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Young'S modulus, fiS fi func t ion of temperature up to 1000 °e, was determined fo r eight 
ruti le specimens of difl erent crystallographic orientat ions. From t hese, t he followin g four 
e las t ic co mplia nces or combinat ions of t hem were determin ed as a fun ction of te mperature, 
8 11, S'3, 2 8 13+S44, and S ll - S I2-S6G/2 . The method used was t he sa me as had been used in 
a previous study for ruti le a t r oom temperature. 

I. Introduction 

In a previous investigation [1 ], 1 all the elastic con­
stants of rutile were determined at room temperature 
by an application of the resonance technique. 
Briefly, the m ethod of approach consists in deter­
mining the mechanical r esonance freq uencies of both 
flexural and torsional vibration of a group of cylin­
drical rods of differ ent orien tations of the same type 
of crystal. Young's and th e shear modulus are com­
puted for each bar from these frequencies and from 
its dimensions and density. Then , from a set of 
equations given by N ye [2], for in stance, relating 
Young's and the sheiLI' modulus to orientation and 
elastic compliances, one solves for the elastic com­
pliances (since the other parameter s, Young's modu­
lus, shear modulus and orientation are known). 

The number of equations r equired in the set , and, 
hence, also the number of specimens of different 
orientation, depends upon the number of elastie 
constants required to completely describe a particular 
crystal. If more than the minimum number of 
specimens are available, then, from an overdeter­
mined set of equations, one may obtain an estimate 
of the precision of measurement of the elastic con­
stants as well as the elastic constants themselves . 
This has b een don e for corundum [3] as well as 
rutile [1]. 

In this paper, some of the elastic compliances 
already determin ed at room temperature for rutile­
those arising from the flexural resonance frequen­
cies- are extended to elevated temperatures using 
the same m ethod of iLpproach. As far as we know, 
there is no data available on the temperature depend­
ence of any of the elastic properties of rutile. 

1 Figures in brackets indicate the li terature references at the end of this 
paper. 

2 . Experimental Procedure 

The method for obtain ing resonance frequencies, 
both at room and elevated temperat LU·es, has already 
b een described [4- 6]. However , cer tain r efin ements 
(such as the use of fin e wires of phosphor bronze as 
suspension members) which were developed to obtain 
torsional resonan ce for the shorter rutile specimens 
[1] were not applicable at elevated temperatures. 
Furthermore, with the glass and wire fib ers used at 
elevated temperatures as suspension members ill 
place of the cotton or silk threads used at room 
temperature, it was not possible (mainly b ecause of 
the small cross section of the specimens) to obtain 
satisfactory torsional resonances even for the longer 
specimens. Consequently, th is investigation is r e­
stricted to the flexural r esonance frequencies and to 
those elastic compliances which can be derived from 
them, as mentioned above. 

For this purpose, 8 of the original 16 specim ens 
were used. This included all of the longer ones 
(which yielded the most r eliable values of r esonance 
frequency) and those of the shorter ones having 
orientations which would be most significant in giving 
a Young's modulus-orientation r elationship. The 
specimens used, along with their length, mass, and 
orientation, are given in table 1. The sam e notation 
for designating specimens and orientation , as well as 
most of the other notation used in the previous 
paper [1] is retained here. 

Flexural resonance frequencies for each specimen 
were determined in steps of about 100 °C, allowing 
sufficient time for thermal equilibrium to be attained 
at each temperature. Usually two or three sets of 
t emperature determinations were taken for eaeh 
specimen. The glass fib er suspensions (which yielded 
the morc reliable r esults) were used for all the speci-
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mens up to the limit of their applicability; from 700 
to 800°C. The wire suspensions gave satisfactory 
responses with the longer specimens up to the highest 
temperatures of the furnace, about 1400 °C, but were 
unsatisfactorv for two of the smaller specimens oyer 
about 800°C. Since the changes in elastic compli­
ances were fairly gradual and continuous with 
temperature, it was felt to be a more accurate pro­
cedure to extrapolate the values obtained with the 
glass suspension for these two specimens up to 1000 
°C rather than use the data obtained with the wire 
suspenSlOn. 

TABLE 1. Properties of "single crystal" rutile specimens 

End Center Other end 

Speci- --,-- I I 
n:r:;~er M ass L ength 1 __ 8 ----'1_"'_-'---_8_--'-, _ "'_-'----_8_-'----_"'_ 

21 

23 
24 
30 
44 

49 
50 
51 

I 
g em 

2.6317 13.236 

2.8205 12.1 68 
2.3654 11. 714 
1. 1523 5.816 

15.0251 9.848 

!
7.1208 1 11. 128 ! 

