JOURNAL OF RESEARCH of the National Bureau of Standards—B. Mathematics and Mathematical Physics
Vol. 68B, No. 1, January-March 1964

An Asymptotic Expansion for the Multivariate
Normal Distribution and Mills’ Ratio

Harold Ruben*

(September 20, 1963)

An asymptotic expansion for the multivariate normal integral over an infinitely extended rectangle,
and therefore also for the associated multivariate Mills’ ratio, is developed. The expansion is valid
provided the vertex of the rectangle lies in a polyhedral half-cone determined by the set of regression
planes.

The expansion obtained here is a natural generalization of the classic expansion for the normal
univariate integral, and the coefficients in it involve the moments of the conjugate multinormal
distribution.

1. Introduction

Define
Sfx,M) = (2m)-"/2| M | /2¢ —xMx's2 (1.1)
F(a,M)= f(x, M)dx (1.2)
and
R(a, M)=F(a, M)/f(a, M). (1.3)
Thus, f(x, M) is the probability density of a random normal vector X=(X,, . . . , X,) with expec-

tation vector zero and nonsingular variance-covariance matrix M~—!; F(a, M) is the probability that
X = a for a fixed vector a=(ai, . . ., an), where X = a is to be interpreted as the set of simul-
taneous inequalities X, = ao (=1, . . . , n); finally, R(a, M) is (the n-variate) Mills’ ratio for a
multinormal distribution in the sense that it represents the ratio of the probability-mass in the
infinitely extended n-dimensional rectangle x = a to the probability density at the vertex, a, of the
rectangle. (This point is frequently referred to in this context as the “cutoff point.””) Indeed, for
the special case n=1, with M= 1, we have the usual (univariate) Mills’ ratio

R(a,l)=foc (2m) 12~ 2%2dx [{(277) 1 /2% } . (1.4)

In a recent paper in this journal, I. R. Savage ! [14]? has obtained two useful and easily applied
inequalities for R(a, M), and therefore also for F'(a, M), when aM > 0. We shall here obtain an
asymptotic expansion for R(a, M) under the same conditions which produces a sequence of upper
and lower bounds for R(a, M) and F(a, M). Savage’s inequalities correspond to the first of these
upper and lower bounds.

*Department of Statistics, University of Minnesota.

! The notation adopted in this paper is that of Savage. It should be remarked that Savage’s results and the results of the present paper were obtained inde-
pendently via an essentially identical line of approach, and a slight degree of overlap in the current article relative to Savage’s paper is therefore unavoidable. The
present results may be regarded as forming a natural complement to, and extension of, Savage’s results.

* Figures in brackets indicate the literature references at the end of this paper.
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2. Derivation of the Expansion and Discussion of Its Properties

On setting
y=x—a
(1.2) becomes
F(a, M)=f(a, M) - J e~ Ay —yMy2dy, 2.1)
y=0
where
A=aM; (2.2)
that is,
R(a, M)=J' e~ 4y’ —yMy'/2 Jy-. (223)
¥Z0

To obtain a series expansion for R(a, M) from (2.3), expand exp (—yMy’/2) in its power series
form round y=0 and, on the assumption that A > 0, integrate term by term. (The sense in which
this purely formal procedure is justified is described below.) We note that yMy’ is symmetric
round y =0, remaining unaffected when y is replaced by —y, so that

i i
eAyMy’/:Z:E' a; ; it . Yn
) A R O Y il ©
G by
where
@iy, =00 gy dyuin)e Y2 [y g
and E'il ,,,,, i, denotes summation over all nonnegative integral iy, . . ., i, such that i1 +. ..+ i,
is an even integer (including zero). Consider now a random normal vector X*= (X}, . . . , X¥)

with expectation vector zero and variance-covariance matrix M: such a vector may be described

as having a distribution conjugate to that of X. The coefficients «;, . . in the above series

iy
representation of exp (—yMy'/2) can then be expressed in terms of the moments of the conjugate
distribution. For since the characteristic function of X* is given by

EleitX" | = ¢~ tMt/2,
t denoting a fixed n-dimensional vector with real components, we have

. L =it .. Hi *
Qi i, =04 nHE i

where

ui L =B . (X,

S
Hence (2.3) can be expressed in the form

-] ® n i . ) y{] y”i"
R(a, M)= PR e;il Ag¥a 2 (= 1)“1*" . '“n)/z,u.;k i 5o o oo dy1 . dyn,
5 5 N Uits In.
0 0 oo o o dhn n

and subsequent term by term integration yields the result that R(a,M) can be formally identified
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with the n-variate series

n * i

’ . : Ve _ Ya @
2: (_])(1l+<..+1")/2”';l;.”inll e da¥a - ‘dyA
a=170 la- ta

n 1

. . in i +1
a=1 Aaa

— 21 (_ 1)(il+ 5 +i")/2“i>l; )

i1, . . . »in

(Aa>0;a=1,. .., n). (2.5)

