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Determinations Based on Duplication of Readings

Janace A. Speckman

(February 25, 1964)

This paper is concerned with a statistical estimation procedure in which measurements of a quan-
tity are taken until two identical readings are obtained; this duplicated value is then taken as the
estimate of the magnitude of the quantity concerned. The properties of this estimation procedure
have been investigated numerically, under the assumptions that the individual observations are rounded
values of measurements which have a normal distribution, and this estimator is compared with the

arithmetic mean of two observations.

rounded distribution is almost always superior to the estimator described above.

It is shown that an arithmetic mean of two observations from the

The exception is

where the rounding interval is so wide and the rounding lattice is so advantageously placed that the
only real reason for taking repeat measurements would be as a protection against gross errors.

The 1961 Book of ASTM Standards [3, p. 1131] gives
tentative methods for calibrating upright tanks.
These include a proposed method for obtaining cir-
cumferential measurements on certain types of tanks
which consists, briefly, of wrapping the measuring
tape around the tank (at some specified position) with
tension applied to the tape, taking a reading to the
nearest 0.005 foot, releasing then reapplying the ten-
sion, taking another reading, etc., until two identical
readings are obtained. The value of the equal read-
ings is then recorded as the circumferential
measurement.

The method of estimation used above is familiar to
all of us, for it is the method used whenever we count
a (finite) number of things. We count them twice and
if the two counts agree then we go no further; if they
do not agree, then the items are counted again, etc.,
until two answers agree. The difference between the
situations is that in the case of the circumferential
measurements we can postulate a continuous distribu-
tion underlying the measurement process, so that a
recorded observation is a rounded value of a continu-
ous variable, whereas in the case of counting, the
distribution of counts is discrete, with incorrect counts
corresponding to actual mistakes.

We shall consider here the continuous case; more
specifically, we shall look into the statistical proper-
ties of such an estimation procedure when the under-
lying distribution is normal. It will be shown that an
arithmetic mean of two observations from the rounded
distribution is almost always superior to the estimator
described above for the range of cases considered.
The exception occurs only when the rounding interval
is so wide and the rounding lattice is so advantageously
placed that taking repeat measurements serves simply
as a protection against gross errors.

Since the placement of the rounding lattice relative
to the true value is usually unknown, the occurrence of
the exceptional case, when it occurs, is not known. If
the rounding interval is wide and the rounding lattice

happens to be disadvantageously placed, estimation
by duplication is very much inferior to the arithmetic
mean of two observations.

Effect of Grouping

The distribution of a single measurement depends
on the width of the rounding interval, and also on the
placement of the rounding lattice with respect to the
true value. We shall assume that measurements are
obtained as rounded values of the (continuous) random
variable X, which is normally distributed about the
true value w of the property under consideration, with
standard deviation o. The variable X is rounded to
the nearest value Xz in a rounding lattice where the
interval, centered on Xg, is of length 2Qo and the
rounding lattice is placed so that the lower boundary
of the interval containing w is at u + Do (—20Q<D<0).
For simplicity, and with no loss of generahty, we let
u=0 and o=1. Then the distribution of Xy is
given by

Prob {Xg=xgri} =Prob {xgi—Q <X < xz; + Q},

TRitQ
= ! e‘zz/zdz,
rdi-Q Vv 277'
1

where xgi=D+(2i+1)Q,i=0,=*1,+2, . The dis-
tribution of Xz will be completely specified when Q and
D are given. We note that the distribution of Xg is
discrete, that the mean of Xy is not necessarily zero
(it is dependent on the position of the rounding lattice),
and that the variance of Xy is always greater than the
variance of X. (See Eisenhart, Hastay, and Wallis
[1],* ch. 4). Only a finite number of values of X will
have probability realistically different from zero
(although, theoretically, there would be an infinite
number of them). Strictly speaking, the analysis in
this paper treats the normal distribution truncated to

! Figures in brackets indicate the literature references at the end of this paper.

