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The view that the glass transition has a thermodynamic basis is extended to a cross-

linked rubber.

The elevation of the second-order transition temperature as a function

of the number of cross-links is found to be (7'(X)— 7(0))/7(0) =K X/1— KX, where 7T(X)

is the transition temperature for a rubber with degree of cross-linking X.
Also a relation involving no adjustable parameter

is to first order independent of material.

is derived for the ratio of second-order transition temperatures to deformation.

The constant K

It is

T(N/T1) =exp (G(ZN2—3)/2AC,Ty) where AC, is the value of the specific heat discon-
tinuity per em3 at the transition and 7o is the temperature at which the modulus G is
measured. Available experimental evidence from five separate investigations agrees with

these predictions.

1. Introduction

All noncrystalline polymers display what at first
sight appears to be a second-order transition in the
Ehrenfest sense [1]: ! the temperature and pressure
derivatives of both volume and entropy are dis-
continuous along a line 7'(/) although the volume
and entropy themselves are continuous.

Many believe that this transition is basically a
kinetic phenomenon because: (1) the location of the
transition can be changed by changing the time scale
of the experiment, faster measurements resulting in
higher glass temperature, and (2) the measured
relaxation times near the transition approach the
time scale of the experiment. At temperatures
below T, the relaxation time for certain molecular
motions 1s larger than the time of observation and
therefore there is a kinetic “freezing in”’ of the
associated degrees of freedom.

Nonetheless we can state that these glass forming
materials have equilibrium properties and ask what
they are. Omne can answer this question experi-
mentally by extrapolating the high temperature
behavior of volume and entropy through the glass
region. One finds that volumes and entropies
smaller than the crystalline values are obtained at
finite temperatures [2]. This unacceptable result
can be avoided only if the curves level off before they
cross the corresponding curves for the crystalline
material. This behavior must be postulated even
for infinite time scale experiments.

One can also ask what the theoretical predictions
of equilibrium properties are. This question has
been answered [3, 4] by means of a modified form of
the Flory-Huggins lattice model which allows semi-
flexible chains to stiffen as the temperature is
lowered [5]. This theory predicts a second-order
transition at the finite temperature point at which
the configurational entropy first becomes zero as the
temperature of the system is lowered. The theory
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thus implies that packing difficulties cause the
transition [3, 4]. This same lattice model also
predicts correctly the existence and behavior of the
various kinds of liquid ecrystals [6]. For these
materials also, the extreme difficulty of packing in
random arrangement causes the transition behavior
[6, 7, 8]. The correct predictions in this case argue
for the correctness of the predictions for glasses.

In addition the proposed statistical-mechanical
theory correctly predicts the experimental data in
those cases to which it has been applied [9]. Spe-
cifically, these are the variation of glass temperature
with molecular weight and the variation with glass
temperature of specific volume [4]. In addition the
rariation of glass temperature of a copolymer as a
function of composition [10], and the variation of
olass temperature with diluent [11] have been
correctly predicted.

The purpose of this paper is to apply the theory
to chemically cross-linked systems (rubbers) and to
compare the predictions of the theory with the
small amount of available experimental data.

2. Relation Between the Transition Tem-
perature and the number of Cross-Links

The criterion of glass formation is that the tem-
perature-dependent configurational entropy become
zero. We therefore have for the equation which
determines the second-order transition temperature,

: S, =8y+A8,=0 (1)

where S, is the configurational entropy for an un-
cross-linked system and AS; is the change in con-
figurational entropy due to adding cross-links.
Now one can immediately see that cross-linking
raises the transition temperature because it decreases
the configurational entropy over what it would be
if there were no added cross-links. A cross-linked
polymer on being cooled reaches the S,=0 point at
a higher temperature than the corresponding un-
cross-linked polymer. S, has been given previously
as eq (20) of reference 4. For our purposes we will



use a simplified form obtained when the volume
fraction approximation is used with appropriate
substitutions from eq (11) and (24).
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The left-hand side is the dimensionless entropy per
segment, 7" is the temperature, Ae is the “stiffness
energy of the chain,” f is the fraction of bonds in
upper wells, and A«(7,P) the difference of thermal
expansion coefficient for the material above the
transition and the value below the transition.
Equation 2 is valid for temperatures and pressures
resulting in nonnegative values for Sy/krN,, but the
pressure-temperature dependent value of Aa must
be used. We will discuss actual numerical values
of A later in the paper.

