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This paper is concerned with a stati sti cal estimation procedure in which measureme nts of a quan· 
tity are ta~en until two ide ntical readings are obtained; thi s duplicated value is then take n as the 
estimate of the magnitude of the quantity concerned. The properties of this estimation procedure 
have been investigated numerically , under the assumptions that the individual observations are rounded 
values of measure ments whic h have a normal distribution, and this estimator is compared with the 
arithmetic mean of two observations. It is shown that an arithmetic mean of two observations from the 
rounded distribution is almost always superior to the es timator described above. The exception is 
where the rounding interval is so wide a nd the round ing lattice is so advantageously placed that the 
only real reason for taking repeat measure me nts would be as a protection against gross errors. 

The 1961 Book of ASTM Standards [3, p. 1131] gives 
tentative methods for calibrating upright ta nks. 
These include a proposed me thod for obtaining cir
cumferential measure me nts on certain types of tanks 
which consists, b ri e fly , of wrapping the measuring 
tape around the tank (at some specified position) with 
te nsion applied to the tape, taking a reading to the 
neares t 0.005 foot , releasing then reapplying the ten
sion, taking another read ing, e tc., until two identical 
readings are obtained. The value of th e equal read
ings is then recorded as the circumfere ntial 
measurement. 

The method of es timation used above is familiar to 
all of us, for it is the method used whe ne ver we co unt 
a (finite) number of things. We count them twice and 
if the two counts agree then we go no further ; if they 
do not agree, then the items are counted again , e tc., 
until two answers agree. The difference between the 
situations is that in the case of the circ umfere ntial 
measurements we can pos tulate a continuous dis tribu
tion underlying the meas ure ment process, so that a 
recorded observation is a rounded value of a continu
ous variable, whereas in the case of counting, the 
distribution of counts is di screte , with incorrect counts 
corresponding to actual mistakes . 

We s hall consider here the continuous case; more 
specifically, we shall look into the statistical proper
ties of such an es timation procedure when the under
lying distr ibution is normal. It will be shown that an 
arithme tic mean of two observations from the rounded 
dis tribution is almost always superior to the es timator 
described above for the range of cases co nsidered. 
The exception occurs only when the rounding interval 
is so wide and the rounding lattice is so advantageously 
placed that taking repeat measurements serves simply 
as a protection against gross errors. 

Since the place me nt of the rounding lattice relative 
to the true value is usually unknown, the occurrence of 
the exceptional case, when it occurs, is not known. If 
the rounding interval is wide and the rounding lattice 
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happens to be disadvantageously placed, es timation 
by dupli cation is very muc h inferior to the arithmetic 
mean of two observations. 

Effect of Grouping 

The di stribution of a single meas ure ment depe nds 
on the width of the rounding interval, and also on the 
placement of the rounding lattice with respect to the 
true value. We shall assume that measurements are 
obtained as ro unded values of th~ (continuous) random 
variable X, which is normally dis tributed about the 
true value fJ- of the property under consideration, with 
standard deviation CT. The variable X is rounded to 
the neares t value XR in a rounding lattice where the 
interval, centered on XR , is of length 2QCT and the 
rounding lattice is placed so that the lower boundary 
of the interval containing fJ- is a t fJ- + DCT (- 2Q<D~0) . 
For simplicity, and with no loss of generality, we le t 
fJ- = 0 and CT = 1. Then the dis tribution of XR is 
given by 

Prob {XR =xRi} = Prob {XRi -Q ~ X ~XRi+ Q}' 

xl·+Q
_ 1_ e-z2/ 2dz 

x i - QV2; , 

where X rii = D + (2i + 1)Q, i = 0, ± l , ±2, . . .. The di s
tribution of XR will be comple tely specified when Q and 
D are give n. We note that the di stribution of Xu is 
discrete, that the mean of XR is not necessarily zero 
(it is dependent on the position of the rounding lattice), 
and that the variance of Xu is always greater than the 
variance of X. (See Eisenhart , Hastay, and Wallis 
[1),1 ch. 4). Only a finite number of values of XR will 
have probability reali sti cally different from zero 
(although, theore tically, there would be an infinite 
number of them). Stri c tly speaking, the analysis in 
this paper treats the normal distribution truncated to 
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FIGURE 1. Distributions of X R for selected values of 2Q and D. 

the interval (f-t - 50-, f-t + 50-). In fact, the numerical 
results are believed to be correct for the general case. 

