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The view that the glass trans ition has a th ermodynam ic basis is extended to a cross
linked rubber. The elevat ion of the seeond-order trans ition t emperature as a function 
of the number of cross-links is found to be (T(X) - T (O» / T (O) = K.X/ I - K.X, where T (X ) 
is the transit ion t emperature for a rubber with d egree of cross-linking X. Th e eonsta nt J( 
is to first order independent of material. Also a r elation involving no adjustab le parameter 
is der ived for the ratio of second-order transition t emperatures to deformat ion. It is 
1'(>-- ) / 1'(1 ) =exp (G(T.A i2 - 3) /2t:.CpTo) where t:.Cp is the value of th e specific heat discon
t inuity per cma at the trans ition and To is the t emperature at whi ch th e modulus G is 
m easured. Available experimental evidence from five separate invest igations agrees with 
these predictions. 

1. Introduction 

All noncrystalline polymers display what at first 
sight appears to be a second-order transition in the 
Ehrenfest sense [1]: 1 the temperature and pressure 
derivatives of both volume and entropy are dis
continuous along a line T(P) altho ugh the volume 
and entropy themselves are continuous. 

Many believe that this transition is basically a 
kinetic phenomenon because: (1 ) the location of the 
transition can be changed by changing the time scale 
of the experiment, faster measurements resulting in 
higher glass temperature, and (2) the measured 

l relaxation times near the transition approach the 
time scale of the experiment. At temperatures 
below Tg the relaxation time for certain molecular 

I motions is larger than the time of observation and 
therefore there is a kinetic "freezing in" of the 
associated degrees of freedom. 

Nonetheless we can state that these glass forming 
materials have eq uilibrium properties and ask what 
they are. One can answer this question experi
mentally by extrapolatin g the h igh temperature 
behavior of volume and entropy through the glass 
region. One finds that volumes and en tl'O pies 
smaller than the crystalline values are obtained at 
finite temperatures [2]. This unacceptable result 
can be avoided only if the curves level off before they 
cross the corresponding curves for the crystalline 
material. This behavior . must be postulated even 
for infini te time scale experiments. 

One can also ask what the theoretical predictions 
of equilibrium properties are. l'his question has 
been answered [3 , 4] by means of a modIfied form of 
the F lory-Huggins lattice model which allows semi
flexible chains to stiffen as the temperature is 
lowered [5]. This theory predicts a second-order 
transition at the finite temperature point at which 
the configurational entropy first becomes zero as the 
temperature of the system is lowered. The theory 
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thus implies that packing difficulties cause the 
transition [3 , 4] . This same lattice model also 
predicts correctly the existence and behavior of t,he 
various kinds of liquid crystals [6] . For these. 
materials also, the extreme difficulty of packing in 
random arrangement causes the transition behavior 
[6 , 7, R]. TIlE;' correct predictions in this case argue 
for the correctness of the predictions for glasses. 

In addition the proposed statistical-mechanical 
theory correctly predicts the experimental data in 
those cases to which it has been applied [9]. Spe
cifically, these are the variation of g)as.s temperature 
with molecular weight and the vanatlOn WIth glass 
temperature of specific volume [4]. In addition the 
variation of glass temperature of a copolymer as a 
function of composition [10], and the variation of 
glass temperature with diluent [11] have been 
correctly predicted. 

l'he purpose of this paper is to apply the theory 
to chemically cross-linked systems (rubbers) and to 
compare the predictions of the t.heory with the 
small amount of available experimental data. 

2. Relation Between the Transition Tem
perature and the number of Cross-Links 

The criterion of glass form~tion is that the tem
perature-dependent configuratIOnal entropy become 
zero. We therefore have for the equation which 
determines the second-order transition temperature, 

(1) 

where So is the configurational entropy for an un
cross-linked system and t:"SI is the change in con
fiO'urational entropy due to adding cross-links. 
Now one can immediately see that cross-linking 
raises the transition temperature because it decreases 
the confio'urational entropy over what it would be 
if there ;ere no added cross-links. A cross-linked 
polymer on being cooled reaches the S o= O 1?oint at 
a higher temperature than the cor~'espondlll(?: un
cross-linked polymer. So has been gIven preVIOusly 
as eq (20) ' of reference 4. For our purposes we will 



use a simplified form obtained when the volume 
fraction approximation is used with appropriate 
substitutions from eq (11) and (24). 