49



8+ 8-

6+ .6

4 4

2_‘ “] | |

] T T T T T o T T
-4 -2 0 2 4 _a 0 4
A:2Q:3.0,D:0 D:2Q= IODO

8- 8-

6 6

4 4+

L]

0 T : y T . (o} T || T L
-4 -2 0 2 4 -4 -2 0 2 4
B:2Q:3.0,D:-.5Q E:2Q:=10,D=-.5Q

84 84

6 6

44 4

2 .2+ I |

0-——~1— T —— o T 1 ! } T
-4 -2 0 2 4 -4 -2 o 2 4

C:2Q=3.0,D0=-Q F:2Q:1.0,0=-Q

FIGURE 1. Distributions of Xg for selected values of 2Q and D.

the interval (u—>50, w+50). In fact, the numerical
results are believed to be correct for the general case.

In studying the properties of this method of estima-
tion by duplication, seven interval lengths were con-
sidered: 2Q =30, 20, 1.50, o, 0.750, 0.50, and 0.250;
and 5 positions of the rounding lattice: D=0, — 0.25Q,
—0.5Q, —0.75Q, and —Q. This range of D is suffi-
cient for this study since the distributions of Xg for
—2Q < D <—Q are mirror images of the distributions
for —Q<D<0. Figure 1 illustrates the nature of
the distributions from which observations will be taken.
Shown are the ‘“best” (i.e., most advantageous) case,
where D=—0, the “worst” case, where D=0, and an
intermediate case, D=—0.5Q, for 2Q=3.0 and
20 =1.0. Table 1 shows the mean and variance of
the distribution of Xz and the number, m, of rounding
intervals (i.e., the number of values of Xz) necessary to
cover the range — 50 to 50 of the normal curve for all
cases considered here.

Distribution of T

Having specified the distribution of a single measure-
ment, we may now turn to the estimator under con-
sideration which will be denoted by 7. T is the
common value of the first two identical measurements
in a sequence of measurements. Obviously the sample
size N required to obtain identical measurements, as
well as their common value T, is a random variable. N
can take on the values 2, 3, For the purpose of
computation, the number of intervals has been limited

to m, so that the range of N becomes 2,3,. . ., m+1.
Let
ZpitQ
= Prob {XR xm} &= f e~ 12dy.
v TRi—

Then, the joint probability that T=xg;=t; and N=nis
given by
P {ti, n} =(n—1)!p,~22 S Epjpk s o G

.pi, (1)

TABLE 1.—Characteristics of the distribution of Xg: mean, variance,
and number of intervals necessary to cover the range — 50 to 5o
of the normal curve

D
2Q 0 —0.25Q —0.5Q —0.75Q =()
0* 0.0754 0.1065 0.0753 0
3.00 2.2986 2.1318 1.7380 1.3569 1.2027
4 4 4 5 5
0 0.0032 0.0046 0.0032 0
2.00 1.3650 1.3557 1.3333 1.3109 1.3016
6 6 6 6 5
0 0.0001 0.0001 0.0001 0
1.50 1.1882 1.1880 1.1875 1.1870 1.1868
8 8 8 7 7
0 0.0000 0.0000 0.0000 0
1.00 1.0833 1.0833 1.0833 1.0833 1.0833
10 11 11 11 11
0 0.0000 0.0000 0.0000 0
0.75 1.0469 1.0469 1.0469 1.0469 1.0469
14 14 14 15 15
0 0.0000 0.0000 0.0000 0
0.50 1.0208 1.0208 1.0208 1.0208 1.0208
20 21 21 21 2k
0 0.0000 0.0000 0.0000 0
0.25 1.0052 1.0052 1.0052 1.0052 1.0052
40 41 11 41 11
*In each cell of this table, the upper entry is the mean, the middle entry is the variance,
and the lower entry is the number of intervals; and “0” means zero exactly, while 0.0000
indicates that the value is zero to at least 4 decimal places.