Laplace’s classic asymptotic expansion, a large, for the univariate Mills’ ratio, as defined in (1.4), is

R(a,l)ﬁ-{plﬁﬁ_;ﬁ

R o } (a>0) (2.6)
the symbol ~ denoting the fact that the series on its right is an asymptotic representation of the
function on its left. If X is a (univariate) normal random variable with zero mean and unit standard
deviation, then X*, the conjugate random variable, has the same distribution. The coefficient of
1/a¥ in the bracketed expression in (2.6) is (—1y 1.3.5 . . . (2/j— 1), and this is the (2/))th moment of
X* about the origin. From this point of view it is clear that (2.5) represents the multivariate analog
of (2.6), since the /.L,?'; .. .ip are the moments about the origin of the distribution of X*, i.e., of the

distribution conjugate to that of X. However, the analogy is exhibited most clearly if (2.5) is ex-
pressed in more explicit form as

R(a, M)NZ,—_]—T' {Co—Ci+Co—. ..} (Aa>0;a=1,...,n), "
where
[T _
a Ah . . . Al = '
) i+ . 'Z+ill:2j Alll ... A"{l (] ) (A 1)

(For a proof that the symbol ~ is justified in (A), see below.) Expansion (A) is also the form to be
used for computing purposes.

The first three C; are given by

(2.7)
Co=1,
_ Py o :“‘:...02) (I'L;klo...o Miono . . .o /-":)k...ou)
C, ( A? Fo o or Az r A, AF AA, +”'+An—1An , (2.8)
Ko, . .0 M’(T...M)
c =( +.o.+
’ A A,
F';Tlo..J I“':;k(no‘..o #3‘...(131_*_/’“_;"39“‘0_%“?939 . Q+,U'Q* Q],‘})
+( AR, T MA, o TATTA T AAT T AN AN
+<l~";=20...o+l"~;020...0_+_. . _+MQ*. .Q22>
1A ATAS AL A
_+_<F-;no...o+ )+<l‘ik1110...0_+_ ) 2.9)
A0y 77T\ AN ) '

the different bracketed terms in C; and C, corresponding to the various partitionings of 2 and 4,
respectively, into n nonnegative integers. (The last two bracketed terms in (2.9) vanish if n=2,
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and the last bracketed term vanishes if n=3.) More generally, it is clear from (A.1) that the
evaluation of Cj requires the enumeration of all possible partitionings of 2 into n nonnegative
integers.

The expansion (A) for the multivariate Mills’ ratio has some useful properties which are quite
analogous to those of the corresponding expansion (2.6) for the univariate Mills’ ratio. The proper-
ties in question are as follows:

(i) Expansion (A) is an enveloping one, in that R (a, M) falls short of every summand with an odd
number of terms and exceeds every summand with an even number of terms.

(i1) The truncation error after any number of terms in (A) is numerically less than the first
term omitted.

(iii) Expansion (A) is asymptotic for large A, (as remarked previously after (A.1)).

We now proceed to establish these properties. First, recall that (2.5) was obtained by expand-
ing exp (—yMy’'/2) as a power series in the y, and integrating term by term in (2.3). Correspond-
ingly, (A) can be obtained by expanding exp (—yMy’/2) as a power series in yMy’ and integrating
term by term in (2.3); that is,

Nk 94 e .
Ra M)~ —2L 8v/(yMy'y dy.
etk P RN (yMy’ydy (2.10)

Therefore, on using the generalized mean-value theorem, the error after m terms, E,, is given by

(2.11)

—1\m
= f e 7 (yMy'y" -2 dy ((MZ' < yMY).
m y=

Hence E,, is positive if m is even and negative if m is odd. This proves the enveloping property.
Next from (2.11).

z) (2.12)

| Em | < e~ &' (yMy' )" dy,
yz0

and since the right-hand member in the inequality (2.12) is numerically equal to the (m+ 1)th
term in the expansion (2.10), which is also the expansion (A), the second of the above-mentioned
three properties is proved.