We can easily obtain AS; by a simple modification
of the Flory-Huggins counting scheme. Let us
imagine that our %ystem contains but one infinitely
long polymer molecule before cross-linking. After
cross-linking one can traverse each of the N, chains
between cross-links once and only once by followmw
along the full length of the original molecule. Let
us then start at one end of the molecule which we
will also assume to be tied to a cross-link and begin
the Flory-Huggins counting process. The total
number of ways to arrange a chain whose ends are
tied down to given cells in the lattice is

3
(F.H.) l:’% exp (— b27’2)dr:|,

= (3/2)[nL?, 3)

where (F.H.) is that value which would obtain if one
end were free, and the gaussian form gives the
fraction of these conformations which are consistent
with the end to end distance r. The quantity L
is not the segment length d, but is a multiple of it

L=cd, (4)

and n is the number of these effective lengths.

The element of volume dr is necessary because the
quantity multiplying it within the brackets is a
density. For the time being we restrict the ends to
be in a given cell, so that dr becomes equal to the
volume of a lattice site, d°. For the second chain
and each successive chain we have a term identical in
form to expression 3. It is evident that after we
have laid down the whole molecule we will have for
the total number of arrangements consistent with the
location of each cross-link to specified cells

et 5ok T [2,2 exp (—b2r )dr]- 5)

In point of fact the junctions are not restricted to
particular places on the lattice but can be in any
lattice site with probabilities determined by gaussian
distributions [12]. For this reason we must assign
an effective volume V(N,) to each of the N, ’2
junctions and a corresponding number V(N,)/d* "of
cells which it can occupy. This gives for AS;

(Y],

For the sake of simplicity we will assume that we can
replace n; by n, the average number of effective
lengths per chain. The effective volume V(N,) is a
qu‘znutv whose linear dimensions are proportional to
the breadth of the gaussian distribution. According
to James and Guth [12] this breadth is propor tional
to the square root of the average number of effective

links between chains. Takmq V(N,) inversely
proportional to 4?,

b3

-
AS;/I\ =
gt =y exp (—

V(N,)=A/b’ ()

and assuming that the chains each have their average
mean square lenoth% we obtain

AS,

5 3 dr AU\ [2
— 3ny43n 111[ )
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Using (4) and the fact that the contour length is an
invariant, i.e. (xN,/N,)d=nl, we get [13]

AS, 3

3 3
e - N, In c—}—:l— N,In (A’X) 9)

where X, the cross-link density, is the number of
moles of chains per mole of segments (X=N,/zN,).
Now, ¢ is the same value for all materials at the glass
temperature This is due to the fact that the num-
ber of segments in an effective link is a function of the
stiffness of the chain, and at their glass temperatures
all chains have the same [14] relative stiffness. This
value of ¢ is obviously equal to the average number
of segments between flexes.

(10)

The pure number A" has a value which is independent
of material since both dr and V(N,) were given in
units of @ which has disappeared from the equation.
We therefore have as our eq (11) relating second-
order transition temperature to degree of cross-
linking [15].

S.
k.

—ln (1+42¢2¢*) + fAe/kT— 1+1—{—2TA

~5 X—i—zXlnf—leiX In (4’X)=0. (11)

612



The symbol 7" will be used for glass temperature as
well as temperature. No confusion should arise.
As it stands eq (11) is presumably valid for all cross-
linked polymers. In order to estimate the transition
temperature three parameters specific to the material
must be known: the number of moles of chains per
mole of segments X, the stiffness energy Ae, and Aa.
As noted above, A” should not depend on material.