where the summation is over all (n— 2)-fold products

suchthat j<k<...<landj, k,...,l#1i. For
n=2 and 3 (1) simplifies to
P{tisz}:piz
and
P {t;,3} =2 pi(1—p)) (1a)

By summing the quantities (1) and (la) over all
values of NV we obtain the distribution of 7"independent
of the value of NV, from which we may deduce some of
the properties of this measurement procedure.
Figures 2A and 3A show the distribution of T for
selected values of 2Q and D. The means and variances

of T,

m m+1

E(Dzz 2 tiP {tia n}
and 1=1 n=2
Var (=3 S542P {1, n} ~[EDP,
1=1 n=2

for all combinations of Q and D considered are given in
table 2. (These and other tabled values are believed
to be correct to the accuracy given, taking into account
errors due to truncation of the normal distribution and
due to rounding during calculation.) Note that the
E(T), which are biases of 7" as an estimator of w are
considerably larger than the E(Xg) (c.f., table 1) for
large intervals except in the symmetric cases
(D=0 and — Q) where E(T) and E(Xg) are identically
zero.

Expected values of T conditional on N=n, E(T|n),
and variances of T conditional on the value of N,
Var (T|n), were also calculated, but they are not re-
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FIGURE 2. Distributions of T and the corresponding distributions of

)?;ngbr 2Q = 3.0 and selected values of D.

ported here. It turned out that, for the non-symmetric
positions of the rounding lattice, the conditional biases,
E(T|n), are generally larger than the corresponding
expected values of Xp and depend not only on the
size and placement of the interval but also on the
sample size, n. But more disconcerting is the fact
that Var (T|n) increases rather than decreases as n
increases. Thus one would be better off with an
estimate obtained with N=2 than with a larger N.
But there is no control over the sample size since
N, too, is a random variable. It can be shown that
for the maximum value of N, N=m+1, the (condi-
tional) distribution of 7 is identically the distribution
of Xg. Thus an estimate based on the maximum
sample size is no better than a single observation from
the rounded distribution. While Prob{N=m+1}
<<0.0005, this still is not a happy situation.

TABLE 2. Values of the mean and variance of the (unconditional)

distribution of T for selected values of 2Q and D

D
20 0 —0.250 | —0.50 | —0.75Q —Q

30 0* 0.259 0.351 0.238 0
2.250 1.850 1.049 0.453 0.258

20 0 0.032 0.046 0.032 0
1.038 0.982 0.848 0.717 0.664

15 0 —0.002 | —0.002 | —0.002 0
0.743 0.741 0.736 0.732 0.730

1.0 0 0.000 0.000 0.000 0
0.652 0.652 0.652 0.652 0.652

0.75 0 —0.000 | —0.000 | —0.000 0
0.618 0.618 0.618 0.618 0.618

05 0 0.000 0.000 0.000 0
0.589 0.589 0.589 0.589 0.589

0.25 0 0.000 0.000 0.000 0
0.560 0.560 0.560 0.560 0.560

*In each cell of this table, the upper entry is the mean and the lower entry is the variance;
and 0" means zero exactly, while 0.000 indicates that the value is zero to at least 3 decimal
places.
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FIGURE 3. Distributions of T and the corresponding distributions of

Xns for 20 = 1.0 and selected values of D.

By summing the quantities (1) and (la) over all
values of i we obtain the distribution of N. The
probabilities,

Prob {N:n}ZiP {tiyn},

1=1

and the means and variances of /V,

E(N) =mi]n Prob {N=n}

n=2

and

Var (V) =,§1n2 Prob {N=n}—[E(N)]?,
n=2

are given in table 3 for the various distributions of Xp.
Probabilities less than 0.0005 are not reported. We
see that, for the range of intervals considered here, one
would ordinarily expect to take from 3 to 6 observations
to obtain an estimate by this procedure. Only when
20 =3.0 and the rounding lattice is advantageously
placed would one expect to obtain,an estimate at
N=2 —but in these cases the only real reason for
taking repeat observations would be as a protection
against gross errors.

