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1. Introduction 

Gaussian wave functions have found increasingly wide application in recent years for molecular 
e nergy calculations [1].1 This is due to the relative ease of computation of the three- and four
ce nter coulomb integrals; a circ umstance that was first noted by Boys [2] and Mc Weeny [3]. Boys 
de termined explicit formulas for all the relevant molecular integrals involving Is Gaussian functions 
ce ntered at arbitrary points in space. He also observed that all other integrals could be obtained by 
differentiation of the resulting formulas. Harris noted that this procedure would be very tedious 
and he extended the explicit algebraic representation of the integrals to cases where the principal 
quantum number of the Gaussian function equals the azimuthal quantum number [4]. However , 
when the principal quantum number exceeded the azimuthal one the integrals were left as fun c tions 
of differential operators. In this paper explicit form ulas will be obtained for all cases by a diffe rent 
procedure than that used by Harris . 

Both the one- and two-electron coulomb integrals will be considered. The nuclea-r attraction 
integral is 

(Anlm I r (! I Bn'l ' m') = J dTtjJ1, I":n(;) tjJn ' l~m,(;)rc- 1 
and the electron repulsion integral is 

(A nlmBn' I'm ' I Cn"l"m"Dn"'l'''m''' ) 

= J dTl dT2 tjJ,~i;'I(;; ) tjJ n' l~m ,(;;) tjJn'~'~n,~;;') tjJn" 'I!?m",(r~) rI 2 - 1 , 

where 

(1) 

(2) 

The usual expansion of the func tion r1 2 - 1 in spherical [5] or cylindrical coordinates [6] is rejec te d in 
favor of the relation [7] 

1 J ~ .~ ~ 
r - 1 = 27T2 dk k- 2 exp [Lk . r]. (3) 

This re presentation is favorable for the e valuation of coulomb integrals with basis func ti ons of the 
following form 

.1. A (; ) = r 2n+lp Iml (cos e )eimcb -ar 2 'l"nlm A I A tI A (4) 

where (rA, eA, cPA) are s pherical polar coordinates with origin at the point A a nd P1 Iml(x) is the 
associated Legendre spherical harmonic [8] _ It will be seen that the use of eq (3) essentially 
reduces the task of evaluating the coulomb integral to the determination of the three-dime nsional 
Fourier transform of tjJntm -

I Figures in brac kets indicate the literature refe rences at the end of this paper. 
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It is convenient first to reduce the dependence of the coulomb integral on molecular geometry 
by referring the coordinate axes at the atom centers to a new system with a common orientation. 
This was done by Harris . Such a transformation will be discussed briefly in the second section of 
this paper. By these means we isolate the basic integrals, whose evaluation is the main concern of 
this paper. 

The Fourier transform of "'"1,,, is readily found in section 3. The remaining integrations over 
the k variables are then completed for the nuclear attraction integral in section 3 and for the 
coulomb repulsion integral in section 4. The use of the Gaussian functions is briefly discussed in 
section 5. 

2. Transformation of the Integrals 

It was shown by Boys that it is convenient to expand the product "'~I1;''''" ' I~m ' in eqs (1) and (2) at a 
point P on the directed line between A and B. Similarly, the product "'n'~·'~I1""'n"' I!?m'" is expanded 
about Q. The polar axes of the coordinate systems at points P and Q are initially along B-A and 
D- C, respectively. The coordinate system at P is obtained from the one at A by rotation through 
the Euler angles (a, j3 , y), collectively characterized as (PA), and translation without rotation a 
distance IP-A I =bR,/(a+b). 

The basis functions in eq (2) are then transformed by means of the following expressions. 
The rotation of the spherical harmonic through the Euler angles a, j3, yis given by [9]. 

I 

P1lml (cos O)limq, = L Dlmm'(a, j3, y)Pe1m' l (cos O')eim'cb' . 
m'=- l 

(5) 

When the spherical harmonic is translated without rotation a distance t along the polar axis, it is 
transformed [10] 

I (+ 11111) rP1lmi (cos 8)= L. tl-ir'jp)ml (cos 0'). 
j=l ml +1 111 1 

(6) 

Also, the trinomial expansion will yield 

211-( 2+~R 8 +_b_2_ R 2)" rA - rp a+b ,rp cos p (a+b)2 I 

(7) 

The use of eqs (5), (6), and (7) permit the expansion of the product "'~l~'''''''l~m' in terms of the 
coordinate sys tem centered at P. Included in thi s expansion is a product of two Legendre poly
nomials which may be expanded [11] 

p .lml(x)p 1ml(x) = "" Cmm'pm'-m(x). 
J j' L.J Jjj' J 

.J 

(8) 

We also note that by multiple use of the recurrence formula [12] for the Legendre polynomials we 
can obtain 

(9) 
n=-j 

where all = 0 if n =- j + 2r+ 1 for integer r. The an can easily be determined for any particular 
case. A similar series of transformations is applied in the coulomb repulsion integral to transform 
the product "'"'~'~n""'n"'/?'m"'; the coordinate system is centered at Q. 