(2) 
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j = 2e-kT/ (1+2e kT). 

The left-hand side is the dimensionless entropy per 
segment, T is the temperature, Ll€ is the "stiffness 
energy of the chain," f is the fraction of bonds in 
upper wells, and Lla (T ,P) the difference of thermal 
expansion coefficient for the material above the 
transition and the value below the transition. 
Equation 2 is valid for temperatures and pressures 
resulting in nonnegative values for So/kxNx , but the 
pressure-temperature dependent value of Lla must 
be used. We will discuss actual numerical values 
of Lla later in the paper. 

We can easily obtain LlSl by a simple modification 
of the Flory-Huggins counting scheme. Let us 
imagine that our system contains but one infinitely 
long polymer molecule before cross-linking. After 
cross~linking one can traverse each of the N p chains 
between cross-links once and only once by following 
along the full length of the original molecule. Let 
us then start at one end of the molecule which we 
will also assume to be tied to a cross-link and begin 
the Flory-Huggins counting process. The total 
number of ways to arrange a chain whose ends are 
tied down to given cells in the lattice is 

(3) 

where (F.H.) is that value which would obtain if one 
end were free, and the gaussian form gives the 
fraction of these conformations which are consistent 
with the end to end distance r. The quantity L 
is not the segment length d, but is a multiple of it 

L = cd, (4) 

and n is the number of these effective lengths. 
The element of volume dT is necessary because the 

quantity multiplying it within the brackets is a 
density. For the time being we restrict the ends to 
be in a given cell, so that dT becomes equal to the 
volume of a lattice site, d3• For the second chain 
and each successive chain we have a term identical in 
form to expression 3. It is evident that after we 
have laid down the whole molecule we will have for 
t he total number of arrangements consistent with the 
location of each cross-link to specified cells 

(5) 

In point of fact the Junctions are not restricted to 
particular places on the lat tice but can be in any 
lattice site with probabilities determined by gaussian 
distributions [12]. For this reason we must assign 
an effective volume V (Np ) to each of th e N p/2 
junctions and a corresponding number V (N p)/d3 of 
cells which it can occupy. This gives for LlS] 

For the sake of simplicity we will assume that we can 
replace ni by n, the average number of effectiye 
lengths per chain. '1'he effective volume V(Np ) is a 
quantity whose linear dimensions are proportional to 
the breadth of the gaussian distribution. According 
to James and Guth [12] this breadth is proportional 
to the square root of the average number of effective 
links between chains. Taking V (Np ) in \Tersely 
proportional to h3 , 

(7) 

and assuming that the chains each have their average 
mean square lengths, we obtain 

(8) 

Using (4) and the fact that the contour length is an 
invariant, i.e. (xNx/Nr-) d= nL, we get [13] 

where X, the cross-link density, is the number of 
moles of chains per mole of segments (X=Np/xNz ). 

Now, c is the same value for all materials at the glass 
temperature. This is due to the fact that the num
ber of segments in an effective link is a function of the 
stiffness of the chain, and at their glass temperatures 
all chains have the same [14] relative stiffness . This 
value of c is obviously equal to the average number 
of segments between flexes. 

(10) 

'1'he pure number A' has a value which is independent 
of material since both dT and V(Np) were given in 
units of d3 which has disappeared from the equation. 
We therefore have as our eq (11) relating second
order transition temperature to degree of cross
linking [15]. 

~=ln (1 + 2e-.1<1kT) +jLlE/kT-1 + TLla 
kxNx 1 + 2TLla 

-~X+~Xlnf+~Xln (A'X) = O. (11 ) 
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The symbol T will be used for glass temperature as 
well as temperature. No confusion should arise 
~s it stands eq (11) is presumably valid for all cross~ 
hnked polymers . In order to estima,te the transition 
temperature three parameters specific to the material 
must b.e known: the numb.e~· of moles of chains per 
mole of segments X, the stIffness energy C,E, and c,a. 
As note~ above, A' should not depend on material. 
. EquatlOn 11 Inclu~es the effect of pressure, both 

I ~nternal due to cross-Imks [12], and external. Limit
mg ourselves to zero external pressure, we can 
write as an approximation 

T(A)C,a(X) = T(O)c,a (O). (12) 

