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In this third paper the 1962 He? Scale of Temperatures is evaluated both as to its preci-

sion

and its deviations from the thermodynamic Kelvin Scale.
quantities of He? consistent with the 1962 He?

Various thermodynamic

Scale are derived and listed. The correction

to an observed vapor pressure for small amounts of He* is discussed and tabulated. A
description is given of the method of multiple variable least squares analysis used for deriving

the final scale equation and for re-analysis of isotherm data.

Finally the present status of

the 1962 IHe3 Scale is discussed along with some considerations for the future.

1. An Evaluation of the 1962 He® Scale

1.1. Fit of the Input 1961 L.A.S.L. Vapor-Pressure
Data

One factor in evaluating the 1962 He? Scale is the
fit of the input vapor-pressure data of Part I [46]
to the Scale. Figure 1 and table 1 of Part I [6] show
the deviations of the observed data from the final
scale as Tyu(P;) —T(P,). The symbol Ty is the
temperature on the 1962 He® Scale corresponding to
a He® vapor pressure, 75, while 7’5 1s the temperature
on the 1958 He* Scale [2] corresponding to the
experimentally determined isothermal He* vapor
pressure, ;. The standard deviation of the data
from the scale is 0.25 mdeg and the maximum devia-
tion over the full range is 0.6 mdeg. The data may
not scatter completely randomly. For example, the
data points just below 2 °K are all below the 1958
He* Scale and the points just above 2 °K are all
above the 1958 He* Scale. Hence, if one wished to
obtain the vapor pressure of He® which is most
probably isothermal with a given He* vapor pressure,
a slightly better value (in terms of consistency with
the observed data) may be obtained by drawing a
smooth curve through these data points or by using
direct interpolation equations as discussed in Part I.
However, the overall fit of the Scale to the input
data is very satisfactory in comparison with the
errors of measurement of the two vapor pressures.

! Much of the material in this paper III has been included in a review chapter

[52] on the development of the scale.
2 Work performed under the auspices of the U.S. Atomic Energy Commission.
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1.2. Fit of the Experimental Thermodynamic Equa-
tion (ETE) Scale

Below 0.9 °K the 1962 He’® Scale was evaluated by
examining its fit to the ETE Scale described in
Part II. The ETE Scale is defined by a linear
equation fitted to an empirical function, F,(P;,T),
of He® vapor pressure and temperature,

Fo(Ps, T) = (a+bT)/R. (1)

As shown by the full line curve in figure 1 of Part IT,
temperatures calculated from eq (1) are in (rood
(mrﬂement with the 1962 He?® Scale; nowhere below

2 °K do the scales differ by more "than 0.4 mdeg.
the 1962 He® Scale, defined by eq (9b) of Part II,
is therefore in effect an ETE scale from 0.2 to 2° and
an empirical scale above 2 °K.

The effect of possible errors in the various terms
of the equation for the ETE scale, over the tempera-
ture range from 0.2 to 1.0 °K, should also be con-
sidered in evaluating the 1962 He Scale. The ETE
scale was obtained from a least squares fit of the
He?-He* vapor-pressure intercomparisons between
0.9 and 2.0 °K to eq (1). The function F,(P;,T) is
alculated for each experimentztl P, T';s-observation;
deviations of this “observed” value of F.(P;T)
from the fitted value, [(a+bT)/RR], from eq (1) are
qhmvn as circles in figure 1. The function

7, (P3,T) 1s derived in Part IT and in ref. [10] as

Fo(Py, T)=TI(5/2) In T—In Pyt-io
_}_fr(.‘fL) ’—_fz(osal) +5] (2)
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Fiaure 1.—Deviations from the ETE Scale, eq (1).

