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The limiting form for small cf> values of the sums 

Fr(cf» == ~ (1/j311)2r exp (- j3,.zcf» 
n =< 1 

Mr(cf» == i (l/j3,,)'r- 1 e rfc (j3" v'q;) 
11'= 1 

whe re r is an integer and j3" is the nth zero of the Bessel fun ction } o(x), have been obta ined. Rela ted 
fun ctions which arise in these problems are al so cons ide red. 

1. Introduction 

In the study of a physical proble m involving diffusion processes in cylindrical geometry, a 
number of infinite sums have been encountered of the form 

'" Fr (</» == L (1//3,,)2r exp (- /3,,2</» (l-lA) 
n= l 

(1-1 B) 

where /3" is the nth zero of the Bessel function Jo(x). For these functions, the limiting behavior 
for small </> values is required. The technique of evaluation involves contour integration, the use 
of Laplace transforms, and several other methods of some interest, and the results given below 
are, except as noted, not known to be recorded elsewhere. In the cylindrical geometry problem 
in which these functions, and the related Mr(<I» and Nr(<I» introduced later, were found to occur, 
the </> ~ 0 solutions examined correspond to the short time behavior of the system (see eq (H) 
below). It has been found that these quantities are frequently encountered in studies of diffusion 
and related phenomena, heat conduction for example. 

The asymptotic expression [1, p. 505] t for /3" is 

j.,,- I [ ] 1-2j 

Lim /3" == /3f. = L D:j 1T'(n - t ) 
n- CXI ) = 0 

·V aHecii OS Al omic Laboratory, General Electri c Company, Atomic Power Department . Pleasanton, Calif. 
orand um. GEAP-3853. daled July I, 1961. 

I Figures in brac kcls indicate the literature references at the end of this paper. 

17 

714- 498 0 - 64- 2 

(1-2) 

This paper was first issued as a G. E. internal mem-



where the first few coefficients of the series are 

lXo=+1 

lX2 =-31/384 

lX3 =+ 3779/15360 (1-3) 

jmin is the value of the index for which the summand is a minimum, so that the series is terminated 
at the term just before the smallest [2, p. 140]. 

From (2), it is immediately apparent that the series in (IA) and (lB) converge, and that F reef»~ 
and Cr(ef» exist for all positive real values of rand ef>. 

2. Evaluation of F1(c/» 

To evaluaie F1(ef», consider the function 

fi 1» = J e- z2cb J I(Z) dz 
Z2 Jo(z) 

C 

(2-1) 

integrated about a contour 2 consistin~ of two lines parallel to the real axis and at an arbitrary 
distance, plus and minus, from it large enough to include z=± ip Ii. Applying Cauchy's theorem 
[3], 

fi1»=+i1T (Lim[z e- z2cb .J1(Z)] + ~ Lim [2(Z-f3n) e- z2cb .J1(Z)]) 
%-+0 Z2 J o(Z) ;:1 z-./3, Z2 J o(z) (2-2) 

where the two limits are the residues of the poles of the integral at zero and f3n respectively. The 
first term here is i1T/2 as can be found from the leading terms in the series for In(Z). By expanding 
the summand in a Taylor's series about Z=f3n, the second term can also be evaluated, and it is 
found that 

(2/i1T)f(1» = 1-4 ! (1/ f3?J exp (- f3;,1» = 1 - 4F1(1)). 
n = 1 

Taking the Laplace transform, defined by [4] 

Lp[g(1))] ;; J g(1)) exp (- p1»d1> 

of both sides of (2-3) 
o 

Lp[I-4F1(1))]= (2/i1T) J 7.2(P~Z2)j:i;ldz. 
c 

The integral here has a pole at Z = ipli and the residue at this pole is readily found. 
the integral, then, is 21Ti times this residue [3] , and 

L [I-4F1(A-.)]=+2 _3/2I1CVp) 
p 'I-' p IoCYp) 

where [5, p. 372] 