In words, the glass temperature times c'a is a constant 
inde~endent of amount of ~ross-linking. Equation 
(12) IS first of all an expenmental fact for natural 
rubber-sulfur vulcanizates [16]. Secondly, even if 
one were to assume C,a (A) a constant then the fourth 
term of eq (11) would vary with T abou t 7~ as fast as 
the sum of the fu'st terms, so that even for this 
extreme case a good first approximation would be to 
assume T!1a constant. Third, it is easy to see from 
t.he theory that as T(X) rises due to cross-linkino' 
!1a (X) must decrease [17]. This phenomenon occur~ 
because of the internal pressure which is built up as 
the cross-linkin~ cI~nsity .increases. (See eq (3 .8), 
of ref 12 .) TIllS sIzable mternal pressure squeezes 
out holes (or free volume) and results in a reduction 
of c,a. We will therefore assume eq 12 to be true 
for all rubber systems. 

We will a,pproximate the X dependent part of 
eq 11 by a straight line [15]. In view of the limited 
amount of expe.rime~ltal dat.a, this is a perfectly 
~dequate. apprOXIl;natlOn, partIcularly since X (which 
~s the recIprocal of the. number of segments per chain) 
IS usu~lly very small In the experiments. 

N p IS really equal to the number of effecti\re chains 
formed when Nc chemical chains are made minus the 
number of effective chains that exist (due to en
tanglements) when no chemical chains are made 
before cross-linking. If one accepts the da,ta of 
Schaefgen and Flory [18] as .typi?al for all polymers 
then Np = Nc to good approxImatlOn . 

The net results of these developments is that we 
can replace eq (11) by a simpler relation of wide 
validity. " 

Here Kl is independent of material and we have 
absorbed T(O) !1a (O) in D. The sum of the first two 
terms in eq 13 is to good approximation linea,r in 
!1E/k T.. Using this fact one can easily express 
!1Ejk m terms of the glass temperature T (0) of the 
uncrossed-linked material to get from eq (13) 

T(X)-T(O) 
T(O) 

(14) 

where .K z is a pure number whose value is to first 
order mdependent of material. 

'l'her~ ~xists in the litera,ture experimental data 
for vanatlOn of glass temperature as a function of 
number of cross-links for three polymer systems. 
They are: natural rubber [19], styr ene-divinyl ben
zene copolymers [20, 21] (P.S.), and methyl meth
acrylate-eth~lene &!ycol dimethac~'ylate co])olymers 
[~2] q:>.M.M.) . Smce the expcnmental data are 
gIvel?- ll1 terms of number of cross-links per gram, we 
rewnte eq (14) as 

T(x)-T(O) 
T(O) 

ICMxh 
l-K .. M.xh 

(14a) 

where x is the number of cross-links pel' o'['am 1I{ is 
the molecular .weight of a residue, an~l I' 'is the 
number of flexl.ble bO.ncls. (basic units) per residue. 
Of course K IS agam mdependent of material. 
Perhaps I' needs careful definition. It is defined as 
the n.umber of ~'ota,table bonds per residue which Oll 
rotatll1,g result ll~ a change in the shape of the mole
cule. rhes~ flexIble bonds can occur on side groups 
as well as m the backbone of the chain. rrhus in 
polymethylmetha?rylate 1'= 4 and M/'Y = '25. For 
nat.ural rubber I' IS 3 since the repeat unit carries a, 
double bond ~md M/'Y = 22.7. For polystyrene one 
can at . first SIght choose I' equal to either 3 or 2 
dependmg on whether or not rotation of the side 
gl'Ol~p i~ held to cal!se .a ?hange in shape. Since 
stene hmdrance.s .eXIst It IS reasonable to suppose 
there ar~ two mmll'na 180 0 apart an d that therefore 
1' = 2, WIth M/'Y = ,52. Also, this value agrees with 
th~ value for the basic chain unit of Wunderlich [23]. 
Usmg these values and the experimental values of T 
and x from references [19- 22] we get for values of K, 

Natul'al l'ubbcr 
P.S. rubbcr 
P .M.M. rubbcr 

Evaluation of the constant K. 