Comparison of T With X,

Since the arithmetic mean is the best estimator of
the mean of a normal distribution, it is reasonable to
compare T with this fixed sample size estimator. The
arithmetic mean of two observations from the distribu-
tion of Xg, Xgs, is chosen for comparison with 7T
because, as will be seen below it is almost always a
better estimator of w than is 7 for the range of Q and D
considered here.
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TABLE 3. Falues of Prob {N=n}, and of the mean and variance of Note that the mean of Xg» is the same as the mean of

the distribution of N, for selected values of 2Q and D Xr and that Var (XRZ) - Var_(XR)/Q. Figures 2B and 3B
show the distributions of Xge for 20 =3.0 and 1.0 and
D=0,—0.5Q, and —Q. We see that the spacing

D 2 -
N 0 |-0.250| —050 [—0.750| —0 between possible values of the estimates has decreased
to half of the width of the original rounding interval so
20=3.0 that if the closest value is not obtained, the size of the
miss need not be as large as for 7' and the probability of
0497| 0537| 0631| 0722 0760 a large miss is smaller.
2l 4 &2l &l 3 For comparing T with Xg», relative efficiency will
2507 | 2470( 2382 2.298| 2.264 be used:

0.258 0.262 0.262 0.249 0.241

_ Var (Xg)/2+ [E(XRr)]?

20=2.0 Efficiency of T relative to X Var (1) F [E(T)]2
0.457 0.465 0.486 0.507 0.516 ) )
R (which is usually expressed as a percentage). The
003 003| 002|001 001 relative efficiencies are given in table 4. We see
reed s - W ord Wy that only in two instances does T show superior
behavior over Xz» — where 20=3.0, D=—0.75Q, and
20=15 —(Q —as indicated by relative efficiencies of 134.3
percent and 232.9 percent respectively. The explana-
il ] B B B tion for these high efficiencies lies in the fact that,
q53| 57| 165|  174| 77 in such cases, if an estimate is obtained at N=2 —
ey I e It B o B which, by reference to table 3, happens more than 70
0.588 | 0.590| 0.594| 059 | 0.600 percent of the time — that estimate is almost sure to be
0 the value in the interval containing w=0. This
2Q0=1.0

leads to a very small variance for the distribution of
T conditional on N=2 which offsets the larger vari-

0.271 0.271 0.271 0.271

13|  a2| 12| 372 ances for N> 2. Actually, this effect is also working
72 & A & at the same positions of the rounding lattice for 20=2.0
01| o014| 015|015 and 2Q =1.5 but not to the same extent. In all these
.001 .001 .001 .001 oy N .

3.206| 3206 3.206 3.206 cases, the conditional variance of T for N=2 is

e i e smaller than the variance of an arithmetic mean of

2 observations, so that it is possible to obtain better

20=0.75 . . . L.
results using estimation by duplication, although
2wl oowll aoml oo these circumstances are limited and not within the
Lo T R control of the observer. For 2Q <1.0, T is never
27| 1| 7| superior to the mean of 2 observations.
.050 .050 .050 050
olo| 010 o] 010 . . . :
001 001 001 001 TABLE 4. Eﬁiczeng‘y of T relatwe»to the arithmetic mean of two
3.551| 3.551| 3.551| 3.551 observations for selected values of 2Q and D
1380| 1389 1389 1.389
20-05 D
20 0 | 0250 | —050|—-0750 | -0
0.140| 040 0.140| 0140 0.140 % % % % %
e I | R+~ 30 | 511 | 559 | 750 | 1343 | 2329
'193 '193 '193 ‘193 ']93 2.0 65.8 69.0 78.4 91.3 98.1
'114 '114 '114 ’114 '114 1.5 80.0 80.2 80.6 81.1 81.3
‘050 '050 '050 '050 '050 1.0 83.1 83.1 83.1 83.1 83.1
.016 4016 .016 ‘016 .016 0.75 84.7 84.7 84.7 84.7 84.7
e INE | 1 5 | 867 | 8.7 | 8.7 | 867 | 86.7
< d 4 4 < .25 89.8 89.8 89.8 89.8 89.8
01| 001 001| .001| 001

4145| 4145 4145 4145 4145
2.248| 2.248| 2.248| 2.248| 2.248

Comparison of T and Xz, When the True

20=0.25 .