21. 5907 1 17.107 
16.0263 17.634 

All angles in degrees 

Linde rocls 

{ 12.5 2. r, 
12. 3 2.2 
14.0 7.3 
43.3 

I 
34.1 

58.7 24.0 
88.8 44.1 

NBS rods 

~U ! °05~4 ! 86.2 

} 12.7 

16.1 
45.6 
58.5 
88.4 

87.8 
89.5 
86.2 

{ 14.3 1. 8 2.1 14.2 1.5 
7.0 14.8 6.3 

37.9 44. 7 33.6 
24.2 

I 59.3 23.7 
43.4 I 90.0 44. [) 

g:~ I ~ ~ I 18 1. 0 86 8 0.9 

Young's modules at some elevated temperature, 
Y t, was computed from the resonance frequencies, 
from the equation 

The room temperature value of Young's modulus, 
Yo, is known from the previous investigation; 

.It and .10 are the flexural resonance frequenci.es at tem­
perature t and room temperature respectively. It 
should be noted that the ratio, f,/j~, applies to over­
tones as well as to the fundamental resonance 
frequency . This was used for the longer specimens 
to provide additional points (obtained from over­
tones as well as the fundamental) during a modulus­
temperature run. The points based on overtones 
also served as an internal check on the consistency 
of the modulus-temperature relationship. The 
terms involving l, m, and 11 are the correction for 
thermal expansion. Since the thermal expansion 
of rutile is anisotropic, the coefficient being about 
30 percent larger in the "e" or [001] direction than 
in the "a" or [100] direction, it was necessary to take 
this into account in a manner which has already 
been described [7] . The length of the long axis of the 
specimen at temperature t is It, and lo is the same 
dimension at room temperature; similarly for m 
and 11, n being the cross-sectional dimension in the 

direction of flexural vibration and m being the cross­
sectional dimension perpendicular to 11. A more 
detailed description of the application of this aniso­
tropic thermal expansion correction to rutile is given 
in the appendix. Actual values of the thermal 
expansion of rutile in both "a" and "e" directions 
were supplied by Richard K. Kirby of the NBS 
staff . The possibility that certain orientations 
might change with increasing temperature due to 
this anisotropic thermal expansion was also con­
sidered. However, it was found that even in the 
extreme case (t = 1000 °C and 0= 45 °C) the change 
in orientation would be insignificant, i.e., less 
than W. 

The scatter of the experimental points of Y t as a 
function of temperature, based on repeated runs 
and (where used ) on overtones, about a smooth 
curve dmwn through the points was estimated to be 
about 5 parts per 1000. 

3. Results 

Values of I/ Yt interpolated from the experimental 
data at even 100°C tempel"ftture intervals for the 8 
specimens measured are shown in table 2. The data 
at 25°C are from the previous investigation [1]. 
The compliances are obtained from eq (6) of [1 ], 

+I( +866)' 4 . 22 2" 812- 8 11 2" S111 0 S111 4>. (2) 

This equation was solved by computer at each 
temperatme (100 °C, 200 °C ... 1000 °C) in the 
same manner as before. It is noted that since 8 
specimens are used and 4 coefficients are solved for, 
an overdetermined set of equations is still available 
from which, as previously mentioned, one may 
derive an estimate of the precision of the coefficients 
from a least square best fit, as well as the coeffi cients 
themselves. Table 3 presents the four elastic com­
pliances along with their standard deviations, com­
puted in this manner. The standard deviations of 
the compliances, especially at the lower tempera­
tures, compare favorably with those computed at 
room temperature. As might be expected, these 
standard deviations tend to grow somewhat larger 
at the higher temperatures. The four coefficients 
are shown graphically as a function of temperature 
in figure 1. 

Once the compliances are known, they may be 
resubstituted in equation (6) and "theoretical" or i 

"computed" values of I j Y t may be solved for at 
each temperature. The numbers associated with 
each value of l /Y t in table 2 represents the difference 
between these "computed" values and the "experi­
mental" or "observed" val lIes given in the table. 
Following the same convention as before, a -I- sign 
indicates that the experimental value of l / Y t is 
larger than the theoretical Olle and vice versa. 
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TABLE 2, Reciprocal of Young's modulus for rutile specimens of various orientations as a functi on of temperatm'e, 
l /y,=sl3 in lO-l!m'IN (l0-13cm'/dyne) at indicated temperature (OC) 

Specimen No. 25 100 200 300 400 500 600 700 800 900 1000 

21. __ ____________ _________ 2.666 2. 708 2. i62 2.815 2.87 1 2.927 2.986 3.050 3. 108 3. J70 3.241 
.0005' . C015 -.0001 -.0003 - . 0001 -.OOJO - .OOil -.0023 - .0008 -. C016 

