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1. Introduction

Gaussian wave functions have found increasingly wide application in recent years for molecular
energy calculations [1].! This is due to the relative ease of computation of the three- and four-
center coulomb integrals; a circumstance that was first noted by Boys [2] and McWeeny [3]. Boys
determined explicit formulas for all the relevant molecular integrals involving 1s Gaussian functions
centered at arbitrary points in space. He also observed that all other integrals could be obtained by
differentiation of the resulting formulas. Harris noted that this procedure would be very tedious
and he extended the explicit algebraic representation of the integrals to cases where the principal
quantum number of the Gaussian function equals the azimuthal quantum number [4]. However,
when the principal quantum number exceeded the azimuthal one the integrals were left as functions
of differential operators. In this paper explicit formulas will be obtained for all cases by a different
procedure than that used by Harris.

Both the one- and two-electron coulomb integrals will be considered. The nuclear attraction
integral is

nim
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where r12=|r,—r2| and r(-=|r—C|.
The usual expansion of the function r12~! in spherical [5] or cylindrical coordinates [6] is rejected in

favor of the relation [7]
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This representation is favorable for the evaluation of coulomb integrals with basis functions of the
following form

Yin(r) =r43"HP M (Cos 04)eimd 4~ 2 (4)

where (r4, 04, ¢4) are spherical polar coordinates with origin at the point 4 and P,I"l(x) is the
associated Legendre spherical harmonic [8]. It will be seen that the use of eq (3) essentially
reduces the task of evaluating the coulomb integral to the determination of the three-dimensional

Fourier transform of s, .

! Figures in brackets indicate the literature references at the end of this paper.
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It is convenient first to reduce the dependence of the coulomb integral on molecular geometry
by referring the coordinate axes at the atom centers to a new system with a common orientation.
This was done by Harris. Such a transformation will be discussed briefly in the second section of
this paper. By these means we isolate the basic integrals, whose evaluation is the main concern of
this paper.

The Fourier transform of ¢, is readily found in section 3. The remaining integrations over
the k variables are then completed for the nuclear attraction integral in section 3 and for the
coulomb repulsion integral in section 4. The use of the Gaussian functions is briefly discussed in
section 5.

2. Transtormation of the Integrals

It was shown by Boys that it is convenient to expand the product 4%y .2 inegs (1) and (2) at a
point P on the directed line between 4 and B. Similarly, the product 5% .2, is expanded
about (). The polar axes of the coordinate systems at points P and (Q are initially along B—A4 and
D—C, respectively. The coordinate system at P is obtained from the one at 4 by rotation through
the Euler angles (a, B, y), collectively characterized as (PA), and translation without rotation a
distance |P—A4|=0bR,/(a+b).

The basis functions in eq (2) are then transformed by means of the following expressions.

The rotation of the spherical harmonic through the Euler angles a, B8, y is given by [9].

!
P (cos 9)lime =" Dymm'(a, B, y)Pe™| (cos 6')eim". (5)
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When the spherical harmonic is translated without rotation a distance ¢ along the polar axis, it is
transformed [10]

l |m|
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Also, the trinomial expansion will yield
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The use of eqs (5), (6), and (7) permit the expansion of the product Y, 2 in terms of the
coordinate system centered at P. Included in this expansion is a product of two Legendre poly-

nomials which may be expanded [11]

Pimi) i) = Z Cr P ). @

.

We also note that by multiple use of the recurrence formula [12] for the Legendre polynomials we
can obtain

PP = auPlmx) 9)

n=—j

where a,=0 if n=—j+2r+1 for integer r. The a, can easily be determined for any particular
case. A similar series of transformations is applied in the coulomb repulsion integral to transform
the product ¥, 5% ...+ the coordinate system is centered at Q.

The last step in transforming the integrands for both the nuclear attraction and coulomb
repulsion integrals is to rotate the coordinate axis of P in the first instance to have its polar axis
directed along C—P and for the coulomb repulsion integral the axes at P and Q are rotated to have a
common orientation with the polar axis Q—P. In both these cases the Euler angles for the rotation
at P will be denoted by (P'P). These results and the definitions in the appendix allow us to factor
out the dependence on molecular geometry from eqs (1) and (2).
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3. Nuclear Attraction Integral

The nuclear attraction integral can be written
Lo
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It is readily seen that we must evaluate the integral
I::VIL :derPZ‘\'+I‘P1‘|“’| (C()S d)P) ei;‘lld),,—lr'zril,rc‘l’ (11)