In studying the properties of this method of estima
tion by duplication, seven interval lengths were con· 
sidered: 2Q=30-, 20-, 1.50-,0-,0.750-,0.50-, and 0.250-; 
and 5 positions of the rounding lattice: D = 0, - 0.25Q, 
-0.5Q, -0.75Q, and -Q. This range of D is suffi
cient for this study since the distributions of XR for 
- 2Q < D < - Q are mirror images of the distributions 
for - Q < D < O. Figure 1 illustrates the nature of 
the distributions from which observations will be taken. 
Shown are the "best" (i.e., most advantageous) case, 
where D=-Q, the "worst" case, where D=O, and an 
intermediate case, D =- 0.5Q, for 2Q = 3.0 and 
2Q = 1.0. Table 1 shows the mean and variance of 
the distribution of XR and the number, m, of rounding 
intervals (i.e., the number of values of XR) necessary to 
cover the range - 50- to 50- of the normal curve for all 
cases considered here. 

Distribution of T 

Having specified the distribution of a single measure
ment, we may now turn to the estimator under con
sideration which will be denoted by T. T is the 
common value of the first two identical measurements 
in a sequence of measurements. Obviously the sample 
size N required to obtain identical measurements, as 
well as their common value T, is a random variable. N 
can take on the values 2, 3, . . .. For the purpose of 
computation, the number of intervals has been limited 
to m, so that the range of N becomes 2, 3, ... , m + 1. 
Let 

. 1 J XRi+Q 
Pi =Prob {XR = XRi} =.~ e- Z2/ 2 d2. 

v 27T XRi - Q 

Then, the joint probability that T =XRi = ti and N = n is 
given by 

P {ti' n} = (n -1)!pi2 2: ... 2: PjPk . ... Pl , (1) 

TABLE 1. - Characteristics of the distribution of XR: mean, variance, 
and number of intervals necessary to cover the range - Scr to Scr 
of the normal curve 

~ 0 - 0.25Q - 0.5Q - 0.75Q - Q 

O' 0.0754 0.1065 0.0753 0 
3.00 2.2986 2.1318 1.7380 1.3569 1.2027 

4 4 4 5 5 

0 0.0032 0.0046 0.0032 0 
2.00 1.3650 1.3557 1.3333 1.3109 1.3016 

6 6 6 6 5 

0 0.0001 0.0001 0.0001 0 
1.50 1.1882 1.1880 1.1875 1.1870 1.1868 

8 8 8 7 7 

0 0.0000 0.0000 0.0000 0 
1.00 1.0833 1.0833 1.0833 1.0833 1.0833 

10 II II II II 

0 0.0000 0.0000 0.0000 0 
0.75 1.0469 1.0469 1.0469 1.0469 1.0469 

14 14 14 15 15 

0 0.0000 0.0000 0.0000 0 
0.50 1.0208 1.0208 1.0208 1.0208 1.0208 

20 21 21 21 2 1 

0 0.0000 0.0000 0.0000 0 
0.25 1.0052 1.0052 1.0052 1.0052 1.0052 

40 41 41 4 1 4 1 

*In each cell of till S table , the upper entry IS the mean, the Inlddle entry IS the vanance, 
and the lower e ntry is the number of inte rval s; a nd "0" means zero exactl y, while 0.0000 
indicates that the valu e is zero to at leas t 4 decimal places. 

where the summation is over all (n- 2)·fold products 
such that j < k < ... < land j, k, ... , l o;t= i. For 
n = 2 and 3 (1) simplifies to 

P {ti' 2} =Pi2 

and 

(la) 

By summing the quantities (1) and (la) over all 
values of N we obtain the distribution of T independent 
of the value of N, from which we may deduce some of 
the properties of this measurement procedure. 
Figures 2A and 3A show the distribution of T for 
selected values of 2Q and D. The means and variances 
ofT, 

m m + l 

£(T)=2: 2: tiP{ti,n} 
i = l n = 1 

and 
m 'Hl + l 

Val' (1) = ~ 2: li2P {ti, n} - [£(1)]2, 
1= 1 n=2 

for all combinations of Q and D considered are given in 
table 2. (These and other tabled values are believed 
to be correct to the accuracy given, taking into account 
errors due to truncation of the normal distribution and 
due to rounding during calculation.) Note that the 
£(1), which are biases of T as an estimator of f-t are 
considerably larger than the E(XR ) (c.f., table 1) for 
large intervals except in the symmetric cases 
(D = 0 and - Q) where £(T) and £(XR ) are identically 
zero. 