The circles are deviations from the fitted equation of the function F.(Ps,T'ss)
calculated from eq (2) for each input (Ps, T5s) data point. The central cross-
hatched area is the 95 percent prediction interval [53] for a prediction of F.(P3,T")
from eq (1) as calculated from the 4= values for a and b given in eqs (3) and (4).
The outermost solid curves represent a change in F.(P3,T") corresponding to a 1
mdeg change in temperature and are calculated as 0.001 7'(dIn P3/d T')at.

where 4, is the chemical constant including the
nuclear spin degeneracy; f,(V;) is an empirical
power series representing the theoretical and exact
integral term,

f(V)=(1/RT) L ' Vi(dPs/dT ) :dT

involving the molar liquid volume, V; 1,(C.,,) is an
equation for the theoretical and exact double integral

ter;n of eq (3a) of Part II, f(Cyuy)=(1/RT) deT’
! il
(Coae/ T")dT",

1
series fitted between 0.2 and 2.0 °K to data for
Cly, the specific heat of the saturated liquid; and e is
the gas imperfection term, eq (4a) of Part II.

The least squares values for the coefficients @ and
b of eq (1), and their equivalent expressions from
eqs (6) and (7) of Part IT are

based on an empirical power

1
a:LO—f CoatdT=17.4459--0.0058 joule mole™  (3)
JO

and

=082(1.0°)=9.0098 +-0.0038 joule mole=! deg~!. (4)
The plus-or-minus values for @ and b were found from
the fit of the data points to the qtmwht line, a+b7T.
Mood [53] has given an equation for the predlctlon
interval for a smo}e prediction of F,(Ps,T) from eq
(1) for any value of 7. The ETE Scale is just
the set of P; values obtained by solving eq (2)
for In P; at any given temperature using “the pre-
dicted value of ﬁr(Pg,T) Hence a Dredlctlon
interval for /,(P;,T) can be expressed as an equiva-

lent prediction interval in P, by neglecting the
contribution of possible errors in the other terms
on the right hand side of eq (2).

The 95 percent prediction interval for a single
prediction of F,(P;7T) [with a 95 percent proba-
bility of containing the statistically “true’” value of
F (P3, T)] is shown as the central cross-hatched
area in figure 1. The outermost curves in this
figure show the change in F,(P;, T) corresponding
to a one millidegree change in temperature. The
same prediction intervals have been converted to
equivalent temperature scale errors as listed in
table 1.

The effects of random errors of 43 percent in

fr (Cyu) and e on individual temperatures below 1°

are also shown in table 1.

Systematic errors in f,(Cy.), € and in f,(V7)
would be compensated between 0.9° and 2.0° by
the least squares process of fitting the (Ps 7s) data
to eq (1). The scale below 1° would be skewed by
such errors as is shown in table 1 for assumed 3
percent systematic errors in all values of Cy,, or e .
Table 1 also shows the systematic errors below 1°
resulting from use of the approximate empirical
function, f,(V73), instead of the graphically integrated
values of the true thermodynamic function, f(V3)
[see table 4 of Part IT].

Another possible source of systematic error is a
smooth deviation of the 1958 He*' Scale from the
thermodynamic Kelvin Scale. The effect on the
ETE scale of adding 2 mdeg to each scale input
temperature is listed in table 1.

Tasre 1. Effect of possible systematic or random errors on the

ETE scale, eq (1)

Systematic or random changes in the constants ¢ and b of eqs (3) and (4) and of
temperatures on the ETE scale below 1 °K are listed for the following arbitrary,
but plausible, cases:

Case 1. the fit of the input (Ps,T3s) data expressed as the 95 percent confidence
limit [53] for the prediction of a value of In P at any single temperature (see fig.

Case 2. random errors of =3 percent in fz (Cuat )8

Case 3. random errors of 3 percent in e, eq (4a) of Part II;

Case 4. a systematic error of —3 percent in all Ceay values, and hence in Jz(Ceat);

Case 5. a systematic error of +3 percent in all values of €;

Case 6. the difference between the empirical function, fz( V1), and the numeri-

10
cally integrated values of the thermodynamic term, f( V1) =f0 VL(dP[dT)zat

dT; and
Case 7. the increase of all values of input temperatures between 0.9 and 2.0 °K
by adding 0.002 deg to each T7s.