23 __________ __ ____ ________ 2.690 2. 731 2.783 2.840 2.895 2.950 3.011 3.072 3.134 3.198 3.263 
-.0000 -.0012 -.0013 .0009 . 0005 .0016 -.0005 . 0019 -.0002 -.0004 

24 ___ _____________________ 3.047 3.092 ;1.147 3.203 3.257 3.314 3.373 3.444 3.512 3.580 3.647 
.0003 -. 0013 -. 0056 -.0029 - . 0020 .0004 .0081 .0026 .0054 .0.105 

30 ________________________ 3.881 3.921 3.973 4.032 4.074 4. 125 4. 175 4. 226 4.303 4.304 4. 'J2:J 
-.0003 .0017 -.0070 .0035 . 0024 -.0006 - .0098 - . 0032 -.0065 -.0128 

44 ____________ ______ _____ _ 2.694 2. 778 2.872 2.900 3.048 3.135 3. 223 3.320 3.408 3.501 3.597 
.0001 -.0002 -.0006 -.0004 -.0003 .0001 .0011 .0003 . 0007 .0019 

49 ________________________ 6.777 6.777 6. i79 6. 798 6.800 6.820 6.846 6.877 6. 922 6.964 7.047 
.00 16 . 0009 . 0093 .0022 .0017 .0016 .0014 .0058 .0006 . 021 2 

50 ___ ___ ___ _______________ 6. 650 6.651 6.656 6.665 6. 681 6.704 6.732 6.769 6.812 6.859 6.9JJ 
-.0010 -.0017 -.0057 -. 0014 - .00 10 -.0010 . 0027 .0036 .0018 -.0096 

51. ______________________ G. 757 6. 755 6.759 6.764 6. 777 6. 798 6.825 6.855 6.889 6.944 6.998 
-.0006 .0004 -. 0054 -.0017 -.0013 -.0005 -.0018 -.0086 -.0009 -.0092 

*Lower number in each box is difference between "observed" value of l / Y t and "computed" val ue. Observed values of l/Y, a rc given in all cases except at 25° C 
where computed val ues from previous in vestigation [1] arc ~ivcn. 

T AB LE 3. E lastic compliances of 1'uti le as a func tion of 
tempemture i n 10- 12 1/l2/ N (10- 13 cm2/dyne) 

Tem perature 

' C 
25 _______ ____ _ 
100 __________ _ 
200 __________ _ 
300 __________ _ 
400 ___ _______ _ 
500-- ________ _ 
!\OO _________ _ _ 
700 __________ _ 
800 __________ _ 
900 _______ ___ _ 
1000 _________ _ 

Su 

6.787 ±. 0003' 
6. 786 ± . 0006 
6.789 ± .00 10 
6. 799 ±. 0040 
6.808 ±.0016 
6.828 ± . 0012 
6.855 ±. 0009 
6.886 ± . 0039 
6. 926 ±. 0035 
6.973 ±.0026 
7.036 ±. 0088 

.. Standard deviation. 

z 
N~ 7 5" 
N 

I 2513 +$44 0 

<J) 

w 
<..> z 
!'! 
--' 
Q. 

" 0 
<..> 

<..> 
i= 
<J) 

<! 
--' w 5" 

100 200 300 

2. 592 ±. 0004 
2.635 ±. 0010 
2.689 ±.0015 
2. 7H ±.0066 
2. 803 ±.0024 
2.860 ±.0017 
2.923 ±. 0013 
2. 988 ±. 0058 
3. 045 ±. 0052 
3. 113 ±.0038 
3. 181 ±. 0131 

400 500 

TEMPERA TURE 

6.464 ±. 0016 
6. !i2S ±. 0039 
6.617 ± .0063 
6.725 ±. ()273 
6. 793 ±. 0099 
6.881 ± . OOil 
6. 955 ±. 0056 
7. 065 ±. 0238 
7.219 ±. ()21 7 
7.325 ±. 0157 
7.414 ±. 0540 

600 700 800 

. "C 

8. 197 ±. 001l 
8. ()26 ±. 0056 
7.843 ±.0041 
7.687 ±.0178 
7.529 ±.0065 
7.396 ±. 0046 
7.272 ±. 0036 
7. 142 ±. 0155 
7.046 ±.0141 
6.955 ±. 0103 
6.890 ±. 0353 

] 

l 

900 1000 

FIG U UE 1. Elastic complian ce of nltiie as a function of 
temperature. 

Figure 2 shows the Young's modulus-orientation 
dependence for ru tile at t wo selected temperatures, 
400 °e and 1000 °e, obtain ed in the same mann er 
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as the room temperatm e curves, which are repro­
duced from the original study for comparison . 

