R « R @ R @ J R @ R @ R a R ay R ay R ay
3 0 | 0.040 | 1* |0.160 0 0.028 | 1*| 0.111 310 |0.0083 | 1 0.033]| 2% 0.082| 0| 0.007 1] 0.028 | 2 0.069
41 0| 00080 | 1 040 | 2% | 120 O | 0.0046 | 1 023 | 2 069 4| 2 0113 | 3 026 | 4 052 | 2 .009 3 020 | 4 040
S| 1 0096 | 2 034 | 3* | 09| 1 0046 | 3 043 | 4* 097 5| 4 L0086 | 6 032 7 054 | 5 .012 6 022 | 8 062
6| 2 0090 | 3 027 | 4 067 | 3 0108 | 4 027 | 5 059 67 0107 | 9 031 | 10 049 | 8 012 |10 .032 | 11 049
71 3 0077 | 4 021 | 5 050 | 4 0071 | 6 037N 072 7 (10 0110 |12 028 | 13 043 |11 011 13 .026 |15 057
8| 4 0063 | 6 038 | 7* | .078| 6 0107 | 7 023 | 8 045 8 (13 .0104 | 15 025 | 17 054 |14 009 |17 .030 | 18 043
91 6 0126 | 7 028 | 8 057 7 0068 | 9 .028 |10 051 9 |16 .0094 | 19 .031 | 20 044 |18 011 (21 .032 |22 045
10| 7 009 | 8 021 | 9 042 9 L0089 | 11 .032 |12 056 10 |19 .0083 |22 026 | 24 050 |21 008 |25 .034 | 26 045
11| 8 0073 |10 031 |11 058 | 11 L0109 |13 036 |14 060 11 (23 .0105 |26 .030 | 28 055 |25 009 |29 .033 | 30 045
12 |10 0117 |11 023 |12 043 | 13 0127 | 14 022 |15 038 12 |26 .0088 | 30 033 | 31 044 |29 010 |33 .033 | 35 057
13 | 11 .0088 (13 032 |14 056 | 14 .0080 | 16 024 |17 040 13 |30 .0102 | 33 026 | 35 047 |33 010 |37 .032 |39 054
14 | 13 0128 (14 024 |15 042 | 16 L0091 | 18 026 |19 042 14 | 34 .0115 | 37 .028 | 39 .048 | 37 010 |41 .030 |43 051
15 | 14 L0096 (16 031 |17 053 | 18 L0100 | 20 027 |21 043 15 |37 .0093 |41 030 |43 050 |41 010 |45 .029 |47 047
No. of _ o No. of .
objects 1 =y = objects 1 =18 =14
0.01 0.03 0.05 0.01 0.03 0.05 0.01 0.03 0.05 0.01 0.03 0.05
No. of No. of
judges judges
] R @ R a R a R @ R a R @ J R ay R ay R ay R ay R ay R ay
3 0 |0.020 | 1*|0.082| 0 | 0.0156 | 0 | 0.016 | 1 0.062 31 0| 0.006 10023 2| 0.059 | 0| 0.005 1] 0020 | 2 0.051
411 [00146 | 2 044 | 3% | .102| 1 0098 | 2 029 | 3 068 41 2 007 4 032 5 057 | 3 013 4 025 | 5 046
S| 2 .0087 | 3 023 | 4 0521 3 0137 | 4 031 | 5 061 5|5 .009 7 028 | 8 045 | 6 012 8 033 | 9 .052
6| 4 0125 | 5 028 | 6 055 | 4 0064 | 6 028 | 7 052 6| 8 008 |11 .033 | 12 050 | 9 009 |12 .034 (13 050
715 0067 | 7 029 | 8 054 7 0131 | 8 024 | 9 043 7112 010 |15 .035 | 16 050 |13 010 |16 032 (17 046
8| 7 0078 | 9 029 |10 0521 9 0116 | 11 035 (12 058 8 |16 011 |19 .035 | 20 .048 |17 .010 |20 .029 (22 054
919 .0083 |11 028 |12 048 | 11 .0099 {13 .029 |14 046 9119 .008 |23 .033 | 24 .045 |21 009 |25 .034 |26 046
10 | 11 .0085 |13 026 |14 044 113 .0083 | 16 036 |17 056 10 | 23 .008 |27 .031 |29 .055 |25 .008 |29 .029 |31 .050
11|13 .0084 |15 024 |16 .040 | 16 0114 {18 029 |19 044 11 |28 011 |31 .028 | 33 .049 |30 010 |34 .032 |36 .053
12 [ 15 .0080 |18 036 |19 .055 | 18 0092 | 21 034 |22 050 12 | 32 .011 |36 .033 | 38 055 |34 009 |39 .033 |41 054
13 [ 17 0076 |20 032 |21 049 | 21 0115 | 23 027 125 056 13 | 36 .010 |40 029 | 42 048 |39 .010 |43 .027 |46 055
14 | 20 0115 (22 028 |23 043 123 .0092 | 26 030 |27 044 14 | 40 .009 |45 .033 | 47 052 |44 011 |48 .028 |51 054
15 | 22 0105 |24 025 |26 1055 | 26 .0110 | 29 034 |30 .048 15 | 45 .010 |49 029 | 51 045 (48 009 |53 .028 |55 044

