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This paper contains a discussion of the evaluation of generating functions of the form F ({x})

=2 S 2 Mj(ni, . . . np)xi™xe"2 . . . xx" where Mj(ny, . . . ng) is the jth largest of the integers
"l n".
(n1, . . . ng). An alternate technique to one proposed by Carlitz is used in the calculation.

In a recent paper Carlitz has considered the problem of evaluating the generating functions

Fi({x}= 2 L. 2 Mjny, nay . . nRxTox s L X% (1)
"1=U Ilk=0
where Mj(ny, ns, . . . ny)is the jth greatest of the set of integers {n;}, [1]." His method was essen-

tially a combinatorial one. It is our purpose in the present note to reconsider this problem by

evaluating, instead of Fj, the generating function

o o
v  ongs . Ny
Gi({x}: gI= E L. § e—$Mj(ny, . . ‘"’"""1"112"1' .k
n1=0 nE=0

from which it is possible to derive an expression for F; by differentiation

Fi({x}; s)Z—%(j ({x}; s)

=0+

Expressions for related generating functions can also be obtained in this manner.
The principal tool in the following analysis is the identity

e~ sMi(ny, . . ) =g f e‘s'dtzsf e SH(t—n)H({t—n») . . . Hit—ng)dt
] ny) 0

My(ng, . . .

where H(x) is the Heaviside step function

Hx)=0,x<0

=1,x>0.

©)

We can immediately derive the expression for Gi({x}; s) from eq (4) by multiplying the general
term of this equation by x;" ... x" and summing. An interchange of the orders of summation

and integration is easily justified for |x|, |x2|, ... |xx| <1 and so we have only to evaluate the sum
® 3] 1 — xltl+1
X'
ZH(t —n)x"= Ex" = . (6)
=%
n=0 n=0
'L. Carlitz, The generating function for max (ny, . . . ng), Portugaliae, Mathematica 21, 201 (1962).
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With this result we find

S

(M =sm)fil=8)) 0 o o (L =573) JJ

Gi({x};: s) el — [0+ ) (1 — xol41) L (1 — 21+ 1)ds. @

In order to evaluate this expression we need the following Laplace transform

where a is a constant. Equations (7) and (8) together yield:

1
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Gi({x}:s)
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Now let us consider the evaluation of the other G;. We require, for these generating functions,
identities similar to that of eq (4). The preceding analysis suggests that we try the sum of integrals

s J’x e s{[1—H(t—n)|H(t—ny) ... H(t—np) + H(t — ny)[1 — H(t —n)|H(t —ns) . . . Hit — n)
0

+...+H(it—n)H(t—ny)...[1—H{t—n)}dt =U(ni, na, . .. nk;s) (10)
for the evaluation of G». By repeatedly using eq (4) we find
U, .. . ni; s)=[e Mg . - . np) — g=sMy(ny, . . . mp)] - [e=8My(ny, g, . . - 1)
== @@ o o0 IRk, o Pl Bipo0 o M- 1) — e~ sMi(ny, - np] (11)
Assume now that the maximum of the {n;} is n;. Then since n; appears in each of the terms in

all of the brackets except the first, these brackets must be equal to zero. Furthermore we must
have

Ml(nz,. .o nk)=M2(n1,...nk). (12)
Hence we find
Gy({x}: S)—Gl({x};8)=2« .. 2 Ui(na, . . . nges s)xa™. .. "k, (13)
ny Uz’

The function Gi({x}; s) has already been calculated in eq (9) so that G can be determined to be

Go({x}; S):Z Gi({x} —xr; )+ (A —KGi({x}; s) (14)

where {x} —x, is the set {x} less the element x,. Similar expressions can be obtained for all of
the G; by starting from a sum of integrals similar to eq (4), each of which has j factors 1 —H(t —n,)
with the remaining factors being of the form H(t—n,). In this way we can write the recurrence
relation

k
Gj1({x}; 5)= Z} Gi({x} —xs; )+ (1 —k)Gi({x}; s). (15)
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The function F({x}) is now obtained from eqs (3) and (9) in a straightforward manner:

1 XriXrg
F = +
i({x}) 1=21) . . . (1—2ak) { Z 1—x7 %>§1 xrlxr2
p_X1X2 . . . Xk
and others of the F; can be derived by recurrence
k
Fin({xh) =Y Fi{x} —x) + (1 = bF;({x}). (17)
r=1

By these techniques we may derive Carlitz’s result

Fi{) =3 -1y (= 1) s (18)

s=j

where
U _ 1 X1X2 . . « Xg
i Py D e L peeees ()
where JAxi, x2, . .. xs) is the symmetric function determined by flxi, xz, . . . xy).

Similar techniques can also be used for the calculation of generating functions like

H}-({x})=i .. i Mj(n}, n}, ... nQJa™ . =Y Y (M, na, - m)Pa™ (20)

n;=0 ng=0 ny=0 ng=0

When \ is an integer H; can be expressed as a derivative of G;. However, one can calculate
H; for any \ by the same technique as we have used for A=1. Define a function G/*({x}; s)
analogous to that in eq (4) except that Mj(ni, . . . ng)is replaced by M(nl, ... ny). Theneq(4)
remains valid except that each n; is to be replaced by n} and the succeeding steps lead, in the case

j=1, to the expression

1 1

N S S P st — g I — oy [+ 1

Gk == = fo Pl - (e b
y

The Laplace transform of a[‘X RS

sf e——sta tX “dt=a{1—(l—a)2 anef(n-%l))‘s:l (22)

0 n=0

which leads to

Gi({x}; 5)= L {1— S x~[1—(l—x~) S x”e—("“V‘S]

1xys s (]—xl)...(l—xk) ;J Jn2=01

+3 S e [1— (1 — 0] Z<x,x reoete— | (23)
j>r
which reduces to eq (9) when A=1.
The method suggested in this note can be generalized to deal with any functional of the form
Mji(¢(n1), @(n2), . . . ¢(ny)) providing that ¢(n) is a monotone increasing function which tends to
infinity with n. It can also be used to calculate Laplace transforms rather than generating

functions.
(Paper 68B1-110)
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