It may be seen from the figure that in addition to 
the expected decrease in modulus for all orien tations 
wi th increasing temperature, the anisotropy of the 
cl'ystal decreases also. F or any given value of 0, 
the change in Young's modulus, as a function of c/>, is 
less at 1000 °e than at 25 °e. Also, [or any par­
t icular value of c/>, the variation in 0 appears to 
decrease at the higher temperatures, i .c., the lines 
becom e flatter. 

OJ 
E 
u ..... 

4 .0 (fI - 25"(- ---, 

~ w 
z 3.8 ->-
0 

~ 
0 

N 1000°C 
E ..... 

3.0 z 
-0 2.8 

z 2.6 

)C 2.4 
(fI 2.2 :::> 
-' 2.0 :::> 
0 
0 1.8 2 
(fI 1. 6 

'" z 1.4 
:::> 10 20 
0 
>- e, deg 

F I G V UE 2. Young's modulus of 1'utile as a function of orientation 
at selected temperatures . 

e is angle of s pecimen axis with respect to He" axis of crystal; ¢ is angle between 
the project. ion of specimen axis in (001) plane of crystal. an ci "a" axis of crystal. 
('1"'ho subscri pt HJ" is retained in YI from the prCyiOllS inYcst igation (lJ to indicate 
the "free" rather than the l<purc" modulus.) 



4. Appendix 

The problem is to express eq (1) in terms of thE' 
known thermal expansions for rutile for given 
crystallogTaphic directions. We define these two 
thermal expansions for the "e" and "a" directions 
respectively as L te/Loe and LIa/Loa. 

(1) We consider first a "e" axis rod, i.e. , a speci­
men of which the long dimension is in the direction 
of the crystallographic "e" axis. For this condition , 

so that equation (1) becomes 

(2) We next consider an "a" axis rod. In th is 
case, since the thermal expansion of the cross­
sectional dimensions are not equal, a specimen 
having a circular cross section at room temperature 
will develop a noncircular cross section as the 
temperature increases. This will give rise to two 
separate flexural resonance frequencies; one in the 
direction of the shor t cross-sectional dimension, the 
"a" direction, and the other in the direction of the 
long cross-sectional dimension, the "e" direction. 
These two types of vibration are considered sepa­
rately. For vibrations along the "a" direction, 

(since "n" is always the dimension in the direction 
of vibration). Equation (1) then becomes 

For vibrations in the "e" direction, 

and eq (1) becomes 

It is clear that any specimen having its long 
axis in the (001) plane (0=90°, 'P from 0 to 45°) will 
have the same thermal expansion corrections as the 
two just given, since the same considerations holding 
for an "a" axis rod would apply. 

It also follows from these considerations that rods 
having their long axis in the (001) plane should 
develop two noticeably different curves of (f t!}O )2 as 
a function of temperature. This was observed 
experimentally; however, when the appropriate 
thermal expansion correction was applied to the 
points forming each curve (giving Y t/Yo as a function 
of temperature), the two curves were brought into 
coincidence within experimental error. Conversely , 
for "e" axis rods it was observed that even if two 
resonance freque~cies were present at room tempera­
ture, due to the fact that the cross section was not 
perfectly circular (at room temperatUl"e), never­
theless, the two CUl"ves of (f t!}0)2 as a function of 
temperature, based on these two room temperature 
resonance frequencies, coincided within experimental 
error. This was further verification of the validity 
of the thermal expansion corrections. 

(3) The final case to be considered is that of a rod 
having its long axis at some angle, 0, with the "e" 
axis. In this case, since the "e" axis does not 
coincide with any specimen axis (l, m, or n) as has 
been true in the previous examples, the thermal 
expansions along l, m, or n will generally not equal 
L le/Lne or L ta/Loa, but will lie between these values. 
The following equation [7] then applies, 

Yt= (/..t.)2{ 1-~La+(~Le_ ~La) 
Yo}o La Le La 

[3 cos2 0-sin2 0(1 + 2 cos2 f)]} 

where f is the angle between the direction of vibra­
tion and the plane containing the "e" axis and the 
lon~ axis of the rod. If this equation is written for 
each of the two directions of vibration, and the 
average of these two equations is taken, the following 
relationship results : 

Yt =Y o fh)2 {1-~La 
Vo ave. ~La 

+(~Lc_ ~La) [3-5sin20] ~ . 
Le La .J 

This final equation is also applicable to the 
specialized orientations previously discussed. It is 
useful for the case in which the long axis of the rod 
coincides with the [001] direction or lies in the (001 ) 
plane, but in which the direction of vibration does 
not coincide with a crystallographic axis. 
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