Using the asymptotic form [1, p. 203] for In(z) for large Z 

m .-1 
eZ mm [(n + m + ~) 1 

I n(Z) = (21TZ) 1/2 L (- 2z)- m f(n - m + ~ ) m! 
m = O 

(2-3) 

The value of 

(2-4) 

(2-5) 

(2-fl) 

2 The technique used here was sugges ted by Dr. G. M. Roe of the Gene ral Electric Research Laboratory, Schenectady, N.Y. (private communication June 13, 
1955). 
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it follows that as p ~ 00 

Lp[I- 4FM»)] = + 2p- 3/2 - p-2 - (l/4)p -5/2 - (I/4)p-3 + . (2-7) 

This form suggests letting 
1- 4FM») =! an1>n/2 (2-8) 

n=l 

and taking the Laplace transform of this expression [4, p. 137] 

Lp[I-4F I (1))] 

= (1/2) !alP- 3/2 + (1) !a2P-2 + (3/2) !a3P-5/2 + (2) !a4p-3 + . (2-9) 

Comparing the coefficients of like powers of p in (7) and (9) yields the values of the a's and for 
small 1> 

F I (1)) 

= + (1/4) - (1/ y:;;: )1>1 /2 + (1/4)1> + 0/12) (1/ y:;;: )1>3/2 + (1/32)1>2 + . (2-10) 

Note that, from thi s equation, using the notation of Watson [1 , p. 502] 

x 

0-0(1) ;;; 2: I/{3//2 = FI (O) = 1/4 (2- 11) 
n= l 

a well· known result. 
Differentiation of (2- 10) with respect to 1> yields , for small 1> 

Fo(1)) 

= (1/2) (1/ y; )1> - 1/2 - 0/4) - (1/8) (1/ y; )1> + 1/2 - (1/16)1> + . (2-12) 

It is of interest to compare (12) with the similar expression [6 , par. 6.491 , p. 129] in whic h {311 
is replaced by n 

~ exp (-n21»=( Y:;;:/2)1>- 1/2_(1/2)+v1T1>- 1/2 ~ exp (-n21T2/1». 
n=l n= t 

The expression corresponding to (2-10) for small 1> is [7, pp. 234 and 484, and 19, p. 64]. 

1/ .-1 
111111 

x 

2: (l/n2) exp (-n21» 
11 = 1 

- (1)/1T)3/2 2: (l /n2) [1-(3/2) (1)/n21T2) + (15/4) (1)/n21T2)2 + ... ] exp (- n21T2/cf». 
11 = 1 

The repeated occurrence of powers of cf>1 /2 in these relations is particularly worthy of note. 

19 

(2-13) 

(2-14) 



3. Evaluation of Fr(cjJ) for r::::2 

From (2-10) 

= ~~~ [+ (1/4)<1> - (2/3) (1/-";;)<1>312 + (1/8)<1>2 + (1/30) (1/-";;)<1>512 + (1/96)<1>3 +. . . .] 

= ~~ f (l/f3n4) (1- e- !3"f,<i». 
n=1 

From the relation [1, p. 581, eq (1) with /J~Ol 

(3-1) 

by multiplying both sides of this equation by z, and integrating with respect to z from zero to x, the 
expression 

is obiained. From this 

and carrying through the indicated integration 

(3-2) 

From this at x = 0 

(3-3) 

Multiplying (3-2) through by x and integrating from zero to z, it follows that 

(3-4) 

At z= 1, then 

UO(2) == f (1/f311)4 =F2(0)= 1/32. (3-5) 
n=! 

Combining this result with (3-1), it follows that for small <I> 

= + (1/32) - (1/4)<1> + (2/3) (1/-";;WlI2 - (1/8)<1>2 - (1/30) (1/-";;)<1>512 (3-6) 

- 0/96)<1>3 + . . .. 

