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Young’s modulus, as a function of temperature up to 1000 °C, was determined for eight

rutile specimens of difterent crystallographic orientations.

From these, the following four

elastic compliances or combinations of them were determined as a function of temperature,

811, S33, 28131+ 844, and sy — S12— Sg6/2.

The method used was the same as had been used in

a previous study for rutile at room temperature.

1. Introduction

In a previous investigation [1],* all the elastic con-
stants of rutile were determined at room temperature
by an application of the resonance technique.
Briefly, the method of approach consists in deter-
mining the mechanical resonance frequencies of both
flexural and torsional vibration of a group of cylin-
drical rods of different orientations of the same type
of erystal. Young’s and the shear modulus are com-
puted for each bar from these frequencies and from
1ts dimensions and deunsity. Then, from a set of
equations given by Nye [2], for instance, relating
Young’s and the shear modulus to orientation and
elastic compliances, one solves for the elastic com-
pliances (since the other parameters, Young’s modu-
lus, shear modulus and orientation are known).

The number of equations required in the set, and,
hence, also the number of specimens of different
orientation, depends upon the number of elastic
constants required to completely describe a particular
crystal. If more than the minimum number of
specimens are available, then, from an overdeter-
mined set of equations, one may obtain an estimate
of the precision of measurement of the elastic con-
stants as well as the elastic constants themselves.
This has been done for corundum [3] as well as
rutile [1].

In this paper, some of the eclastic compliances
already determined at room temperature for rutile
those arising from the flexural resonance frequen-
cies—are extended to elevated temperatures using
the same method of approach. As far as we know,
there is no data available on the temperature depend-
ence of any of the elastic properties of rutile.

! Figures in brackets indicate the literature references at the end of this
paper.

2. Experimental Procedure

The method for obtaining resonance frequencies,
both at room and elevated temperatures, has already
been deseribed [4-6]. However, certain refinements
(such as the use of fine wires of phosphor bronze as
suspension members) which were developed to obtain
torsional resonance for the shorter rutile specimens
[1] were not applicable at elevated temperatures.
Furthermore, with the glass and wire fibers used at
elevated temperatures as suspension members in
place of the cotton or silk threads used at room
temperature, it was not possible (mainly because of
the small cross section of the specimens) to obtain
satisfactory torsional resonances even for the longer
specimens.  Consequently, this investigation is re-
stricted to the flexural resonance frequencies and to
those elastic compliances which can be derived from
them, as mentioned above.

For this purpose, 8 of the original 16 specimens
were used. This included all of the longer ones
(which yielded the most reliable values of resonance
frequency) and those of the shorter ones having
orientations which would be most significant in giving
a Young’s modulus-orientation relationship. The
specimens used, along with their length, mass, and
orientation, are given in table 1. The same notation
for designating specimens and orientation, as well as
most of the other notation used in the previous
paper [1] is retained here.

Flexural resonance frequencies for each specimen
were determined in steps of about 100 °C, allowing
sufficient time for thermal equilibrium to be attained
at each temperature. Usually two or three sets of
temperature determinations were taken for each
specimen. The glass fiber suspensions (which yielded
the more reliable results) were used for all the speci-
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mens up to the limit of their applicability; from 700
to 800 °C. The wire suspensions gave satisfactory
responses with the longer specimens up to the highest
temperatures of the furnace, about 1400 °C, but were
unsatisfactorv for two of the smaller specimens over
about 800 °C. Since the changes in elastic compli-
ances were fairly gradual and continuous with
temperature, it was felt to be a more accurate pro-
cedure to extrapolate the values obtained with the
olass suspension for these two specimens up to 1000
°C rather than use the data obtained with the wire
suspension.