Equation 11 includes the effect of pressure, both
internal due to cross-links [12], and external. Limit-
ing ourselves to zero external pressure, we can
write as an approximation

T(X)Aa(X) = T(0) Ax(0). (12)

In words, the glass temperature times Aa is a constant
independent of amount of cross-linking. Equation
(12) is first of all an experimental fact for natural
rubber-sulfur vulcanizates [16]. Secondly, even if
one were to assume Aa(X) a constant then the fourth
term of eq (11) would vary with 7"about ¥ as fast as
the sum of the first terms, so that even for this
extreme case a good first approximation would be to
assume 7Aa constant. Third, it is easy to see from
the theory that as 7°(X) rises due to cross-linkine
Aa(X) must decrease [17].  This phenomenon occurs
because of the internal pressure which is built up as
the cross-linking density increases. (See eq (3.8),
of ref 12.) This sizable internal pressure squeezes
out holes (or free volume) and results in a reduction
of Aa. We will therefore assume eq 12 to be true
for all rubber systems.

We will approximate the X dependent part of
eq 11 by a straight line [15]. In view of the limited
amount of experimental data, this is a perfectly
adequate approximation, particularly since X (which
is the reciprocal of the number of segments per chain)
is usually very small in the experiments.

N, is really equal to the number of effective chains
formed when N, chemical chains are made minus the
number of effective chains that exist (due to en-
tanglements) when no chemical chains are made
before cross-linking. If one accepts the data of
Schaefgen and Flory [18] as typical for all polymers
then N,=N, to good approximation.

The net results of these developments is that we
can replace eq (11) by a simpler relation of wide
validity.

In (1+2e—A€/“')+f%,——D+K1X:0. (13)

Here K, is independent of material and we have
absorbed 7'(0)Aa(0) in D). The sum of the first two
terms in eq 13 1s to good approximation linear in
Ae/kT. Usig this fact one can easily express
Ae¢/k in terms of the glass temperature 7' (0) of the
uncrossed-linked material to get from eq (13)

T(X)—T0) KX
TO)  1—K,X

(14)

where K is a pure number whose value is to first
order independent of material.

There exists in the literature experimental data
for variation of glass temperature as a function of
number of cross-links for three polymer systems.
They are: natural rubber [19], styrene-divinyl ben-
zene copolymers [20, 21] (P.S.), and methyl meth-
acrylate-ethylene glycol dimethacrylate copolymers
[22] (P.M.M.). Since the experimental data are
given in terms of number of cross-links per gram, we
rewrite eq (14) as

() —

-~ 1(0)

T(0)  KMx/y

11— KMx/y

(14a)

where X is the number of cross-links per gram, M is
the molecular weight of a residue, and v is the
number of flexible bonds (basic units) per residue.
Of course A is again independent of material.
Perhaps y needs careful definition. It is defined as
the number of rotatable bonds per residue which on
rotating result in a change in the shape of the mole-
cule. These flexible bonds can occur on side groups
as well as in the backbone of the chain. Thus in
polymethylmethacrylate y=4 and M/y=25. For
natural rubber v i1s 3 since the repeat unit carries a
double bond and M/y=22.7. For polystyrene one
can at first sight choose v equal to either 3 or 2
depending on whether or not rotation of the side
oroup is held to cause a change in shape. Since
steric hindrances exist it is reasonable to suppose
there are two minima 180° apart and that therefore
vy=2, with M/y=>52. Also, this value agrees with
the value for the basic chain unit of Wunderlich [23].
Using these values and the experimental values of 7’
and x from references [19-22] we ¢et for values of K,

Evaluation of the constant K

Natural rubber K=1.30 X 10-28
P.S. rubber K=1.20 X 10-2
P.M.M. rubber K=1.38 X 10-2

These numbers agree remarkably well with each other
and lend support to the contention that K is inde-
pendent of material.

