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The theory of pedestrian que uei ng has been developed by several authors under the assumption 
that all pedestrians have the same gap acceptance functions . In this paper the theory is modified 
to take into account a distribution of gap acceptance functions . Some calculations made with the 
new formulas seem to indicate that only if traffic is very heavy will the difference between the results 
of the two theories become noticeable. 

The theory of pedestrian queueing at a traffic inter­
section has been developed by several authors, [1-3).1 
In this theory it is assumed that pedes trians arrive at 
a street corner according to a Poisson process with 
parameter A. They observe the arrival of cars in a 
single lane at times tl, t2, ... such that the gaps 
ti - ti - I are identically distributed random variables 
with probability de nsity functions cp(t). Each pedes­
trian decides to cross or not according to a gap accept-

I ance function a(t) which is defined to be the probability 
that a pedes trian wm choose to cross the s treet if the 
gap (measured in time) to the next arriving car is t. 
In addition the assumption is made that each pedes­
trian makes a decision to cross when he first arrives 
at the street corner. If he chooses not to cross at his 
time of arrival he joins the group at the intersection 
and thereafter does not cross indepe ndently of the 
group. The group makes a decision, at the time of 
arrival of each car, whether or not the succeeding 
gap is large enough to permit it to cross. The assump­
tion has been made that the gap acceptance function 
of the group is a(t), the same as for the individual. 

There are several unreali sti c assumptions in this 
theory, as was pointed out in [3]. One of the chief 
unrealistic features of the theory is that the group 
of pedestrians crosses as a whole, so that there is no 
latitude to describe differences in decision procedures. 
It is the purpose of this paper to calculate the effects 
of variation in gap acceptance functions in a popu­
lation, on the theory previously developed. We shall 
see that unless the variation in gap acceptance func­
tions is ve ry great, the assumption of a single gap 
acceptance function is not a bad one. 

Let us first assume that there are a finite number of 
gap acceptance functions al(t), a2(t), .. _ ak(t) and 
that people with a i(t) arrive at the corner in accord­
ance with a Poisson process with rate parameter Ai. 
It is also assumed that pedestrians in each group arrive 
and depart independently of those in any other group. 

I Figures in brackets indicate the literature references al the end of this paper. 
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We shall study the embedded Markov chain of the 
number of pedestrians in queue each time a car on 
the road passes the group of people. There are two 
state probability vectors which are relevant in the 
present problem. These are 

O(i) = (Oo(i), Ol(i), _ .) 

(1) 

where OJ(i) is the probability that there are j pedes­
trians of group i in que ue, and OJ is the probability 
that the total number of pedestrians in queue is j. 
That is to say, if N r is the number of pedestrians of 
the rth type in queue at a regeneration point when the 
queue is in an equilibrium state 2 then 

Oii) = Pr{Ni = j} 

OJ=Pr{NI +N2 + . . . +Nk=j} · (2) 

The generating function for the OJ(i) has been derived 
in [3]_ It is 

., .. L1i(S) 
l/Ji(S) =)' 0iL)sI = 1 _ .() 

~ E, S 
(3) 

where 

L1i(S) = Jo" ai(t)cp(t)e- >..Ti(tXl-Sldt 

Ei(S) = Jo" (1- ai(t»cp(t)e- >..Ti(t)(l-Sldt 
(4) 

and 

Ti(t) = J: (1 - ai(u»du . (5) 

Therefore, by the assumption of independence, the 



generating function for the OJ can be written 

00 

tJ;(s) = L OjSj=tJ;1(S)tJ;2(S) . .. tJ;k(S). 
j = O 

(6) 

The present theory can be extended to the case where 
gap acceptance functions depend on a continuous 
parameter v, a(v, t). Let the parameter v have a 
density function g(v), and let the Poisson rates also 
be dependent on v. Then if tJ;(v, s) replaces tJ;i(S) in 
eq (6) we may write as the generalization of the last 
equation 

log tJ;(s) = flOg tJ;(v, s)g(v)dv (7) 

where integration is over the range of v. Other 
formulas in r31 can be similarly generalized. 