Finally, to prove the asymptotic nature of (A), observe that in conjunction with the result
just proved about the magnitude of the truncation error the desired result is achieved if it can be
shown that the successive terms in (A) are in decreasing order of magnitude. It is clear from direct
inspection that the latter terms do, in fact, stand in this relation to one another for sufficiently large
Ao (@=1, ..., n), and correspondingly that the series in (A), and its equivalent (2.10), do represent
asymptotic representations of R(a, M) for sufficiently large Ay, ..., A, (use of the symbol ~ in the
two equivalent formulas (A) and (2.10) being thereby justified). We shall, however, strengthen
this by demonstrating that (A) is an asymptdtic representation of R(a, M) for sufficiently large
values of 3"A 2. This means that (A) can be used profitably even if some of the individual A, are

small or moderately large, provided only that 37A 2 is large. Indeed, on setting

y=rl (1|=1),
L=Al', Q=1IMI'

(1 is a unit n-dimensional vector parallel to y), the series in (2.10) transforms to
s L ol P e
o], f je LrQir - =1drdl = E( 1y o, Ii\L2 dl,
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after integrating with respect to r. Here O, is the surface of the unit n-sphere lying in the positive
orthant. Denoting the angle between A and 1 by 6 and the norm of A by d,

cos 0=Al'/(AA" )% =L/(AA")2,
d=(AA")%,

the latter series is

1 S
= ‘=0< 1y=,

i

where

—1+2))! . .
a]:% (MY (see"56) dl. 2.13)

Since a; is a function only of M and of the orientation of A and is independent of the norm of A,
we conclude from (2.13) that (A) represents an asymptotic expansion of R(a, M) for positive A,
and for large 2" A? .

We conclude this section by remarking that the u*;. . i, needed in the basic expansion (A)

n
(the w*i,. . i, are defined in (2.4)) can be evaluated expeditiously by contraction (cf Kendall and
Stuart [5], sec. 13.13, p. 319) and by exploitation of the well-known fact that the product of an
even number of normal random variables with zero expectations can be expressed in terms of
products of covariances between the variables. Specifically, let Z,...,Z have a joint normal
distribution with zero expectation vector and arbitrary, not necessarily nonsingular, variance-
covariance matrix. The property? just stated in relation to the even order moments of a multi-
normal distribution is

ElZ,...Zy)=3" EZ-Z.). . .E[Zrzjv]Zrzj], (2.14)
where (1, 12, ..., ) is a permutation of (1,2, ...,2)) and X'’ denotes summation over all possible
ways of partitioning the set {1,2,...,2j} into j subsets, each of size two, the number of such ways*
being 1.3.5. . .. .. (2j —1). Toevaluate E[X}) ... (X)), where iy + . . . + in =2j, by contraction

from (2.14), set®

X5 a=1,2,..., 0

7 = X;",a=i1+1,i1+2,...,i1+i2,

. . (2.15)
Xﬁ a=i1+...+in_1+1, i1+...+in,1+2,..., 2]

3. An Important Special Case

The problem of evaluating the probability that each of several standardized and equally
correlated normal random variables shall not fall short of a specified value has been considered in
some detail by various authors. Some applications of this problem, together with references
relating to theoretical discussions are to be found in Ruben [11, 13]. (See also Bartholomew [1]
for a further application.)

31t is of some interest that this property plays ah important role in other theoretical applications in statistics, e.g., the mathematical theory of Brownian motion
and thermal noise. (See Wang and Uhlenbeck [17], p. 332.)
4 As an example, for j=2, we have the familiar result
EZ,2:2524)= E|Z\Z:)E\Z5Z4) + E|Z\Z5)E(Z2Z4) + E|Z\Z,)E( Z,Z5).
5 As an example, to evaluate E[(XF)2X$X3), set Z, =X}, Z,=X}, Zs=X3, Zs=X3, giving

ETXPX*X3]= EIXPIEIX XT]+ 2E1X X EIX X

7



It may be useful to record here some of the main results available. Let M;! denote an n X n
matrix which has 1 for all its diagonal elements and p for all its off-diagonal elements, and let
ay=(a, a,..., a). Then in the notation of (1.1) and (1.2), for p positive,

Flao, My= [ [F(%, )] fix, v, (3.1)

fix,1) and F(x,1) denoting the standardized normal density and distribution functions, respec-
tively, evaluated at the point x. Formula (3.1) is a special case of a more general formula, due
(independently) to Dunnett and Sobel [4], Das [3], and Stuart [15], in which F(a, M) is expressed
as a univariate integral involving the standardized normal density and distribution functions when
pij, the correlation between X; and Xj, is of the form p; = a;aj(j # i), and a is arbitrary. Formula
(3.1), specialized further by a=0, was proved (again independently) by Ruben [7] and Moran [6].
More recently, Steck ¢ and Owen [16] have shown that (3.1) may be extended to all p, positive or
negative (p > —1/(n—1)), the imaginary component of the right-hand integral being zero. Steck
and Owen also provide valuable recursion relationships for F(ao, My).