On the basis of the assumption that all of the cross-
linking agent actually cross-links, a linear relation
rather than 14a was obtained by others [20, 22].
However, it is reasonable to suppose that at high
density some cross-linking sites become immobilized
in regions where there are no other such sites. It
seems more reasonable to assume, in accordance with
theory, that the modulus is proportional to x and
then evaluate the constant of proportionality by
the chemical means at low cross-link density.

Now Martin and Mandelkern [16] have made a
careful study of unaccelerated natural rubber-sulfur
vulecanizates, and have measured the glass temper-
ature as a function of bound sulfur content. In
order for us to make a comparison we must know the
relation between number of cross-links and percent
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bound sulfur. Gee [24] has made measurements
which lead to the relation

10
= =0.2
M, 028

(15)
where s is percent bound sulfur and M, is molecular
weight between cross-links, but his experiments
extend only to a bound sulfur content of 7 percent.
We will assume that this proportionality holds for
larger amounts of bound sulfur [25]. In figure (1)
we have plotted the data of Martin and Mandelkern
and also fit the curve to this data. It is seen that
the agreement is good out to a bound sulfur content
of 20 percent. The equation used to fit this data
was,

T(X)—T(0)  0.085%10%/M,

T)  1—0.085X 1070, 5

where we have made use of eq (15). Thus as a
function of the number of cross-links the data varies
as per eq (14) if we assume that modulus is propor-
tional to the number of chains.

The molecular weight between cross-links is a very
difficult quantity to obtain. For this reason it is
advantageous to express our relation in terms of
variations of Young’s Modulus (GaTN,). We
obtain

AT=T(X)—T(0)=K,V,MAG/ a17)

where A@G is the difference in unstretched modulus
between a cross-linked system and an uncross-linked
system at their transition temperatures, A7 is the
difference between glass temperatures, and V is the
specific volume. Again, the coefficient K; should be
independent of material.

In our derivation of eqs (17) and (14), we assumed
that the cross-link was suck that the two paired
residues occupied adjacent sites on the lattice. If
the cross-linking material were a long chain polymer
we would need to count differently. One can see
that the resulting equations are identical in form to
eqs 17 and 14. All we need do is reinterpret 7°(0) as
the transition temperature of a linear copolymer
formed by stringing together all of the chains into
one long chain. 7'(0) now of course varies as X
varies. A formula which adequately predicts the
glass temperature of high molecular weight copoly-
mers in terms of glass temperatures of the high
molecular weight homopolymers has been given
previously [10].

3. Relation Between the Transition Tem-
perature and the Degree of Strain in a

Rubber

The total configurational entropy for a strained
rubber is

ST:SC+AS6 (18)

where S, has been discussed in section 2 and AS,,
which is the change in configurational entropy as
a function of strain, has been thoroughly and

adequately discussed in the literature. Following
Treloar [26] we use
A8 =—5 Nk (N+N+N—3) (19)

where \; are the stretch ratios. We shall assume
no volume changes (A A A3=1). The isovolume
assumption seems to be valid for extension ratios not
exceeding five [26]. Thus as a practical measure it
is a valid approximation for a dry rubber. How-
ever, for a swollen rubber this restriction would have
to be relaxed and although this can be done it seems
unlikely that the experimental consequences can be
tested since, even in a dry rubber, measurements of
glass temperature as a function of strain are exceed-
ingly difficult.
We will use for S,

rac,
S, — f L

(20)

which gives the temperature variation of S,. Here
AC, is the total specific heat per em?® of sample minus
the extrapolated value for the glass.

The relation S;=0 yields for the glass temperature
T(N), if we assume ACY, to be a constant,

T(\)=T(1) exp (Mngo [x$+>\§+>\§—3]> (21)

where G is the Modulus measured at temperature
To. This is our end result.