](= 1.30 X 10-23 

]( = 1.20 X 10-23 

](= 1.38 X 10-23 

rrhese numbers agree remarkably well with each other 
and lend support to the contention that K is inde
pendent of material. 
. O~ the basis of the assumption that all of the cross

lmkmg agent actually cross-links, a linear relation 
rather tha~ ~4a was obtained by others [20, 22]. 
How.ever, It IS reasonable to suppose that at high 
denSIty some cross-linking sites become immobilized 
in regions where there are no other such sites. It 
seems more reasonable to assume, in accordance with 
theory, that the modulus is proportional to x and 
then evaluate the constant of proportionality by 
the chemical means at low cross-link density. 

Now Martin and Maodelkern [16] have made a 
careful study of un accelerated na,tural rubber-sulfur 
vulcanizates, and. have measUTed the glass temper
ature as a functlOn of bound sulfur content. In 
order for us to make a comparison we must know the 
relation between number of cross-links and percent 
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bound sulfur. Gee [24] has made measurements 
which lead to the relation 

(15) 

where s is percent bound sulfur and 1I1e is molecular 
weight between cross-links, but his experiments 
extend only to a bound sulfur content of 7 percent. 
We will assume that this proportionality holds for 
larger amounts of bound sulfur [25] . In figure (1) 
we have plotted the data of Martin and Mandelkern 
and also fit the curve to this data. It is seen that 
the agreement is good out to a bound sulfur content 
of 20 percent. The equation used to fit this data 
was, 

T(X) - T(O) 
T(O) 

(16) 

where we have made use of eq (15). Thus as a 
function of the number of cross-links the data varies 
as per eq (14) if we assume that modulus is propor
tional to the number of chains. 

The molecular weight between cross-links is a very 
difficult quantity to obtain. For this reason it is 
advantageous to express our relation in terms of 
variations of Young's Modulus (Ga TNp ). We 
obtain 

f:.T= T(X) - T(O) == K 3 VsMf:.Gh (1 7) 

where f:.G is the difference in unstretched modulus 
between a cross-linked system and an uncross-linked 
system at their transition temperatures, !:l.T is the 
difference between glass temperatures, and V s is the 
specific volume. Again, the coefficient K 3 should be 
independent of material. 

In our derivation of eqs (17) and (14), we assumed 
that the cross-link was sucr that the two paired 
residues occupied adjacent sites on the lattice. If 
the cross-linking material were a long chain polymer 
we would need to count differently. One can see 
that the resulting equations are identical in form to 
eqs 17 and 14. All we need do is reinterpret T (O) as 
the transition temperature of a linear copolymer 
formed by stringing together all of the chains into 
one long chain. T(O) now of course varies as X 
varies. A formula which adequately predicts the 
glass temperature of high molecular weight copoly
mers in terms of glass temperatures of the high 
molecular weight homopolymers has been given 
previously [10] . 

3 . Relation Between the Transition Tem
pera ture and the Degree of Strain in a 
Rubber 

The total configurational entropy for a strained 
rubber is 

where Se has been discussed in section 2 and !:l.Se, 
which is the change in configurational entropy as 
a function of strain, has been thoroughly and 
adequately discussed in the literature. Following 
Treloar [26] we use 

!:l.Se=-!Npk (A~+A~+A~-3) (19) 

where Ai are the stretch ratios. We shall assume 
no volume changes (A1A2A3= 1) . The isovolume 
assumption seems to be valid for extension ratios not 
exceeding five [26]. Thus as a practical measure it 
is a valid approximation for a dry rubber. H ow
ever, for a swollen rubber this restriction would have 
to be relaxed and although this can be done it seems 
unlikely that the experimental consequences can be 
tested since, even in a dry rubber, measurements of 
glass temperature as a function of strain are exceed
ingly difficult. 

We will use for Se 

(20) 

which gives the temperature variation of St. Here 
!:l.Cp is the total specific heat per cm3 of sample minus 
the extrapolated value for the glass. 

The relation ST= O yields for the glass temperature 
T(A), if we assume !:l.Cp to be a constant, 

T(A) = T(1) exp (2!:l.~To [A~+A~+A~-31) (21) 

where G is the Modulus measured at temperature 
To. This is our end result. 