|
T =
Case Aa l Ab _
|
| ‘ 1.0°K | 08 °K ; 0.6 °K | 0.4°K | 0.2 °K
| | .
J|mole ‘ Jlmole deg | mdeg mdeg mdeg mdeg mdeg
=+0.006 | ==0.004 0.4 +0.3 =+0.3 =+0.2 =0.1
,,,,,,,,,,,,,,,,,,,,,,, 0.0 =+0.1 =052 =+0.4 =+0.4
_______________ - =0.2 =+0.1 0.0 0.0 | 0.0
0. 069 —0. 060 | 0.2 0.5 0.8 | 1.0 1.0
0.073 | —0.076 | 0.2 | 0.4 | 0.5 | 0.6 | 0.5
,,,,,,,,,,,,,,,,,,,,,, [0 ST == 7 == ) 10 R 0 S | 0 )
0. 094 ‘ —0. 026 | ,,,,,,,,, %7 1.5 1525 0.7

The overall effect on the 1962 He?® Scale of random
errors in the specific heat of liquid He?, the virial
coeflicient equations, and the 1958 He* Scale might
amount to as much as three millidegrees. Durieux
[54] has analyzed the 1962 He® Scale for the effects of
possible errors and has reached similar conclusions.
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1.3. Fit of the Argonne Laboratory Vapor-Pressure
Data

The He*-He' vapor-pressure intercomparisons of
Abraham, Osborne, and Weinstock [5] have been
used in deriving all previous He? temperature scales,
but these were rejected for the 1962 He® Scale
because of apparent thermodynamic inconsistency
(see refs. [10 and 45]) with recent precise measure-
ments of the latent heat of vaporization of He® by
the same workers [4, 55]. The fit of the AOW
vapor-pressure data to the 1962 He® Scale is shown
in figure 2.  Above 1.9° the agreement is within 0.5
mdeg. Below 1.5° the AOW data deviate systemati-
cally from the 1962 Scale indicating either that their
He® vapor pressures were lower or that their He*
pressures were higher than the data of Sydoriak and
Sherman (Part I).  For encircled points in figure 2,
a He* vapor pressure bulb was fastened to the He?
bulb. The He* pressure may have been high because
of insufficient correction for effects due to the reflux-
ing superfluid film. For the uncircled crosses and
dots, the He' bath pressure was measured in the
pumping line in a warm part of the apparatus. The
corrected He* pressures as published may have been
high because the effluent gas was significantly colder
than the tip of the pressure-sensing tube, thus in-
creasing the actual thermomolecular pressure
difference.

1.4. Fit of Heat-of-Vaporization Data
Heat-of-vaporization, L, data may be used to test

the thermodynamic consistency of the temperature
scale. The equations used may be either

()

with the vapor entropy, S, calculated from the
Sackur-Tetrode equation, or

L=T(Ve—=V)(dP[dT) s

L="T(Ss—S;)

(6)

from the Clausius-Clapeyron equation. The use of
these equations for testing He* scales of temperature
has been discussed extensively; see van Dijk and
Durieux [25], Durieux [15], Berman and Mate [56],
and Keller [43].

The liquid entropy at 1.0 °K (or any other tem-
perature) may be calculated from eq (5) and data
for O, as

8,(1.0°) = 8o(T)—(I/T)— ﬁ '( (CudTHAT'. (7

The Argonne (WAOQO) heat-of-vaporization measure-
ments [4] were undertaken in order to determine
the entropy of liquid He? in this way.

At one stage of the derivation of the 1962 He?
Scale, it was proposed [10] to use all the WAO
heat-of-vaporization data and eq (7) to get an average
value for S,(1.0°), which is just the coeflicient,
b, in eqs (1) and (4). Then, values of (a/R)=

F.(Ps, T)—(bT/R) from eq (1) were computed for
every vapor-pressure datum point between 0.9 and
2.0 °K. This two-step method failed to converge
on a stable, consistent pair of constants a and b,
and led to the decision to undertake the new L..A.S.L.
intercomparisons of the vapor pressures of He?® and
He*. Analysis of the new intercomparisons [45] by
this same two-step method also failed to yield a
consistent set of ¢ and b values, although these
data showed much less scatter, as shown in figure 3.
The heat-of-vaporization data were not used to
determine the 1962 He® Scale; instead a and b
values were obtained by a least squares fit of the He?
vapor-pressure data to eq (1) using for 7' the 7'
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Ficure 2.—The deviation in millidegrees of the 1950 Abraham,
Osborne, and Weinstock [5] (Ps, Ps) data from the 1962 He?
Scale: T (Py) —Tss(Py).