One can ask why eq (20) was not used for S, in
section 2 rather than eq (2). Had we done this we
would have obtained

K'X
AC,

T(X)=T(0) exp (— (22)

instead of eq (14). The first pointis that AC, at the
glass temperature is a constant for all materials [27]
when expressed per mole of flexible bonds so that
both equations are universal relations. The second
point is that as a function of temperature AC, is not
a constant but a decreasing function of 7' [23, 28].
Over a wide range of temperature one jwould not
expect eq (22) to hold since it was derived assuming
AC, constant. Thus our use of eq (2) is more
accurate than assuming AC), a constant. On the
other hand if we are working in a small temperature
range as is the case for eq [21] one can assume AC), a
constant.

Equation (21) contains no adjustable parameters
and therefore provides a good test of the theory. All
of the quantities that appear in eq (21) are inde-
pendently measurable. Unfortunately the amount
of data in the literature is meager and difficult to use
for our purposes due to improper accounting of time
effects.
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Ficure 1. Variation cf glass temperature T for natural rubber
as a function of bound sulfur content.

The circles are experimental points of Martin and Mandelkern [16] and the
line is theoretical.

Because of the nature of the quadratic form in the
exponent of eq [21], and of the equation of constraint
on the volume any deformation of the rubber from
its unstretched state will result in an elevation of the
transition temperature. The magnitude of this effect
is shown in figure (2) for various values of the
quantity G/2AC, T, for the case of simple elongation.
We have also calculated this quantity for materials
used by Gee et al. [29] in some measurements of
glass temperature as a function of elongation. The
values are 0.0032 for their natural rubber sample,
0.0012 for G.R.S. and 0.0005 for Hycar. The
specific heat values were obtained from Wunder-
lich [23] and the G values were calculated from
measurements made on figure (4) of reference (29).
The values of (T(\)—7(0)/7(0) measured by Gee
are also displayed. In view of the difficulties of the
experiment any conclusions must be tentative. It
seems however that agreement is satisfactory.

4. Discussion

The theory has made two very definite predictions.
First, the elevation in transition temperature is
proportional to the unstretched Young’s Modulus of
the rubber, and further the constant of proportional-
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t—
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Ficure 2. Variation of glass temperature as a function of
elongation for various values of G/2AC,Ty=F.

O . . . Experimental points for natural rubber for which F=0.0032. J8l & o
Experimental points for G.R.S. for which F=.0.0012. A ... Experimental
point for Hyear for which F=0.0005,

ity, K, is the same for all materials. Second, we
have derived a relation with no adjustable parameter
between the four independently measurable quanti-
ties: glass temperature, modulus, AC, and \. One
hopes that more definitive experiments can be carried
out in the mnear future. Further experimental
validation of the relations in unison with the pre-
viously confirmed predictions would provide strong
support for the theory.

However, were an alternative interpretation of the
glass transition to predict the same relationships
then these equations would carry much less weight.
It therefore falls on us to examine the “Critical free
volume theory” [30] and the more general “Order
parameter theory” [31]. We shall find that the
predictions are specific to the ‘“Configurational en-
tropy equals zero” theory.

4.1. Free Volume Theory

If one assumes that the glass forms when the free
volume drops to a certain critical value one can
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easily derive as an approximation

A8

o T 3Aa

(23)

where we have used the relation P=@G/3 of James and
Guth [12] and eq (11.42) of reference [30]. Thus
while our proportionality constant K of eq (17) is to
first order independent of material the free volume
theory predicts by way of eq (25) a definite first
order correlation with compressibility and expansion
coefficients. Other free volume approaches are
possible [16, 20] which result in equations different
from eq (23).

In order to derive a free volume expression for the

variation of transition temperature with amount of
deformation in a rubber, one has simply to find a
relation between free volume and degree of defor-
mation. Since volume changes are to first order
zero on stretching a rubber one would expect essen-
tially no change in transition temperature with
stretch ratios. In any event one would expect
elevation of the transition temperature on compres-
sion and depression of transition temperature on
elongation to the extent that there are any volume
changes. Thus the direction of the effect for the
case of simple elongation has opposite sign for the
two theories in question.