One can ask why eq (20) was not used for So in 
section 2 rather than eq (2). Had we done this we 
would have obtained 

( KIX) T(X) = T(O) exp - !:l.C
p 

(22) 

instead of eq (14). The first point is that !:l.C 1J at the 
glass temperature is a constant for all materials [27) 
when expressed per mole of flexible bonds so that 
both equations are universal relations. The second 
point is that as a function of temperature !:l.Cp is not 
a constant but a decreasing function of T [23, 28] . 
Over a wide range of temperature one Iwould not 
expect eq (22) to hold since it was derived assuming 
!:l.Cp constant. Thus 0 UI' use of eq (2) is more 
accurate than assuming !:l.Cp a constant. On the 
other hand if we are working in a small temperature 
range as is the case for eq [21] one can assume !:l.Cp a 
constant. 

Equation (2 1) contains no adjustable parameters 
and therefore provides a good test of the theory. All 
of the quantities that appear in eq (21) are inde
pendently measurable. Unfortunately the amount 
of data in the literature is meager and difficult to use 
for our purposes due to improper accounting of time 
effects. (18) 
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FIGURE 1. Variation cf glass temperature T for natural rubber 
as a function of bound sulfur content. 
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Because of the nature of the quadratic form in the 
exponent of eq [21], and of the equation of constraint 
on the volume any deformation of the rubber from 
its unstl'etched s tate will result in an elevation of the 
transi tion temperature. The mao'nitude of this effect 
is shown in figure (2) for various values of the 
quantity G/2,6,Op To for the case of simple elongation. 
We have also calculated this quantity for materials 
used by Gee et al. [29] in some measurements of 
glass temperature as a function of elongation. The 
values are 0.0032 for their natural rubber sample, 
0.0012 for G.R.S. and 0.0005 for Hycar. The 
specific heat values were obtained from Wunder
lich [23] and the G values were calculated from 
measurements made on figure (4) of reference (29). 
The valu~s of (T (t..) - T(O)/T(O) measured by Gee 
are also dIsplayed. In view of the difficulties of the 
experiment any conclusions must be tentative. It 
seems however that agreement is satisfactory. 

4 . Discussion 

The theory has made two very definite predictions. 
First, the elevation in transition temperature is 
proportional to the unstretched Young's Modulus of 
the rubber, and further the constant of proportional-

3-
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FlGUUE 2. Variation of glass temperature as a f~mction of 
elongation fo r various values of G/2L'>. Cp To= F. 

o ... E xperimen tal points for n atural rubber for which F=0.OO32. 0 . .• 
E xperimenta l points for G. R .S. for which F =.0.001 2 . .:l. ••• Experimental 
pa int for H ycar for which 1'= 0.0005. 

ity, K 3, is the same for all materials. Second, we 
have derived a relation with no adjustable parameter 
between the four independently measurable quanti
ties: glass temperature, modulus, ,6,0" and t... One 
hopes that more definitive experiments can be carried 
out in the near future. Further experimental 
validation of the relations in unison with the pre
viously confirmed predictions would provide s trong 
support for the theory. 

However, were an alternative interpretation of the 
glass transition to predict the same relationships 
then these equations would carry much less weight. 
It therefore falls on us to examine the "Critical free 
volume theory" [30] and the more general "Order 
parameter theory" [31]. We shall find that the 
predictions are specific to the "Configurational en
tropy equals zero" theory. 

4 .1. Free Volume Theory 

If one assumes that t.he glass forms when the free 
volume drops to a certain critical value one can 
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easily derive as an approximation 

t:J.T= t:J..(3 G 
3t:J.a 

(23) 

where we have used the relation P = G/3 of James and 
Guth [12] and eq (11.42) of reference [30]. Thus 
while our proportionality constant K 3 of eq (1 7) is to 
first order independent of material the free volume 
theory predicts by way of eq (25) a definite fu'st 
order correlation with compressibility and expansion 
coefficients. Other free volume approaches are 
possible [16, 20] which result in equations different 
from eq (23). 

In order to derive a free volume expression for the 
variation of transition temperature with amount of 
deformation in a rubber , one has simply to find a 
relation between free volume and degree of defor
mation. Since volume changes are to firs t order 
zero on stretching a rubber one would expect essen
tially no change in transition temperature with 
stretch ratios. In any event one would expect 
elevation of the transition temperature on compres
sion and depression of transition temperature on 
elongation to the extent that there are any volume 
changes. Thus the direction of the effect. for the 
case of simple elongation has opposite sign for the 
two theories in question. 