Further examination of this method of successive integrations will show that it can lead to 
the evaluation of all sums of the form F,.(O) and G,.(O), and 
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00 

Lim 2: (l/fJ;,") exp (-.B~<I»=Lim Fr(<I». 
</>-->0 n = t </>-->0 

In particular, app)jcation of the technique outlined yields for small <I> values 

F3(<I» 

= + (1/192) - (1/32)<1> + (1/8)<1>2 - (4/1S)(l /v;:)<1>5/2 + (1/24)<1>3 

+ (1/10S)( I/v;:)<1>7/2 + (1/384)<1>4 + .. .. 
(3-7) 

These results do not appear to be well known except for FI'(O) = O"~.) whic h can be found in 

general by a procedure due to Lord Rayleigh [9]. These quantiti es are all rational fractions, the 
first few of which are as follows: 

r F 1'(0) = 0"0(1') 

1 1/4 
2 1/32 
3 1/192 
4 11/12,288 
5 19/122,880 

For integer values of r, O"~.) is half the coeffi cien t of z2r- t in the expansion of Jt (z)!Jo(z) . In fact, 

thi s follows by integrating Jt(Z) /[Z2,}0(Z)] around the contour given in sec tion 2 above .3 See also, 
the paper by Speigel [10]. 

4. Evaluation of G1(¢) and Gr(¢) 

The temperature v(R, t) in an infinite c ircular cylinder of radius a and thermal diffusivity K, 

as a function of time, t , for the boundary co nditions 

v(R,O) = O v(a, t) = 1 

is given by [7, p. 328] 

(4-1) 

The function has the Laplace transform 

(4-2) 

Using the asymptotic expansion for Io(z), eq (2-6) above, it readily follows that 

Lim Lp [v(O, t)] 
,-.0 

= (27Ta)t /2 p-3/4[1- (1/8) CV~/a)p-t /2 - (7/128) CV~/a)2p- t + . . . ] exp (- apl /2/~) (4-3) 
Kt /4 

Each of the terms in (4-3) is of the form 

p-(2k+l)/4 exp (- apl /2/-v-;.) (4-4) 

3This technique for finding cr;1 was suggested by F. W. J. Olver of the NBS. in a leiter dated Marc h 29, 1962. 
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where k = 1,2,3, . . .. The inverse Laplace transform of this expression is 

2- 1/4+(l /2)k1T- 1/2t-3/4+ (l /2)kD(I /2)_k( a2 /2Kt) 1/2 exp (- a2 /8K t) 

where the Dv(z)'s are parabolic cylinder functions [11 , 12]. Inserting this expression and 

into (4-3), it follows that for small cp values 

Lim v(O, cp) 
<1>-->0 

= (8/cp)1/4[+ D_I j2{l/-y2;f;) 

- (1/4 V2)cp'h D -3/2(1/-y2;f;) 

- (7/64 cp D_5/2(1/-y2;f;) + ... ] exp (-1/8cp ). 

(4-5) 

(4-7) 

Carsten and McKerrow [13] have obtained the leading term in (4-7) in a somewhat different form. 
It is known that [11, p. 119] 4 

(4-8) 

where Kv(x) is the Bessel function of the second kind with a purely imaginary argument [1, p. 77]. 
From this, then, for small cp 

v(O, cp) = (1/v;;j;)e- 1/81> K I /4(1/8cp) [1 + .... ] (4-9) 

For some purposes thi s may be an easier form to use than (4-7)-the KI /4(Z) values are tabulated 
[13] for 0 < z(O.l) < 5.0 and also for z=6, 8, and 10. 

Higher terms in Lim v(O, cp) are of interes t and to obtain these, use is made of the asymptotic reo 
<1>-->0 

lation [14, p. 92] as z ~ 00 

Dv(z) 

= (zVe- Z2/4)[l- v(v-l)(1/2z2)+(lj2) v (v-l)(v-2)(v-3)(1/2z2)2 + ... ] 

and from this, it follows that for small cp 

D_ k/2(1/Y2cp) 

=(2cp)+ kI4e-I /81>[1- (1/4)k(k + 2)cp + (1/32)k(k + 2)(k + 4)(k + 6)cp2 + ... ] 

and 

Now since (cf (4-1)) 

it follows that for small cp 

00 1 L J (J3 e- J3~1> = ( 1/2)[l-v(0,cp)] 
n = I f3 I n) 

GM») 

= (1/2) - (1- cp + 4cp2 + .. . ) exp (-lj4cp). 