Value Is Considered To Be a Random
o o ) o e Variable
165 165 .165 165 .165
172 172 172 b 172 g
el Rl &l gl s We have seen what results can be expected using
Rl T S A estimation by duplication on a single object when the
052| 052| 052|052 052 true value of the quantity being estimated is at zero
.028 .028 .028 .028 .028 0 : 2 Q QD
For e 1 G 1 and the rounding lattice is at certain fixed positions
s SR B relative to zero. If we consider the rounding lattice to
001 oo1| 001 001 001 be placed at random — which is equivalent to having the
5.511 5.511 Sl 5.511 G Q C =
Tl Bl Pl SEml R rounding lattice centered on zero and assuming that

the true values of the quantities are uniformly dis-
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tributed between —Q and Q [1, ch 4]—it is apparent
that at least for the interval sizes considered here, one
would be better off using the mean of two observations
as an estimate of the true value rather than the repeated
value; for even in the case 20 =3.0 one would ex-
pect an efficiency of T relative to Xz» greater than 100
percent only about one-third of the time.

Values for quantities similar to those given in tables 1
through 4 can be calculated under the new assump-
tions. We note first that 7" is unbiased under these
assumptions, due to symmetry, and that Xz, is also
unbiased for the same reason. Youden, Connor, and
Severo [2] have calculated the probability that N=2
for intervals of length 2Q= 3.0, 2.0, and 1.0. These
probabilities are 0.6296, 0.4860, and 0.2709, respec-
tively. Since estimation by duplication yields results
superior to the taking of an arithmetic mean only when
N=2, as indicated by the conditional variance being
smaller than the variance of the mean of two observa-
tions, we may use these probabilities to obtain an
estimate of the probability of obtaining better results
using estimation by duplication. The distribution of
T conditional on N=2 for 2Q = 3.0 and 2.0 has variance
smaller than Var(Xz)/2 for almost all values of D
between —0.5Q and — Q. Thus if 2Q = 3.0, the proba-
bility of obtaining better results with 7"is approximately
(0.6296) (0.5)=0.3148; and if 20 =2.0, the probability
is approximately (0.4860) (0.5)=0.2430. Since the
behavior of 7" is never better than Xz, for 20 =1.0, the
probability of obtaining better results with 7'is zero.

While the other quantities, such as the mean and
variance of the marginal distribution of 7, may be of
interest, they are difficult to obtain under the new as-
sumptions to any accuracy and would only point more
to the fact that estimation by duplication is not a good
estimation procedure to use when the underlying dis-

tribution is normal. Rough estimates of some of the
quantities may be obtained by averaging the appropri-
ate values in the tables given.

From the preceding discussion it follows that when
the true value of the quantity to be measured is con-
sidered to be uniformly distributed in an interval of
length 2Qo and measurements of that quantity are
normally distributed about its true value with standard
deviation o, then for 2Q < 3.0, the probability is at
most 0.3148 that estimation by duplication is better
than the arithmetic mean of two observations. For
2(Q < 1.0 better results can always be obtained with
the arithmetic mean of only two observations.

In conclusion it appears that the practice of taking
readings until two identical readings are obtained can-
not be justified since the average of the first two read-
ings almost always yields a better estimate of the
measured quantity.

The author thanks Churchill Eisenhart for suggesting
this investigation and for his guidance, and Joseph M.
Cameron and Joan R. Rosenblatt for their helpful
suggestions for writing this paper.
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