4.2. Order Parameter Theory 

The Order Parameter Theory as applied to glasses 
has been discussed by Davies and Jones [31]. 

Let us suppose that the Gibbs free energy G of a 
polymer is dependent not only on T and P but also 
on an as yet unspecified number of quasi-thermo
dynamic variables Z i' These variables will, if 
given enough time, adjust themselves so as to 
minimize the free energy; i.e. , 

oG 
-=0' 
OZi 

(24) 

Thus , at equilibrium one can use eq (24) to eliminate 
the Z i in terms of T and P so that thermodynamic 
variable8 are junctions only oj thermodynamic variables 
at eqlLilibrinm. For example the entropy is 

S = - OGI = - oG\ - 2: oG oZ'= S(T, P ) (25) 
oT p oT P.Zt OZi oT 

One can say that at equili.brium the L i are hidden 
variables. 

For nonequilibrium situations eq (24) must be 
replaced by 

(26) 

where the 'YJ ij are generalized viscosities. Equation 
(26) assumes small deviations from equilibrium. Now 
because the 'YJ ij are temperature dependent there is a 
range of temperatures for which the Z; will reach 
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their equilibrium values within the time scale of our 
experiments, and there is a range of (lower) temper
atures for which they will not. Thus , we can say 
that the Z i became hozen in at sufficiently small 
temperatures. If one assumes this transition occurs 
O\Ter a small range of temperatures one has, 

t:J..S= - OGI + oGI = 0 
oT P'Zi oT p, Z oi 

(27) 

at the transition. 'Ehat is to say, the entropy is 
continuous across the transition, but since the tem
perature derivatives are discontinuous we have a 
kinetically caused second-order transition. 

If one uses).. instead of Pin eq (27) one obtains by 
implicit differentiation of eq (27) a reh"ttion between 
glass temperatures and strain. 

(28) 

In applying eq (28) all measurements of j must 
be made from surfaces generated by varying T a t 
constant).. . Similarly one can think of degree of 
cross-linking as a thermodynamic variable amt 
obtain, 

I 

dT T MS 
oX 

dX= - t:J. Cp • 
(29) 'I 

Equations (28) and (29) are differential analogs of 
eqs (14) and (2 1) . They are valid even if the second
order transition has a kinetic basis but they do 
presuppose that relaxation times a re strongly tem
perature dependent. 

These equations do not have the content of eqs 
(14) and (21 ) because they do not have a specified 
form for t:J..S. If we assume t:J..S to be total con
figurational entropy then we do obtain (14) and (21 ). 
The above discussion shows that the "configurational 
entropy equals zero" theory is in some sense lL 

yariant of the order parameter theory if t:J..S is 
itself considered to be an order parameter. For 
this reason it is proper to point out their differences 
and similarities. 

Both theories assume quasi-thermodynamic vari
ables. In the statistical thermodynamic theory used 
in this paper the number of empty lattice sites and 
the fraction of flexed bonds were such variables. At 
high temperatures both eqs (26) and (24) are ap
plicable to both theories. As we lower the tempera
ture the configurational entropy, S e, becomes zero. 
At this temperature and for all lower temperatures 
we ha\Te as the equilibrium condition replacing (24). 

0, (30) 

These equations lead to a second-order transition in 
the Ehrenfes t sense. 



Since generalized forces (affinities) are measures of 
deviations from equilibrium we have in place of 
eq (26) . 

O(G-ILSc) 
oZj 

(31 ) 

Thus the predictions of both theories are the same 
above the transition and different below. The basis 
of the transition is thermodynamic in one and kinetic 
in the other. 

It is a conclusion of eq (3 1) that the temperature 
derivatives of the Z i are discontinuous at the tran
sition temperature. Hindsight tells us that this 
result was not unexpected. After all, for a flrst-ordel' 
transition the time dependent quantities show dis
continuities as we pass through the transition. In 
general the temperature dependence oj time dependent 
qLwsi-the1'modynamic va1'iables shows a discontinuity 
of the same order as the transition. We hope to report 
on some of these aspects at a later date. However , 
even a cursory examination of the li teratUl'e shows 
experimental behavior for relaxation quantities 
which can be interpreted as showing a change in 
slope as a fun ction of temperature [32]. 
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