Expected values of T conditional on N = n, £(TI n), 
and variances of T conditional on the value of N, 
Val' (TI n), were also calculated, but they are not re-
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FI GURE 2. Distributions of T and the corresponding dis tributions of 
Xllz/o r 2Q =3.0 and selected values of D. 

ported he re. It turned out that, for the non-symmetric 
positions of the rounding lattice, the conditional biases, 
E(Ti n), are generally large r than the corresponding 
expec ted values of Xn and depend not only on the 
size and place ment of the interval but also on the 
sample s ize , n. But more di sconcerting is the fact 
that Var (Ti n) increases r a ther than decreases as n 
increases. Thus one would be be tter off with an 
estimate obtained with N = 2 than with a larger N_ 
But there is no control over the sample size since 
N, too, is a random variable . It can be shown that 
for the maximum value of N, N= m+ 1, the (condi
tional) distribution of T is identically the distribution 
of Xn. Thus an estimate based on the maximum 
sample size is no better than a single observation from 
the rounded dis tribution. While Prob{N = m + I} 
< < 0.0005, thi s still is not a happy situation. 

T ABLE 2. Values of the mean and varian.ce of the (unconditional) 
d istribution of T fo r selected values of 2Q and D 

~ 0 -o.25Q -o.5Q -o.75Q -Q 

3.0 O' 0.259 0.35 1 0.238 0 
2.250 1.850 1.049 0.453 0.258 

2.0 0 0.032 0.046 0.032 0 
1.038 0.982 0.848 0.717 0.664 

1.5 0 -0.002 -0.002 -0.002 0 
0.743 0.741 0.736 0.732 0. 730 

1.0 0 0.000 0.000 0.000 0 
0.652 0.652 0.652 0.652 0.652 

0.75 0 -0.000 -0.000 -0.000 0 
0.6 18 0.618 0.6 18 0.6 18 0.618 

OS 0 0.000 0.000 0.000 0 
0.589 0.589 0.589 0.589 0.589 

0.25 0 0.000 0.000 0.000 0 
0.560 0.560 0.560 0.560 0.560 

* In each ce ll of thi s ta ble. the up per entry is the mea n and the lower entry is the va ri a nce; 
and "0" mea ns zero exac tl y, wh ile 0.000 indica tes thaI the va lue is ze ro to a lleas! 3 decimal 
places. 
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F IGURf: 3 . Distributions of T and the corresponding distributions of 
Xll2 fo r 2Q = J.O and selected values of D. 

By summing th e quantiti es (1) and (l a) over all 
values of i we obtain the dis tribution of N. The 
probabilities, 

m 

P ro b {N = n } = 2: P {ti , n}, 
i = I 

and the means a nd vari ances of N, 

11'1 + 1 

E(N) = 2: n Prob {N = n } 
11= 2 

and 
m+ 1 

Var (N) = 2: n2 Prob {N= n } - [E(N) )2 , 
11. = 2 

are given in table 3 for the various di s tributions of Xn. 
Probabilities less than 0.0005 are not re ported. We 
see that, for the range of intervals co nsidered here, one 
would ordinarily expec t to ta ke fro m 3 to 6 obser vations 
to obtain an estimate by this procedure. Only whe n 
2Q = 3.0 and the rounding la ttice is adva ntageously 
placed would one expect to obtain . an es tim ate at 
N = 2 - but in these cases the only real reason for 
taking repeat observations would be as a protec tion 
against gross errors_ 

Comparison of T With X R2 

Since the arithmetic mean is the bes t estimator of 
the mean of a normal distribution, it is reasonable to 
compare T with this fixed sample size estimator. The 
arithmetic mean of two observations from the distribu
tion of Xn, Xn2 , is chosen for comparison with T 
because, as will be seen below it is almost always a 
better estimator of f.-t than is T for the range of Q and D 
considered here_ 



TABLE 3. Values of Prob {N = n}, and of the mean and variance of 
the distribution ofN,Jor selected values of2Q and D 

~ 0 [-0 .25Q [-05Q [-075QI - Q 

2 .. ... 0.497 0.537 0.631 0.722 0 .760 
3 .... . .... ... .499 .457 .356 .258 .217 
4 .... ..... . . .... .004 .006 .013 .020 .023 
£(N) ... 2.507 2.470 2.382 2.298 2.264 
Var(N) .... 0.258 0.262 0.262 0.249 0.241 

2 . . .. 0.457 0.465 0.486 0.507 0.516 
3 . . . .478 .464 .429 .394 .379 
4 .. . . .062 .068 .083 .098 .104 
5 . .... .003 .003 .002 .001 .001 
E(N) ... 2.611 2.608 2.601 2.594 2.591 
Var (N) ... 0.379 0.391 0.418 0.445 0.457 