(4-10) 

(4-11) 

(4-12) 

(4-13) 

4 The e~pression give n in IJ 1. p. 119] is ambiguously, if nol incorrectly. printed. Equation (4--8) is the proper form, a s can be shown by using the relations {12] 
D- 1/2(X)= 2- 1/ 4e - (l /4).I"UU4; }.1 : x'l /2) and 112. p. 13, eq 1.8.7] U(3(; Y2 ; x'l/2) = (x2/21T2) 1 /4e+(lJ4 ).I'tK ~1 /4(x2/4). 
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Since 

integrating (4-13) and using (3-3), 

Lim :i f3;.J 1(13 ) exp (- f3'f.1» = Lim [+ (1/8) - (1 /2)cp 
4>-->0 n = 1 1 n 4>-->0 

+ (1/6)1>(7 - 4cp + 81>2..t- ... ) exp (-1/4cp) + (7/24)Ei(- 1/41» ] (4-14) 
where 

(4-15) 

is the exponential integral function , described and tabulated in lahnke-Emde [8]. Asymptotically, 
for large values of the independent variable 

Ei(- x) = - x - 1e- X [1- (l/x) + 2(1/x)2 - 6(1/x)3 + ... J (4-16) 

and introducing thi s in (4-14), for small cp's 

G2(1)) 

= + (1/8) - (1/2)cp + 41>2(1 - 91> + ... ) exp (- 1/4cp ) 
I 

(4-17) 

S uccessive integration in the same way, will yield G,.(1)) for any r "3/3. Thus, for example, 

G3(1)) 

= + (1/48) - (1/8)cp + (1/4)1>2 + 36cp3 exp (-1 /4cp) + .. .. ) (4-18) 

Differentiation of (4-13) with respect to 1> leads to 

Go(1)) 

= + (1/4cp)2(l- cp + ... ) exp (- 1/41» (4-19) 

and further differentiation gives expressions for G- r (1)) in the limit of small cpo 

5. Computation of UO(3/2) and UO (5/2) 

A general method for finding 
U-o(,·) = F,.(O) = f (1/ f3 n)2" 

n = 1 

(5-1) 

where r is an integer "3 1 has been developed above. In the next section , it is necessary to use 
U-O(3/2) and (To(5/2)-i.e., odd rather than even powers of f3n occur in the sums. In contras t to the 
previously considered case, it does not appear possible to express the sum of the odd powers of f3n 
in closed form. 5 The numerical computation of (To(r/2) is simplified by noting that (1-2) yields very 
good approximations to f3n - r. Thus, for example, the difference between (l/f3nP and (1 /f3n*)3 is very 
s mall when only the first three terms of the asymptotic series are taken, e.g., 

S Note the similarity to the sum ~ l /nr= .".r/v(r), where v(r) is an integer for even values of r; but the sum cannot be reduced to a closed form for odd r [6, p. 140]. 
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n (1/ /3n)3 

1 0.07190 33694 
2 .00594 51708 
3 .00154 30866 

This suggests writing [15] 

0.07172 48723 
.00594 51433 
.00154 30863 

0"0(r/2) == ~ (1/ {3nY = ,~ [(1/ {3nY - (1/ {3n *t ] + ~ (1/ {3n *)r. (5-2) 

Using the asymptotic relation (1-2), terminated at the 0:3 term, for (3n *, the sums can be evaluated in 
terms of tabulated functions - the polygammafunction [16, p. 9], the sums of negative powers of the 
integers [16, pp. 244, 304], and Euler numbers [16, p. 276, etc.]' Combining these relations, it is 
found that 