4.2. Order Parameter Theory

The Order Parameter Theory as applied to glasses
has been discussed by Davies and Jones [31].

Let us suppose that the Gibbs free energy @ of a
polymer is dependent not only on 7" and P but also
on an as yet unspecified number of quasi-thermo-
dynamic variables Z,. These variables will, if
given enough time, adjust themselves so as to
minimize the free energy; i.e.,

oad
O—ZTWO (24)

Thus, at equilibrium one can use eq (24) to eliminate
the 7, in terms of 7 and P so that thermodynamic
variables are functions only of thermodynamic variables
at equilibrium. For example the entropy is

26|

o¢| oG
oT|,

oG dZ,
_ST’W,_ZW oT

S=— =S(T,P) (25)

One can say that at equilibrium the 7Z; are hidden
variables.

For nonequilibrium situations eq (24) must be
replaced by

oG -

57—l (26)
where the n;; are generalized viscosities. Equation
(26) assumessmall deviations from equilibrium. Now

because the 7,; are temperature dependent there is a
range of temperatures for which the 7, will reach
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their equilibrium values within the time scale of our
experiments, and there is a range of (lower) temper-
atures for which they will not. Thus, we can say
that the Z; became frozen in at quﬂulently small
temper atures If one assumes this transition occurs
over a small range of temperatures one has,

oG
ST f =0

‘1’ Zoq

AS—— (27)

Pvli

at the transition. That is to say, the entropy is
continuous across the transition, but since the tem-
perature derivatives are discontinuous we have a
kinetically caused second-order transition.

If one uses N instead of P in eq (27) one obtains by
implicit differentiation of eq (27) a relation between
glass temperatures and strain.

dAS . 0Af
g;: _1)\“:; ffﬁ. (9*)
dn T 0AS  AC, e

In applying eq (28) all measurements of f must
be made from surfaces generated by varying 7' at
constant X. Similarly one can think of degree of
cross-linking as a thermodynamic variable and

obtain,
0AS
ar_ "oy )
dX AC, -

Equations (28) and (29) are differential analogs of
eqs (14) and (21). They are valid even if the second-
order transition has a kinetic basis but they do
presuppose that relaxation times are strongly tem-
perature dependent.

These equations do not have the content of eqs
(14) and (21) because they do not have a specified
form for AS. 1If we assume AS to be total con-
figurational entropy then we do obtain (14) and (21).
The above discussion shows that the “‘configurational
entropy equals zero” theory is iIn some sense a
variant of the order parameter theory if AS is
itself considered to be an order parameter. FKor
this reason it is proper to point out their differences
and similarities.

Both theories assume quasi-thermodynamic vari-
ables. Inthe statistical thermodynamic theory used
in this paper the number of empty lattice sites and
the fraction of flexed bonds were such variables. At
high temperatures both eqs (26) and (24) are ap-
plicable to both theories. As we lower the tempera-
ture the configurational entropy, S., becomes zero.
At this temperature and for all lower temperatures
we have as the equilibrium condition replacing (24),

a(G—_/-“gc)

57 0 S=0.

(30)

These equations lead to a second-order tIdIlSlth]l n
the Ehrenfest sense.



Since generalized forces (affinities) are measures of
deviations from equilibrium we have in place of

eq (26).

o(G—uS. -
e (31)

Thus the predictions of both theories are the same
above the transition and different below. The basis
of the transition is thermodynamic in one and kinetic
in the other.

It is a conclusion of eq (31) that the temperature
derivatives of the Z; are discontinuous at the tran-
sition temperature. Hindsight tells us that this
result was not unexpected. After all, for a first-order
transition the time dependent quantities show dis-
continuities as we pass through the transition. In
general the temperature dependence of tvme dependent
quasi-thermodynamaic variables shows a discontinuity
of the same order as the transition.  We hope to report
on some of these aspects at a later date. However,
even a cursory examination of the literature shows
experimental behavior for relaxation quantities
which can be interpreted as showing a change in
slope as a function of temperature [32].
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