2Q = 1.5 

2 . ....... .. 0.384 0.385 0.388 0.390 0.39 1 
3 . .... .. .. . .441 .438 .429 .420 .416 
4 . ... .... ... ..... .153 .157 .165 .174 .177 
5 . . .021 .020 .018 .016 .015 
£(N) ........ ... 2.812 2.813 2.815 2.817 2.818 
Var (N) .. 0.588 0.590 0.594 0.599 0.600 

2Q = 1.0 

2 ... 0.271 0.271 0.271 0.271 0.271 
3 .. . .373 .373 .372 .372 .372 
4 ... .252 .252 .253 .253 .254 
5. , . .090 .089 .089 .088 .088 
6 ... .014 .014 .014 .015 .01 5 
7 ... .001 .001 .001 .001 .001 
£(N) ... 3.206 3.206 3.206 3.206 3.206 
Var (N) ... 0.980 0.979 0.979 0.979 0.979 

2 ....... 0.207 0.207 0.207 0.207 0.207 
3 ....... ... ..... .315 .315 .315 .315 .315 
4 .. . .271 .271 .271 .271 .27 1 
5 ........ ... .... .147 .147 . 147 .147 .147 
6 .. .050 .050 .050 .050 .050 
7. ...... .. . .010 .010 .010 .010 .010 
8 . . ... .001 .001 .001 .001 .001 
£ (N) ... 3.551 3.551 3.551 3.551 3.551 
Var(N) .. 1.389 1.389 1.389 1.389 1.389 

2Q = 0.5 

2 .. ... .. ....... 0.140 0.140 0.140 0.140 0.140 
3 .... .234 .234 .234 .234 .234 
4 .... .248 .248 .248 .248 .248 
5 ...... .... ... .193 .193 .193 .193 .193 
6 .. .114 .114 .114 .114 .114 
7 .. .. .. ....... .050 .050 .050 .050 .050 
8 .. ....... .016 .016 .016 .016 .016 
9 .. .... . .. .004 .004 .004 .004 .004 
10 .... .... ... .. . .001 .001 .001 .001 .001 
£(N) ... .. 4.145 4.145 4.145 4.145 4.145 
V.r(N). .... ... 2.248 2.248 2.248 2.248 2.248 

2Q = 0 .25 

2 ..... 0.070 0.070 0.070 0.070 0.070 
3 . .. ... .. . ...... .129 .1 29 .129 .129 .129 
4 ... ....... .165 .165 .165 .165 .165 
5 ... .. .. .172 .172 .172 .172 .172 
6 ..... .155 .155 .155 .155 .155 
7 ... .......... ... .122 .122 .122 .122 .122 
8 ..... .085 .085 .085 .085 .085 
9 .... .052 .052 .052 .052 .052 
10 .. .028 .028 .028 .028 .028 
I!.. . . .01 3 .013 .013 .013 .013 
12 .. ..... .006 .006' .006 .006 .006 
13 .. .002 .002 

.0011 

.002 .002 
14 .. .. .001 .001 .001 .001 .001 
£ (N) .. 5.511 5.511 5.511 5.511 5.511 
Var(N) ... 4.957 4.957 4.957 4.957 4.957 

Note that the mean of .xR2 is the same as the mean of 
XR and that Var (.xR2 ) = VadXR )/2. Figures 2B and 3B 
show the distributions of XR2 for 2Q = 3.0 and 1.0 and 
D=0,-0.5Q, and -Q. We see that the spacing 
between possible values of the estimates has decreased 
to half of the width of the original rounding interval so 
that if the closest value is not obtained, the size of the 
miss need not be as large as for T and the probability of 
a large miss is smaller. 

For comparing T with XR2 , relative efficiency will 
be used: 

. . - Var (XR)/2 + [E(XR ) P 
EffiCIency of T relatIve to XR2 = Var (T) + [E(T))2 

(which is usually expressed as a percentage). The 
relative efficiencies are given in table 4. We see 
that only in Lwo instances does T show superior 
behavior over XR2 - where 2Q = 3.0, D=- 0.75Q, and 
- Q - as indicated by relative efficiencies of 134.3 
percent and 232.9 percent respectively. The explana
tion for these high efficiencies lies in the fact that, 
in such cases, if an estimate is obtained at N = 2 -
which, by reference to table 3, happens more than 70 
percent of the time - that estimate is almost sure to be 
the value in the interval containing p., = O. This 
leads to a very small variance for the distribution of 
T conditional on N = 2 which offsets the larger vari
ances for N> 2. Actually, this effect is also working 
at the same positions of the rounding lattice for 2Q = 2.0 
and 2Q = 1.5 but not to the same extent. In all these 
cases, the conditional variance of T for N = 2 is 
smaller than the variance of an arithmetic mean of 
2 observations, so that it is possible to obtain better 
results using estimation by duplication, although 
these circumstances are limited and not within the 
control of the observer. For 2Q ~ 1.0, T is never 
superior to the mean of 2 observations . 