The last step in transforming the integrands for both the nuclear attraction and coulomb 
repulsion integrals is to rotate the coordinate axis of P in the first instance to have its polar axis 
directed along C-P and for the coulomb repulsion integral the axes at P and Q are rotated to have a 
common orientation with the polar axis Q-P. In both these cases t4e Euler angles for the rotation 
at P will be denoted by (P' P). These results and the definitions in the appendix allow us to factor 
out the dependence on molecular geometry from eqs (1) and (2). 
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3. Nuclear Attraction Integral 

The nuclear attraction integral can be written 
I I' 

(Aniinlrc- 1IBn' i' m') =e- Xl 2: 2: Dt",cr*(PA )DI,m'cr'(PB) 
CT = - l cr' = - l' 

n!n'! (~RI)"2 (_~ Rl) 1!2(_b_ Rl)21l3 (_a_ RI) 2n~ 
ndn2!n3!n;!n;!n~! a+b a+b a+b a+b 

(10) 

1l2+ 1l~ J+k 
2: CJjj,crcr' 2:, ale 2: DJ+k(cr'- cr) ,M(P' P) 
J k=- (n2+1l2) M=- (J+k) 

It is readily seen that we must evaluate the integral 

I~~ = J dTrp2N+'-pLIMI (cos cpp) eiM~p -U'''l>rc- I ' (11) 

The primes have been dropped in eq (4) but the coordinate sys te m has its polar axis along C - P and 
its origin at P. Although M = 0 in this coordinate system from symmetry considerations, we s hall 
nonetheless re tain the fac tor PLIMI (cos cp)eiM~ since the more general expression is required for 
the electron repulsion integral. Substituting (3) into eq (11) we obtain 

1 J -'" ,-'"-'" 1M =- dk k- 2e,k,C- P. 
NL 

2fF (12) 

Without loss of generality CPk can be set equal to zero, so that 

exp [ik·rp] = ex!! [ikrp (cos ,(}p cos t/d- sin (}p sin t/J cos cpp)] 

where t/J is the angle between the CP axis and k. Consider 

(13) 

and integrate over the angular coordinates to obtain 

Utilizing the Webe r and Sonine formula [13] 

(.!!:...) "r(~) j "' dJ( ) - p'(2p.- l_ 2p 2 F (IL+V . +1.-~) 
o t " ate t - 2p"f(v+1) 1 1 2 ,v , 4p2 (14) 
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we obtain finally 

_ 7T3/2'L f(N+ L+3/2) M L k2 ) 
J -2L L f(L + 3/2)U2N+21,+3 P L (COS tjJ) k IF I (N + L + 3/2; L + 3/2; -4U2 . 

Substituting J into eq (12) and setting M = 0, we obtain 

_ iL f(N + L + 3/2) 
INL - 2L+17TI/2 f(L + 3/2)U2N+2L+3 

f ~ ( k 2 ) ~ ~ dkkL- 2PL (cos tjJhFI N + L + 3/2; L + 3/2; - 4U2 exp [ik . CPl. 

Integration over the angles yields 

with 

C - 2- L+1/2 f(N + L + 3/2) 
- 7T f(L + 3/2)U2N+2L+3 

This integral, considered as a Hankel transform [14], is given as 

7T ( I I , L+3/2 ) 
I NL = ICPIL+1U2N+2L+3 G~~ U21CPI2 L+1/2, N+L+3/2, 0 

where the G function is a polynomial in generalized hypergeometric functions [15]. 
An alternative formula may be obtained by relating the confluent hypergeometric function 

to the Laguerre polynomial [16] , 

F (N+L+3/2 ' L+3/2'-~)- N! - k2/4U2LL+I /2 (~) 
1 1 " 4U2 - (L+3/2)N e N 4U2 

and (a)L=(a) (a + 1) ... (a+ L-l). 
The Laguerre function is given as the power series [16] 

L+I /2 _ - _S ( k2 ) N (N+IAI/2) k2S 
LN 4U2 - s~ () N-S (2U)2SS! 

and therefore 

C N! N ( N+L+ I/2) 1 
I NL = ICPII/2(L+3/2)N~(-)S N-S (2U)2SS! 

fo'" dk kL+2S- I/2JL+I/2(kICPI)e- k2/4U2 (15) 

_ N! ICPIL N (_)S (N+L+1/2) 
-7T f(L + 3/2) U2(N+ l) L S! N- S 

s =o 
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4. Coulomb Repulsion Integral 

The coulomb integral, in the most general case, will reduce to 

[An[mBnl[lm'ICn"[1I mil Dn"'["'m'"] = e- XI - X2 

1 I' I" 1'" 

L L L L Dr,cr*(PA)Dl~'cr ' (PB)Dl~l,"cr"*(QC)Dr.'::'cr "' (QD) 
cr=- l u/ =- l' rr"= - l" a"'=- l'" 

± ± ~ ~ (bRI )l-i (- aRI)I'-i' ( dR2 )l"- i" (- CR2)1'" -i''' 
i =lal l=lcr' l i"=lcr"li'''=lcr''' 1 a+b a+b C+d C+d 