0"0(3/2) = 0.0808 8147 (5-3) 

with an uncertainty of no more than one in the last place given. Similarly, using the same tech
niques, it has been found that 

0"0(5/2) = 0.0126 5566 (5-4) 

6. The Sums Mr(¢} and Nr(¢} 

The functions F r (1)) and G,.(1)) are closely related to two other functions 

M,.(1)) == f (1/{3n)2,.- 1 erfc ((3n"\/(i;) (6-1) 
n=1 

(6-2) 

which also occur in some cylindrical geometry problems. Here, the complementary error function 
[17] 

erfc (z) == (2/"';;) f ' exp (- e)dg (6-3) 

From eq (2-10) for small 1> 

J 1,>/2 

~ (1/ (3n2) 0 exp (- {3,.2z2)dz 

J 1,' /2 [ I I I ] = +(l/4)-(I/"';;)z+-z+-- Z3+- Z4+ . . . dz. 
o 4 12V:; 32 

(6-4) 

By the change of variable 'Y) = {3nZ, the expression on the left of this equation can be evaluated, and 
it is found that for small 1> values 
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= CTP/2) - (1/2) (1/"';;)4>1/2 + (1/7r)4> - (1/6) (1/"';; )4>3/2 

- (1/24) (1/7r)4>2 - (1/80) (1/v:;;. )4>5/2 +. . .. 

Similarly, using (3-6) for small 4> 

M3(4)) 

= CTo(5 /2) - (1/16) (1/V;;)4> 1/2 + (1/6) (1/V;;)¢ 3/2 

- (1/3) (1/7r)c/J2 + (1/20) (1/v:;;. )4>5/2 + (1/90) (1/7r)c/J3 

+ (1/336) (1/v:;;.)4> 7/2 +. . .. 

(6-5) 

(6-6) 

It is clear that thi s procedure can be used to obtain Mr(4)) fro m the value of Fr- I(c/J) in each case. 
Note that , using the asymptoti c seri es [18, p. 129] for erfc ({3 n"vlq; ) for large 4> values 

M r(c/J) 

= Jrr4>- 1 /2,~ (1/{3,,)2T [1 - (1/2) ({3,?¢ )- 1 + (3/4) ({3,,24» - 2 

- (15/8) ({3,,24> )- 3 + . . .] exp (- {3n24» 

= J.,; c/J - 1/2 [Fr(c/J) - (1/24>)F T+I(4)) + (3 /4c/J2)F,·d c/J ) 

-: (15/8c/J3)F m (¢ ) + .... ] 

(6-7A) 

(6-7B) 

The Nr(4)) functions are obtained in a similar way, by integration , of the corresponding G,.(c/J). By 
this procedure, it is found that for small 4> 

N1(c/J) 

= N1(0) - J.,; 4>1 /2 + ~ 4>3/2(1 - 74> + 74c/J2 + . . . ) exp (- 1/4¢ ) (6-8) 

N2(4)) 

= N2(0) __ 1 _(3 - 4c/J ) c/J1 /2 -~4>7/2 exp (-1/44» +. 
12v:;;. y:;; (6-9) 
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The leading terms in these expressions can be computed by rapidly convergent series to be 

N1(0) = 0.26659 . .. , N1(0) = 0.054 972 .... 

For large c/J values 

Nr(c/J) 

= Jrrc/J-l/2 ~ [1- (1/2) (j3n2c/J) - 1 + (3/4) (j3n2c/J)-2 - (15/8) ({3n2c/J) -3 + ... ] 

exp (- (Uc/J) 
X (3n2r+1Jl(j3n) (6-10A) 

The assistance of F. W. J. Olver and of John H. Hubbell of NBS is gratefully acknowledged. 
The manuscript was prepared by L. M. Nicholson whose painstaking care with the difficult 
mathematical typing is deeply appreciated. 
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