Results of a rather more explicit character for F(ao, Mo) have been obtained by Ruben [11, 13].
In the first of these two papers, R(ao, Mo) was expressed as a convergent power series in aoMa,,
the coefficients in the series being simple multiples of generalized centroids, or geometrical
moments, of a regular (n— 1)-dimensional regular spherical simplex with common dihedral angle
arc cos (—p); these centroids are, in their turn, expressible (Ruben [8]) in terms of the contents of
regular spherical simplices tabulated elsewhere (Ruben [7]). In the second paper, R(a,, M) was
represented as an asymptotic expansion in negative powers of agMa,, the coefficients in the series
being identical with the coefficients in the Taylor expansion of exp (—x%/2)K,_i(x) at x=0, where
K, _i(x) is the probability-mass, under a standardized (n—1)-dimensional spherical distribution,
of a regular (n —1)-dimensional linear simplex with edges of length x and with centroid at the
center of the distribution. The purpose of this section is to verify that expansion (A) of the current
paper, for the special case F(a,, My), agrees with that in [13], at any rate as far as the first three
terms are concerned. (The two expansions in question are in fact completely identical.) At the
same time this verification will serve to illustrate the use of the current expansion under more
general conditions.

It is readily established that M, the variance-covariance matrix of the conjugate distribution,
has {1+ (n—2)p} {1+ (1n—1)p}~'(1 —p)! for its diagonal elements and —p{1+(n—1)p}~1(1 —p)*
for its off-diagonal elements (the common correlation in the conjugate distribution being conse-
quently —p{14+(m—2)p}-!). We find from (2.2) that the components of A are equal to (say) A
defined by

A=a/{l1+(n—1)p}, (3.2)

whence A > 0, if, and only if, a > 0. Assume, then, that a > 0, that is, the cutoff point a, lies on
that part of the equiangular line x; =x»=. . .=x, lying in the positive orthant. From (A.1) and (3.2),

Y e .
Cj=<f1+...+in=2j“’;§...in).{1+(n_1)p}2j/azj G=0,1,...) (3-3)

Formulas (3.2) and (3.3) may now be used in formula (A) to evaluate R(a,, My) after the ,u.l-"; e
have been determined. We proceed to evaluate C; and C: from (2.8) and (2.9).
Here uif . i, is unaffected by permutation of i1, . . . i,, as is evident from the symmetry of

the distribution. In particular, the moments occurring within any pair of braces in (2.8) and
(2.9) are equal. Thus since

3o ... o={1+m—2p}/[{1+(®m—1p}1—p)]
and
piio...o=—pl[{1+(n —1)p}1—p)],

% Since this paper was written, a further paper by Steck on orthant probabilities (a=0) for the equicorrelated multivariate normal distribution has appeared
(Biometrika 49, 433445, 1962).
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we have from (2.8)

Ci=(nuss . .. o+nn—Duio.. . o) {1+n—Dp}*a2=n{l+{n—Dp}{l+(n—3)p/2}1 —p)*’/a;.4)
(D¢
Again, from (2.9),

Cs :fl'll«fo .ot n(n— 1)',11«:3"10. s o+%n(n— 1)',U~§k20. .. 0+%n(n— 1)("«_2)'#5}(110 )

+ﬁ n(n—1)(n—2)(n—3) uii10 . . . o0,

where the moments occuring in C, are easily found (e.g., by contraction) to be given by
,u*40 .. 023{1 +(n—2)P}2V,
w¥si0. . 0=—3p{1+(n—2)p}y,
pro .. o=[{1+(n—2)p}*+2ply,
mamo . o=—p{l+(n—4)ply,
M*E11110 . .. 0:3P2')’,

with y={1+(n—1)p} 21 —p)-2. After some reduction
Co=n{l1+(n—1)p}*{(5+n)/2+ (n?+3n—16)p/2+ (n>+2n2—29n 4+ 50)/8}(1 — p)~2/a*. (BL5))

Higher order C; may be found similarly with correspondingly heavier algebra.
Our result is then

F(ay, M) ~ (271.)—;1/2{1 Ll = l)p}—l/‘Z(l —p)n- 1)/2p- na?/[2{1 + (n — 1)p}]

—-— n
'w%)p}(co_cl'*'(:z—. o) (3.6)
where C; and C, are given in (3.4) and (3.5) and Cy=1, the first term on the right of (3.6) represent-
ing flag, My), the probability density at the point a,. The first three terms in (3.6) agree with
those of expansion (2.23) of [13] when the function I,(a, p) in the latter paper is identified with
the function F(ao, My) of the present paper. Also, as remarked earlier, the first two terms of
the series (3.6) were derived by Savage [14] (example 3) as giving a lower bound to F(a,, M),
while the first term of the series gives an upper bound. However, from property (i) in section 2
of this paper, all summands of the series in (3.6) with an odd number of terms yield upper bounds to
F(ay,M) and all summands with an even number of terms yield lower bounds.