The uncireled crosses and small dots are data points below the A-point for which

the He* cryostat bath pressure was published as Ps.  For the encircled points a
et vapor pressure bulb was fastened to the He? bulb.
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Ficure 3.—Demonstration of the remaining thermodynamic
inconsistency between eqs (1) and (7) tnvolving the He? latent-
heat data, (L, Ps), of Weinstock, Abraham, and Osborne [4],
[65]; the (Ps, Py) intercomparisons of Sydoriak and Sherman
[461; and the 1958 He* Scale (2], Tss(Py).

The indicated value of Sr(1.0°) is the average of nine values calculated from eq

(7) for the WA O (L, Ps) data and is about 1 percent lower than the 1962 He3 Scale

value for that entropy, eq (4). The solid circles are the individual values of the

theoretical constant, (¢/R), in eq (1) calculated for each (P3,7%s) data pointjas
F.(Ps, Tss)—[SL(1.0°) Tss/ R] using the indicated average value of Sz(1.0°).
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values that corresponded to the He* vapor pressures
observed concurrently with the He?® vapor pressures.

The 1958 WAO heat-of-vaporization data may be
used to test the 1962 He® Scale in the manner ex-
plained by Durieux [15]. In terms of an apparent
heat of vaporization, L, (defined as the heat necessary
to evolve a mole of gas outside of a calorimeter),
eq (6) becomes

Li=TV o(dP/dT)sas
=—R(1+BVe+C/Ve)ld In Pd(1/T)

=RT?Z(d In P/dT) sz (8)
where the compressibility coeflicient, Z=(PVg/
RT)= (1+B/Vg+C/VE) from the density virial form
of the equation of state.

As shown in figure 4, the observed values of L,
average about 0.5 percent higher than the values
calculated from the 1962 He® Scale using eq (8),
a deviation considerably in excess of the estimated
0.1 percent accuracy [55] of the L, measurements.
Durieux [15] calculates that the L, values of Berman
and Mate [56] for He* average 0.76 percent higher
than the values calculated from the 1958 He* Scale
between 2.2 and 3.0 °K. These differences may be
due in part to a deviation of the 1962 He® and 1958
He* Scales from the true thermodynamic temperature
scale. An estimate of such a difference may be
obtained by neglecting the variation of (dIn P/dT)
and Z in eq (8). In this case 67/T =~ (1/2)(6L,)/L.,.
From the dashed curve drawn through the He® data
of figure 4 this estimate of 67" varies from 3 mdeg
at 1.2 °K to 1 mdeg at 2.0 °K, a not unreasonable
range of deviations. For the He* data, this approxi-
mation yields values from 8 mdeg at 2.2 °K up to
11 mdeg at 3.0 °K which are much larger than ap-
pears reasonable for the departure of the 1958 He?
Scale from the thermodynamic scale. An error

in the temperature scale also would cause both
(dIn PldT): and Z to change.

1.5. Fit of Gas Thermometer, Isotherm, and Acoustic
Interferometer Measurements

In principle, gas thermometer, isotherm and acous-
tic interferometer measurements of the absolute
temperature associated with a He* vapor pressure
may be used to check the 1962 He® Scale by directly
interpolating the He* vapor pressure to an iso-
thermal He® vapor pressure. The direct interpola-
tion equations and table described in Part I are
usable for this interpolation of He* vapor pressures.
Since the 1962 He® Scale has been made to agree so
closely with the 1958 He* Scale, at least in terms of
the (P, P,) data of Part I, little really significant new
information would be expected from this kind of
comparison.

Van Dijk [57] has critically reanalyzed all published
gas thermometer and isotherm measurements and
compared them with the 1958 He* Scale. The
majority of these measurements between 1.5 and
3.3 °K seem to indicate that the thermodynamic
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Fiaure 4.—Deviations of the values of L,, the apparent latent
heat of vaporization (see sec. 1.4), observed by Weinstock,
Abraham, and Osborne [4, §5] from values of L. calculated
for the 1962 He? Scale from eq (8) using eqs (10) and (11).

temperature may be several millidegrees higher than
T, although the data scatter over a range of about
+10 mdeg from 7.