See footnote at end of table.
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TABLE 1.—Tables for a one-sided rank sum test at nominal
significance levels of 1, 3, and 5 percent —Continued
a=Plpn <]+ R =Phnx =1] —R)

No. of _
objects 1=15
0.01 0.03 0.05
No. of
judges
J R ay R ay R a

0 0.004| 1
3 .010| 5 037 6 .062
6 009 8 025 10 .059

0.018| 2 0.044.

14 .010| 17 .030 | 19 057
18 .009| 22 034 | 23 .045
23 .011| 26 .027| 28 .047
10| 27 .009| 31 .028 | 33 .046

3
4
5
6|10 .010| 12 024 | 14 051
i
8
9

11| 32 .009| 36 027 | 38 045
12 37 .010| 41 027 44 .053
13| 42 .010| 47 032 49 .050
14| 47 .010| 52 030 | 54 .046
15| 52 .009| 57 .028 | 59 .043

*In order to avoid duplication in the tables these values of R do not give a’s as close as
possible to the nominal significance levels listed. They are already given in the column
immediately adjacent, hence the tabulated R gives another still higher (or lower) signifi-
cance level.

2. Tables for a One-Sided Test

In both the ordinary application of the rank sum test
for outliers and in some of the examples given in sec. 1,
one-sided tests may be appropriate. Table 1 gives
approximate 0.01, 0.03, and 0.05 one-sided probability
points for the extreme rank sum. It is tabulated in
much the same way as the table of two-sided proba-
bility points given in [2].

The table can be described as follows: Let I be the
number of objects ranked and J be the number of
judges. Then the smallest that a rank sum could be
is J and the largest it could be is IJ. Let r; be the
rank sum of the ith object, and let

Let R be an integer and « be a probability such that
azp(rming.l_'_R):P(rmax?I-]_R)

under the null hypothesis that all rankings are equally
likely.

Table 1 gives, for 3 <1<15,3 <] <15, the values
of R yielding significance levels, a, as close as possible
to the nominal significance levels of 0.01, 0.03, 0.05.
In small print next to each R is given the corresponding
value of a.

For example, suppose I=8 and J=6. Then all the
rank sums must be between 6 and 48. From table 1
we see that R=4 yields «=0.0064. Thus, a one-

sided test for large rank sums at a significance level

0.0064 can be made by rejecting the hypothesis when
Tmax = 48 —4=44. That is, if any rank sum is 44 or
more, it is rejected as too large. Similarly, the
corresponding test for small rank sums would be to
reject whenever rp;, < 6+4=10.

From the same line of the table we see that a critical
region of ry., = 42 has a significance level of «=0.028,
and a critical region of r,, =41 has «=0.052. Be-
cause of the discrete nature of the rank sum statistic,
a=0.0064, 0.028, and 0.052 are the closest significance
levels possible to 0.01, 0.03, and 0.05, respectively.

Table 1 can be thought of as an abbreviated table of
the distribution function of the largest (or smallest)
rank sum. In several places the values of R yielding
o’s closest to 0.03 and to 0.05 are the same. To avoid
duplication and to offer a wider choice of significance
levels in the table, the value of R belonging to both 0.03
and 0.05 is given in the 0.03 column and the next higher
value of R is given in the 0.05 column even though it
doesn’t “belong” there. The same procedure was
followed whenever possible and when there was a
duplication in the 0.01 and the 0.03 column. These
places in the table are marked with an “*”.

3. Computation of the Table

The significance level « for any given R cannot be
computed easily, but bounds, ay and «a;, such that
ar, < a < ay can be. Using eqs (2), (3), and (6) of [2]
ay and «;, were computed for I <11. For the 0.01
(0.03) level, ay and «; always agree to four (three)
decimal places, hence the values in the table for «
are exact to the four (three) decimal places given.

For the 0.05 level ay and «; did not always agree
when rounded to three places although

oy — O =4 00005

all the time. The rounded value for «; was chosen
since qy, is a better approximation to «.

For I =12, «;, was not computed, hence ay, not «,
is given in the table. From the computations per-
formed for [2] for large I it can safely be assumed that
ap agrees with « to 3 decimal places in the 0.01 and
0.03 column and that the ay’s given in the 0.05 column
are in error by at most 0:002. Hence ay can be used
as a good approximation to a.
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