TaBLE 1. Properties of “single crystal’” rutile specimens

End Center Other end
Speci- 1
men Mass | Length '] ) [} | @ ] ¢
number i
All angles in degrees
Linde rods
q cm c o ‘ q
fa1m 9 12.5 2.6 o= | < 14.3 Il £
21 2.6317 | 13.236 { e | 2l } 127 | 21 { o | I
23 2. 8205 12. 168 14.0 7.3 16.1 7.0 14.8 6.3
24 2. 3654 11. 714 43.3 34.1 45.6 37.9 44.7 33.6
30 1. 1523 5. 816 58.7 24.0 58.5 24.2 59.3 23.7
44 15. 0251 9. 848 88.8 4.1 88. 4 43. 4 90.0 4.5
NBS rods
49 7.1208 11.128 87.8 0.0 87.8 0.0 88.0 1.5
50 21. 5907 17.107 88.8 5.4 89.5 5.4 90. 0 5.0
51 16. 0263 17. 634 [ 86. 2 0.4 86. 2 1.0 86. 8 0.9

Young’s modules at some elevated temperature,
Y, was computed from the resonance frequencies,
from the equation

Y — Yo(ft/f0>2(lz/lo)3 (mo/m ) (”0/”1)3' (1)

The room temperature value of Young’s modulus,
Yy, 1s known from the previous investigation;
frand fy are the flexural resonance frequencies at tem.
perature ¢ and room temperature respectively. It
should be noted that the ratio, f,/fy, applies to over-
tones as well as to the fundamental resonance
frequency. 'This was used for the longer specimens
to provide additional points (obtained from over-
tones as well as the fundamental) during a modulus-
temperature run. The points based on overtones
also served as an internal check on the consistency
of the modulus-temperature relationship.  The
terms involving [, m, and n are the correction for
thermal expansion. Since the thermal expansion
of rutile is anisotropic, the coefﬁcwnt being about
30 percent larger in the “¢” o r [001] direction than
in the “a’” or [100] direction, it was necessary to take
this into account in_a manner which has already
been described [7].  The length of the long axis of the
specimen at temperature ¢ is [, and [, is the same
dimension at room temperature; sunllally for m
and n, n being the cross- sectional dimension in the

direction of flexural vibration and m being the cross-
sectional dimension perpendicular to n. A more
detailed description of the application of this aniso-
tropic thermal expansion correction to rutile is given

in the appendix. Actual values of the thermal
expansion of rutile in both “ " and ‘“‘¢” directions
were supplied by Richard K. Kirby of the NBS
staff. The possibility that certain orientations
might change with increasing temperature due to
this anisotropic thermal expansion was also con-
sidered. However, it was found that even in the
extreme case (1=1000 °C and =45 °C) the change
in  orientation would be insignificant, i.e., less
than %°.

The scatter of the experimental points of Y, as a
function of temperature, based on repeated runs
and (where used) on overtones, about a smooth
curve drawn through the points was estimated to be
about 5 parts per 1000.

3. Results

Values of 1/Y, interpolated from the experimental
data at even 100 °C temperature intervals for the 8
specimens measured are shown in table 2. The data
at 25 °C are from the previous investigation [1].
The compliances are obtained from eq (6) of [1],

1/Y /= s13=81; sIn* -+ 835 cos* 9+ (25;5-F844) sin?6 cos?

+:12- (SIQ_‘SM‘I"S—;B) sin*fsin*2¢. (2)

This equation was solved by computer at each
temperature (100 °C, 200 °C 1000 °C) in the
same manner as before. It is noted that since 8
specimens are used and 4 coefficients are solved for,
an overdetermined set of equations is still available
from which, as previously mentioned, one may
derive an estimate of the precision of the coeflicients
from a least square best fit, as well as the coeflicients
themselves. Table 3 presents the four elastic com-
pliances along with their standard deviations, com-
puted in this manner. The standard deviations of
the compliances, especially at the lower tempera-
tures, compare favorably with those computed
room temperature. As might be expected, these
standard deviations tend to grow somewhat larger
at the higher temperatures. The four coeflicients
are shown graphically as a function of temperature
in figure 1.

Once the compliances are known, they may be
resubstltuted i equation (6) and “theoretical”’ or

“computed” values of 1/Y, may be solved for at
each temperature. The numbers associated with
each value of 1/Y7, in table 2 represents the difference
between these “computed” values and the ‘‘experi-
mental’” or ‘“observed’” values given in the table.
Following the same convention as before, a + sign
indicates that the experimental value of 1/,
larger than the theoretical one and vice versa.
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TABLE 2.

Reciprocal of Young’s modulus for rutile specimens of various orientations as a function of temperature.