TABLE 4. Efficiency of T relative to the arithmetic mean of two 
observations for selected values of 2Q and D 

~ 0 -{).25Q -{).5Q - 0.75Q -Q 

% % % % % 

3.0 51.1 55.9 75.1 134.3 232.9 
2.0 65.8 69.0 78.4 91.3 98.1 
1.5 80.0 80.2 80.6 81.1 81.3 
1.0 83.1 83.1 83.1 83. 1 83.1 
0.75 84.7 84.7 84.7 84.7 84.7 

.5 86.7 86.7 86.7 86.7 86.7 

.25 89.8 89.8 89.8 89.8 89.8 

Comparison of T and X R2 When the True 
Value Is Considered To Be a Random 
Variable 

We have seen what results can be expected using 
estimation by duplication on a single object when the 
true value of the quantity being estimated is at zero 
and the rounding lattice is at certain fixed positions 
relative to zero. If we consider the rounding lattice to 
be placed at random - which is equivalent to having the 
rounding lattice centered on zero and assuming that 
the true values of the quantities are uniformly dis-
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tributed between - Q and Q [1 , ch 4] - it is apparent 
that at leas t for the interval sizes co nsidered here, one 
would be better off using the mean of two observations 
as an estimate of the true value rather tha n the repeated 
value; for even in the case 2Q '::..3.0 one would ex
pect an efficiency of T rela ti ve to Xn2 greater than 100 
percent only about one-third of the time. 

Values for quantities similar to those given in tables 1 
through 4 can be calculated under the new assump
tions. We note first that T is unbiased under these 
assumptions, due to symmetry, and that Xn2 is also 
unbiased for the same reason. Youden, Connor, and 
Severo [2] have calculated the probability that N = 2 
for intervals of length 2Q = 3.0, 2.0, and 1.0. These 
probabilities are 0.6296, 0.4860, and 0.2709, respec
tively. Since estimation by duplication yields res ults 
superior to the taking of an arithmetic mea n only whe n 
N = 2, as indicated by the conditional vari ance being 
smaller than the variance of the mean of two observa
tions, we may use these probabilities to ob tain an 
estimate of the probability of obtaining be tter res ults 
using es timation by duplication. The dis trib ution of 
T conditional on N = 2 for 2Q = 3.0 and 2.0 has variance 
smaller' than Var(Xn)/2 for almost all values of D 
betwee n - O.SQ and - Q. Thus if 2Q = 3.0, the proba
bility of ob taining better results with T is approximately 
(0.6296) (0.5) = 0.3148; and if 2Q = 2.0, the probability 
is approximately (0.4860) (0.5) = 0.2430. Since the 
behavior of T is never be tter than Xn2 for 2Q= 1.0, the 
probability of obtaining better results wi th T is zero. 

While the other quantities, such as the mean and 
variance of the marginal dis tribution of T, may be of I 
inte rest , they are difficult to obtain under the new as
sumptions to any accuracy and would only point more 
to the fac t that es timation by duplication is not a good 
estimation procedure to use when the underlying di s-

tribution is normal. Rough es timates of so me of the 
quantities may be obtained by averaging the a ppropri
ate values in the tables given. 

From the preceding discussion it follows that whe n 
the true value of the quantity to be measured is con
sidered to be uniformly distributed in an interval of 
length 2QU' and measurements of that qua ntity are 
normally distributed about its true value with s tandard 
deviation U' , then for 2Q ,,;;; 3.0, the probability is at 
most 0.3148 that estimation by duplication is better 
than the arithmetic mean of two obser vations. For 
2Q ,,;;; 1.0 better res ults can always be obtained with 
the arithmetic mean of only two observations . 

In conclusion it appears that the practice of taking 
readings until two identical readings are obtained can
not be justified since the average of the first two read
ings almost always yields a better estimate of the 
measured quantity. 

T he author thanks Churchill Eisenhart for sugges ting 
this investigation and for his guidance , and Joseph M. 
Camero n and Joan R. Rosenblatt for their helpful 
sugges tions for writing this paper. 
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