( [+ lui) (l' + lull) ([II + lulll) ([III + lullll) 
'+ u 'I + U ' 'II + u" 'III III L L L L } I I } I I } -I I J + lu I (2nj=n) (2n,=n') (2n~'=11") (211~"=n''') 

, , I 

( 2dR2 )"'2 (_ 2cR2 )n~' ( bR1 )2113 ( aR 1)211; ( dR2 )2n~ ( cR2 )2113' 
c+d c+d a+b a+b c+d c+d 

112+ n; n;'+n~' (J + k) -

L L OJ}}: C'J:;,<;;,':, L L apap' L D~a;.kcr), - M(P I P)D~<;~~-;cr") , M( Q' Q) 
J J' k=- (n2+n2) k'=- (n![+n![' ) M=- (J+k) -

J dTp'l dTQ'2 r~/+i'+2(nl +n\ )+n2+n2rQ:!,'+i'" +2(1l-\' +nl")+n2'+n!t 

pM (cos 8' )PM (cos 8' )eiM(<I> , - <I> ' )_ U2r,2 _V2",2 -.l. J+k PI J'+k' Q2 Q2 PI PI Q2 
r' 2 

where (J + k)- is the smallest of (J + k) and (J' + k'). Evidently we need to evaluate the follow

ing integral 

1M -J d d ' 2N+ L.P IMI( 8) ' 2N'+L.'P IMI( 8) NL.N'U- TI'l TQ2 rpI IJ cos PI rQ2 I..' cos Q2 

(17) 

where the polar axis is along Q - P. Again using the transformation of eq (1) we can separate 
the two-ekc tron integral into a product of integrals each over only the coordinates of one electron, 
These integrals are, of course, very similar to the nuclear attraction integral that has just been 
e valuated. Therefore, we can immediately write down the integral over k. 

IM NL.N'L.' = C J die kL+L.' - 2P L.M(cos 1jJ)P Lf'1(COS ljJ)er"t<p~Q) 
(18) 

with 

C - (-)L.' - L. - U- I 'L+L.' f(N+L+3/2)f(NI +L' +3/2) 
- 2 TTL U2N +2L. +3 Tf2N' +2L' +3f(L+ 3/2)f(L'+ 3/2) 
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The angular integrations are readily performed using eq (8) and the relation [17] 

eikrcos</J = L (21 + 1) iLjl(kr)P1( cos 1/1) -
1= 0 

Equation (18) reduces to 

1M NLN'U = 47TC L iJCMMJLL' f" dk kL +L'jAk IPQI) 
J 0 

(19) 

= 47TC L iJCMMJLul(J)-
J 

The confluent hypergeometric functions can again be given in terms of the associated Laguerre 
functions. We then find 

N'N" N N' (N+L+l.) (N'+L'+l.) 
lU) = (L+3/2)N'(L"+ 3/2)N' s~os~o (_)s+s' N -5 2 N' -5' 2 

--=:-:-=:-:-:-- U-2SV- 2S' dk kL+u +2(s+S'1' (kIPQI) _ u- . 
2-2(S+S'1 J " i(2 Tn + P) 
5!5'! 0 ']J e 4 [J2P 

For y2 = U~-:-: ' we again utilize the Weber and Sonine formula to obtain 

_ 1'.0 N!N'! 2L+L' - IIPQ IJ 
1(J) -7T (L + 3/2)ML' + 3/2)N' ru + 3/2) 

N N' 

LL 
s=-o s'=o 

r (L+ L' +2(5+5')+ J + 1) (N + L+ 1/2) (N' + L' + 1/2) 
(_)s+s' 2 , , 

yL+U+J+2(S+s '1+1 N -5 N -5 

U-2SV-2S' (L + L' + J + 2(5 + 5') + 1 1PQ12) 
5!5'! IFI 2 ; J +3/2; --y- - (20) 

The substitution of (20) into eq (19) completes the derivation of an explicit algebraic formula for the 
coulomb repulsion integral. 

5. Discussion 

The connection with the usual expression of these integrals in terms of error functions and 
derivatives of error functions may be seen from the representation of the error function by the 
confluent hypergeometric function [18] 

There is little reason , however, to replace the confluent hypergeometric functions with the more 
familiar error functions. For computational purposes the confluent hyper geometric functions are 
quite adequate. 
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These formulas make it possible to extend the use of Gaussian basis functions to higher 
principal and azimuthal quantum numbers which is required if the Hartree-Fock limit is to be 
approached for most molecules. The integral computation time will not materially increase as the 
quantum number is increased; the major difficulty is the inherent inaccuracy of the Gaussians 
(i.e., the wrong cusp values and asymptotic behavior) and a large number of basis functions is 
required to overcome this deficiency. For example, for a simple system like H2 about twice as 
many Gaussian basis functions as Slater functions are required to achieve comparable results [19]. 
Therefore, the main problem remains the handling of the very large blocks of numbers that are 
generated in the Hartree-Fock procedure. 

R t = IA -BI 

R2=IC - DI 

X _abR t 2 

t- a+b 

X2=cdR22 
c+d 

6. Appendix I. Definition of Terms 

p=aA+bB 
a+b 

Q=cC+dD 
c+d 

Ti2=c+d 
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