4. Scope of the Expansion and Possible Extension of Current Results

It is clear from the form of A in (2.2) that expansion (A) for the multivariate normal integral
will be particularly effective for large a., a=1, . . ., n,i.e., when the distance between the cutoff
point and the center of the distribution is large, and also under certain conditions of near degen-
eracy when M~!is “almost’ singular and the probability in the distribution of X is correspondingly
highly concentrated around certain linear subspaces. For example, in the special case considered
in section 3, where degeneracy occurs for p=1 and for p=—1/(n—1), we note from (3.2) that ex-
pansion (3.6) is most effective for high a and for large negative p. (In this connection, compare the
two sets of upper and lower bounds for n=2, ap=(3, 3) and p==1/2 given by Savage [14] in his
example 1.)

In conclusion, we stress once more that expansion (A) is valid only for values of a such that
aM > 0. Geometrically, this means that the cutoff point a is restricted to the interior of a poly-
hedral half-cone bounded by the n flats XM =0 and with vertex at the center of the distribution.
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These flats are the regression planes (of X; on Xo, . . ., X,, of X> on X;, X3, . . . X,, etc.), and the
statistical interpretation aM > 0 is that the n residuals of a relative to the n regression planes are
all positive. This is admittedly a rather severe restriction, and it would be desirable to have ex-
pansions, both asymptotic and otherwise, valid for at least positive values of the components of the
cutoff point (i.e., for a lying in the positive orthant). It is hoped that the present paper may be a
helpful step in this direction. (Special reference should here be made to S. S. Gupta’s review
article and extensive bibliography on the multivariate normal integral and related topics in the
September 1963 issue of Annals of Mathematical Statistics. The reader is also referred to a recent
paper by Curnow and Dunnett [2].) The restriction aM > 0 is, however, not serious for the special
case n=2, since it is known that the general bivariate normal integral with arbitrary cutoff point
can be expressed in terms of the difference between two F-functions of the type discussed in sec-
tion 3 (Ruben [9, 13]).

That expansions of the sought for type exist (and the hunt for them therefore not chimerical)
is readily established by methods virtually identical with those used in [11] and in section 3 of [13]
for the equicorrelated case. In essence, this amounts to the following. The general multivariate
normal integral is first identified with the probability-mass under a standardized spherical normal
distribution of a polyhedral half-cone with angles between the bounding faces given by arc cos
(— pij) and with vertex V at a distance {=(aMa’)"? from the center of the distribution. The inter-
section of the half-cone with a unit sphere centered at V' is a hyperspherical simplex with dihedral
angles arc cos (—pij). Next, the required probability-mass in the half-cone is expressed as the
product of (27)~12? exp (—{?/2) and an infinite convergent power series in { with positive integral
exponents, or, for 7 { > 0, as the product of (27)~"2 exp (— £?/2) and an asymptotic ({ large), totally
divergent power series in { with negative integral exponents, where the coefficients in the two series
are simple multiples of certain integrals over the spherical simplex. The latter integrals are, in

fact, of the form f cos’‘pdl in the one case and f sec™Zidl in the other case, where ¢ denotes the

angle between a given fixed line and that line joining ¥ and a point on the surface of the sphere,
while dl is the surface-content of an infinitesimal element on the surface of the sphere. Unfor-
tunately, however, these integrals appear to be intractable, and it is indeed clear that their evalu-
ation will prove a formidable task, since even the special case j=0, in the first type of integral,
amounts to the determination of the content of the general hyperspherical simplex, i.e., to the
solution of a long-standing and exceedingly difficult classical problem in n-dimensional geometry.
(For references to the latter problem, which is equivalent to evaluating the probability in an orthant
under a centered multivariate normal distribution, and for a discussion of the content of regular
hyperspherical simplices, see [10] and [12]) Nevertheless, it may prove feasible to obtain the
coefficients for certain correlation structures. Thus the coefficients have been determined, in
[11] and [13], for the particularly simple correlation structure specified by the property “equality
of correlations.”
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