1/Y=s}; in 10-12m2/ N (10-13cm?/dyne) at indicated temperature (°C)

Specimen No. 25 I 100 ' 200 l 300 ‘ 400 500 600 700 } 800 i 900 } 1000

£ | S 2. 666 ‘ 2.708 2.762 2.815 2.871 2.927 2. 986 3. 050 3. 108 3.176 3.241
. 0005* 0015 —. 0001 —. 0003 —. 0001 —. 0016 —. 0011 —. 0023 —. 0008 —. 0016

2.3 S — 2.690 l 2.731 2.783 2.840 2.895 2. 950 3.011 3.072 3.134 3.198 3.263

—. 0006 —. 0012 —. 0013 0009 . 0005 0016 —. 0005 . 0019 —. 0002 —. 0004

P e e 3.047 3.092 3. 147 3.203 3.257 3.314 3.373 3.444 3.512 3. 580 3. 647
. 0003 —.0013 —. 0056 —. 0029 —. 0020 . 0004 . 0081 . 0026 . 0054 0105

) 3.881 3.921 3.973 4.032 4.074 4.125 4.175 4.226 4.303 4. 364 4.423
—. 0003 . 0017 —. 0070 .0035 . 0024 —. 0006 —. 0098 —. 0032 —. 0065 —.0128

A4 S 2. 694 2.778 2.872 2. 960 3.048 3.135 3.223 3.320 3.408 3.501 3.597
0001 —. 0002 —. 0006 —. 0004 —. 0003 . 0001 . 0011 . 0003 . 0007 . 0019

O 6.777 6.777 6.779 6. 798 6. 800 6. 820 6. 846 6.877 6. 922 6. 964 7.047
. 0016 . 0009 . 0093 . 0022 . 0017 . 0016 . 0014 . 0058 . 0006 .0212

D0 R R 6. 650 6. 651 6. 656 6. 665 6. 681 6.704 6.732 6.769 6. 812 6. 859 6.911
—. 0010 —. 0017 —. 0057 —. 0014 —. 0010 —. 0010 . 0027 . 0036 . 0018 —. 0096

.5 ] S S 6.757 6.755 6. 759 6.764 6.777 6.798 6. 825 6. 855 6. 889 6. 944 6.998
—. 0006 . 0004 —. 0054 —. 0017 —. 0013 —. 0005 —. 0018 —. 0086 —. 0009 —. 0092

*Lower number in each box is difference between “observed’” value of 1/Y, and “computed’ value.

where computed values from previous investigation [1] are given.

TasLe 3. Elastic compliances of rutile as a function of
temperature in 10712 m2/N (10~ cm?/dyne)
Temperature S Sz3 2813+ Sus St—=Sr= Se
o
7 £.0003%|  2.502 40004 | 6.464 4. 0016 7 . 0011
6 4. 0006 | 2.635 4.0010 | 6.528 . 0039 26 —t. 0056
9 %0010 | 2.689 +.0015 | 6.617 . 0063 43 . 0041
2.0040 | 2,744 £.0066 | 6.725 . 0273 =+£.0178
2.0016 | 2.803 +.0024 | 6.793 = 0099 . 0065
0012 | 2.860 +.0017 | 6.881 = 0071 . 0046
5 40009 | 2.923 +.0013 | 6.965 . 0056 . 0036
5 4. 0039 | 2.988 40058 | 7.065 . 0238 =.0155
5 4. 0035 | 3.045 4£.0052 | 7.219 . 0217 +. 0141
3 £.0026 | 3.113 420038 | 7.825 4. 0157 |  6.955 = 0103
5 4.0088 | 3.181 +.0131 | 7.414 . 0540 |  6.890 +. 0353
|
* Standard deviation.
. s S
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8 TT—
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Ficure 1. Elastic compliance of rutile as a function of
temperature.
Figure 2 shows the Young’s modulus-orientation
dependence for rutile at two selected temperatures,
400 °C and 1000 °C, obtained in the same manner
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Observed values of 1/Y, are given in all cases except at 25° C

as the room temperature curves, which are repro-
duced from the original study for comparison.

It may be seen from the figure that in addition to
the expected decrease in modulus for all orientations
with increasing temperature, the anisotropy of the
crystal decreases also. For any given value of 0,
the change in Young’s modulus, as a function of ¢, is
less at 1000 °C than at 25 °C. Also, for any par-
ticular value of ¢, the variation in 6 appears to
decrease at the higher temperatures, i.e., the lines
become flatter.