The primes have been dropped in eq (4) but the coordinate system has its polar axis along C — P and
its origin at P. Although M =0 in this coordinate system from symmetry considerations, we shall
nonetheless retain the factor P,Ml (cos ¢)ei”® since the more general expression is required for
the electron repulsion integral. Substituting (3) into eq (11) we obtain

1 [ 5 e e
I;‘V'L=—fdk k-2eik-c=P,
2112

(12)
f drprp™N*EP M (cos hp)eUPra+ivb +ik i,
Without loss of generality ¢« can be set equal to zero, so that
exp [i7c-r_;a]=exp [tkrp (cos Op cos Y--sin Op sin Y cos ¢p)]
where i is the angle between the CP axis and k. Consider
= f Jdrprpvees fo" f 02" dbpddp sin OpPLM (cos 6p)
exp [ikrp (cos Bp cos Y+ sin Op sin O cos ¢p) + iMbp— Urp?] (13)
and integrate over the angular coordinates to obtain
=@t f P (eos ) [ drpry )b,
Utilizing the Weber and Sonine formula [13]
(5 T(*3*)
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we obtain finally

_ w2, T(N+L+3/2) k
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Substituting J into eq (12) and setting M =0, we obtain
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Integration over the angles yields
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This integral, considered as a Hankel transform [14], is given as

Inn= U?|CP|?
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where the G function is a polynomial in generalized hypergeometric functions [15].
An alternative formula may be obtained by relating the confluent hypergeometric function
to the Laguerre polynomial [16],

F (N+ L+3/2; L+3/2; ~ﬁ> =M g (ﬁ)
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and (a).=(a)(a+1). . .(a+L—1).
The Laguerre function is given as the power series [16]
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and therefore
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4. Coulomb Repulsion Integral
The coulomb integral, in the most general case, will reduce to
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where (J+ k) is the smallest of (J+k) and (J'+£'). Evidently we need to evaluate the follow-
ing integral
IMNLN’L’ZJ. ddeTQz r,,'lzNJfLP,‘“"(cos gm)-rqzzv'+1/pL,|m(COS ng)

i —bpy)—-U2re —v22
eiMbqo—dpy)-Usrp —V T2 (17)

where the polar axis is along Q—P. Again using the transformation of eq (1) we can separate
the two-electron integral into a product of integrals each over only the coordinates of one electron.
These integrals are, of course, very similar to the nuclear attraction integral that has just been
evaluated. Therefore, we can immediately write down the integral over £.

™y 0=C J dk kL +L=2P M(cos Y)P M (cos )eiRr—a
F(N+L+3/2; L+ 3/2; — k2[4U2),F (N' + L' +3/2; L' + 3/2; — k2/4V?)
with

I'(N+L+3/2T(N'+ L' +3/2)
[N+ 2L+ 32N + 2L+ 3L, + 3[2)[(L' + 3/2)

C:(_)L’Q—L—L'—lﬂ.iL+1/
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The angular integrations are readily performed using eq (8) and the relation [17]
etkreosy =N 21+ 1) iYj(kr)Py( cos ¥)-
=0
Equation (18) reduces to
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The confluent hypergeometric functions can again be given in terms of the associated Laguerre
functions. We then find
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For 'y2=UZ+ = we again utilize the Weber and Sonine formula to obtain
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The substitution of (20) into eq (19) completes the derivation of an explicit algebraic formula for the
coulomb repulsion integral.

5. Discussion

The connection with the usual expression of these integrals in terms of error functions and
derivatives of error functions may be seen from the representation of the error function by the
confluent hypergeometric function [18]

2 J‘I g o (1 3 )
—— | efdt=—Fil=;=; —2):
Val, V' \272

There is little reason, however, to replace the confluent hypergeometric functions with the more
familiar error functions. For computational purposes the confluent hypergeometric functions are
quite adequate.

40



These formulas make it possible to extend the use of Gaussian basis functions to higher
principal and azimuthal quantum numbers which is required if the Hartree-Fock limit is to be
approached for most molecules. The integral computation time will not materially increase as the
quantum number is increased; the major difficulty is the inherent inaccuracy of the Gaussians
(i.e., the wrong cusp values and asymptotic behavior) and a large number of basis functions is
required to overcome this deficiency. For example, for a simple system like Hy about twice as
many Gaussian basis functions as Slater functions are required to achieve comparable results [19].
Therefore, the main problem remains the handling of the very large blocks of numbers that are
generated in the Hartree-Fock procedure.

6. Appendix I. Definition of Terms

Ri=|A—B| P=aA+bB
Re=|C—D| a+b
et -2
X2=CdR22
c+d U?=a+b
Vi=c+d
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