Let us examine some particular results for the 
present more general theory. It is shown in [1] that 
if tJ;(t) has the form cp(t) = a exp (- at) and a(t) is a 
step function 

a(t) = 0 t :s; T 

=1 t > T 
(8) 

then the expected number of pedestrians in queue is 

(9) 

Now let t... and T be functions of v. The formula for 
the expected number in queue now becomes 

(10) 

Let us examine the situation in which t...(v) = t..., a con­
stant independent of v, T(v) is the function 

T(v) = To(1 + v) 
E E --:s;v :s; -
2 2 

(11) 

and g(v) is 

1 
g(v)=-

E 

= 0 otherwise. 

(12) 

The integral in eq (10) is ele mentary and leads to the 
result 

(13) , 

If E is small then 

A. J. Goldman (private communication) has pointed 
out that the same sort of expansion can be derived for 
general g(v) symmetric around v = O. 

Supposing now that the parameters have the par­
ticular values 

To = 5 sec, a = 0.1 sec- l, 

the ratio of /-t/t... for random gap acceptance functions 
to that for a single gap acceptance function, calcu­
lated from eq (13), is as shown in table 1 for different 
values of E. Clearly, with these values of the param­
eters one could not hope to distinguish between the 
simpler and the more complicated theories experi­
mentally except at high traffic densities. For example 
if a is increased to 0.5 sec- 1 and the other parameters 
held fixed the values of /-trandom/ /-tsingle are as given in 
table 2. When E is as great as 1.2 it might be possible 
to detect a difference between the two types of theory 
(when the critical gaps range uniformly between 3.5 
and 6.5 sec as contrasted to a single gap acceptance 
function of 5 sec) but the average headway between 
cars of 2 sec, or a flow of 1800 cars/hr is abnormally 
high. Further detailed calculations of the generaliza-

TABLE 1. Value of /J-ralldom//J-single as afunction ofEfor To = 5 sec, 0-=0.1 sec- I 

• 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

JJ.ra'tl do m 1.00 1.00 1.00 1.00 1.0l 1.03 1.04 1.05 1.07 1.09 1.11 
IL. ingle 

TABLE 2 . Values of /J- ra lldom//J-single as a function of E for To=5 sec, 0- = 0.5 sec- 1 

• 0 0.2 0.4 0.6 0.8 

jJ.ro.nd9m 1.00 1.0l 1.03 1.06 1.11 
ILljngll! 

21t is shown in [3] that such a state aJways exists except for extremely pathological 
headway densities. 
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1.0 1.2 1.4 1.6 1.8 2.0 

1.17 1.25 1.34 1.44 1.57 1.72 



---------------_._-

tions of formula in [3] lead also to the conclusion that 
it would be very diffic ult to distinguish be tween a 
theory which requires a single gap acceptance func­
tion for the entire population, and one which allows 
a di stribution of such functions, if one looks at ex­
pec tation values alone. It is probable that the effects 
of a distribution of gap acceptance functions are 
not important except in heavy traffic , when it often 
happens that several members of a group of pedes­
trians will cross while others do not. 

33 

7 14- 498 0 - 64- 3 

References 

[1] J. C. Tanner, The delay to pedes trians cross ing a road, 
Biometrika 38, 383 (1951). 

[2] A. J. Mayne, Some further results in the theory of pedes tri ans 
and road traffic, Biometrik a 41, 375 (1954). 

[3] G. H. Weiss, An analysis of pedes trian queuein g, J. Res. 67B 
(Math. and Math. Phys.) No.4, 229-243 (1963). 

(Paper 68BI- 1l3) 


	jresv68Bn1p_31
	jresv68Bn1p_32
	jresv68Bn1p_33
	jresv68Bn1p_34