4.0
38
36|E
34
32
3.0
2.8

YOUNG'S MODULUS ,Ys IN 10" N/m2 (10'% DYNES/cm?)

X NN\ ]
24 0
20 3
20 ]
1.8 SECOND CURVE OF EACH GROUP-$=3 |
L6 THIRD CURVE OF EACH GROUP- #=15°
" FOURTH CURVE OF EACH GROUP-$=0 .
a 020 30 40 50 60 70 80 90
6.,deg

Ficure 2. Young's modulus of rutile as a function of orientation

at selected temperatures.

0 is angle of specimen axis with respect to “‘c” axis of crystal; ¢ is angle between
the projection of specimen axis in (001) plane of crystal, and ‘e’ axis of erystal.
('The subseript “f”” is retained in Y7 from the previous investigation [1] to indicate
the “free’” rather than the ‘“pure’” modulus.)



4. Appendix

The problem is to express eq (1) in terms of the
known thermal expansions for rutile for given
crystallographic directions. We define these two
thecmal expansions for the ‘“¢” and “@” directions
respectively as L,/L, and L,/L,,.

(1) We consider first a ‘¢’ axis rod, i.e., a speci-
men of which the long dimension is in the direction

of the CI‘VSthOO‘I'dpth “¢’” axis. For this condition,
Zzich mtintiLm
=== and —=—=—=
lo Lo, mo Ny Lga

so that equation (1) becomes

(5 () (72)

(2) We next consider an “e” axis rod. In this

case, since the thermal expansion of the cross-
sectional dimensions are not equal, a specimen
having a circular cross section at room temperature
will develop a noncircular cross section as the
temperature increases. This will give rise to two
separate flexural resonance flequenues one in the
dlrectlon of the short cross-sectional dlmenslon the

’ direction, and the other in the direction of the
lono' cross-sectional dimension, the ‘¢’ direction.
These two types of vibration are considered sepa-

rately. For vibrations along the “a” direction,
b Ligymi Lic ot L
Ly LOa mo LOa Ny Log

(since “n’’ is always the dimension in the direction
of vibration). Equation (1) then becomes

v () () () (1)
76

For vibrations in the ‘¢’ direction,

b Ligymi_ Lia 1 L
ro -LOa mo_—LOa’ and nO_LOu

W=

and eq (1) becomes

__17 > (Lta> L0a> <L00>3

! LOa Llc
D)
fO LOa Ltc

It is clear that any specimen having its long

axis in the (001) plane (6=90°, ¢ from 0 to 45°) will
have the same thermal expansion corrections as the

two just given, since the same considerations holding
for an “a” axis rod would apply.

W=y

It also follows from these considerations that rods
having their long axis in the (001) plane should
develop two noticeably different curves of (f,/f,)? as
a function of temperature. This was observed
experimentally; however, when the appropriate
thermal expansion correction was applied to the
points forming each curve (giving Y ,/Y, as a function
of temperature), the two curves were brought into
coincidence within experimental error. Conversely,
for “¢” axis rods, it was observed that even if two
resonance frequencies were present at room tempera-
ture, due to the fact that the cross section was not
perfectly circular (at room temperature), never-
theless, the two curves of (f,/fo)? as a function of
temperature, based on these two room temperature
resonance frequencies, coincided within experimental
error. This was further verification of the validity
of the thermal expansion corrections.

(3) The final case to be considered is that of a rod
having its long axis at some angle, 6, with the “c”
axis. In this case, since the e axis does not
coincide with any specimen axis ([, m, or n) as has
been true in the previous examples, the thermal
expansions along [, m, or n will generally not equal
L,/L,. or L,/L,, but will lie between these values.
The following equation [7] then applies,

Y‘ ft) {1_1«!

AL AL

[3 cos? 8—sin® 6(1+42 cos® 1,0)]}

where ¢ is the angle between the direction of vibra-
tion and the plane containing the “¢’’ axis and the
long axis of the rod. If this equation is written for
each of the two directions of vibration, and the
average of these two equations is taken, the following

relationship results:

e (f)..4

AL [3— 5sin20]1-
L, J

+<AL

This final equation is also applicable to the

specialized orientations previously discussed. It is

useful for the case in which the long axis of the rod

coincides with the [001] direction or lies in the (001)

plane, but in which the direction of vibration does
not coincide with a crystallographic axis.
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