Two preliminary acoustic interferometer results of
Cataland and Plumb [58] indicate thermodynamic
temperatures that are 342 mdeg higher than 7'
at 2.0 and 2.2 °K.

The isotherm measurements of Keller [11, 12] are
generally conceded to be the most accurate in the
liquid helium temperature range, and are the only
data for gaseous He®. During the derivation of the
1962 He® Scale, the isotherm data of Keller were
reanalyzed [10, 48] by Deming’s method [47] of least
squares adjustment with errors in more than one
measured variable (see appendix A). For the iso-
therm measurements the observed pressures for each
data point were corrected or normalized to a cal-
culated value which would have been observed if the
cell volume were at the normalized temperature for
the set of data points. This normalized temperature,
Ty, Was taken as the temperature on the 1958 He*
Scale corresponding to P, the average He* vapor
pressure for the set of data. The values of P and
Ty, 55 are listed in tables 2 and 3. The method of
normalization was essentially the same as that
described in detail by Keller [11].

For the isotherm measurements the quantity
minimized by the least squares adjustment was
SOW,(Po—P )+ W, (Ny—N,)?* where the independ-
ently observed variables are P, the normalized
helium gas pressure, and N, the molar density.
The fitted function was

FP,N,)=P,—N.RT(1+BN.+CN;)=0 (9)

where B and ' are the second and third virial coefli-
cients, T'is the isotherm temperature for a normalized
_set of data, and P, and N, are the calculated or
adjusted values of 2 and N. The individual weights,
W, and W,, were calculated from Keller’s assign-
ment of errors in the various observed quantities.
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The isotherm designations, the data points, and the method of normalization for each isotherm are the same as those used by Keller. Puis the average Het vapor
pressure for each isotherm and P; is the average He? vapor pressure for the « isotherm.  7Ts(Py) is the normalized temperature for each isotherm and is the 1958 He#
Scale temperature corresponding to Ps.  P3(Py) is the directly interpolated He3 vapor pressure corresponding to P4, using the direct interpolation equations described

in Part I, and Tﬁz[Ps(E)] is the 1962 He? Scale temperature corresponding to P3;(Ps). The values of Tis, B, and Clisted under the heading ‘“Three-constant fit’’ were
obtained by solving eq (9) using Deming’s method of least squares adjustment with errors in two measured variables (see appendix A).
The two constant fit values of 7'i., and B were obtained by solving

TaBLE 2.

weighted variance are calculated in accordance with the statistical formulas given by Deming [47].

eq (9) assuming C=0. For the For the v, 6, and e isotherms the variance of the three-constant fit is lower and the values of C are greater than the magnitude of their
statistically assigned errors. Therefore the three constant fit solutions were used for fitting He3 virial coeflicient equations, eqs (10) and (11), and for the temperature

differences shown in figure 2 of Part I1.

Summary of reanalysis of Keller’s gaseous He? isotherms [12]

The standard errors and the

Isotherm v b @ € B
Units .
No. of points
18 18 11 10 8
mm Hg 489. 52 178.09 36.16 13.070 3.782
mdeg 3779.1 2985.3 2154.2 1813.4 1510.3
mm Hg 607.70 197.43 105.33 52.21
€131 = I e e e )76 B | [
mdeg 2154.440.2 1813.140.2 1510.240.2
mdeg 3 s e
THREE-CONSTANT FIT
mdeg 3782.342.2 2992.44+1.6 2153.74+1.0 1816.440.8 1510.42. 5
cms/mole —65.50-+0. 86 —86.31+0. 52 —118.81+1.35 —145. 08+1. 61 —162.154+10.7
cembé/mole? 1192306 17464136 548822 261141289 —11, 069-£16, 390
13.8 6.1 0.86 4.8
—7.1£1.6 0.54+1.0 —3.040.8 —0.1£2.5
—7.2:4+1.8 0.7£1.2 —3.241.0 —0.242.7
______________________ 1.3£1.0 P WSS, | S
TWO-CONSTANT FIT
mdeg 3774.441.3 2074.442.8 2153.240. 6 1814. 94-0.4 1512.0-40.7
cmé/mole —62.18-£0.19 —79.66+0.33 —117.9240. 26 —141.87+0.29 —169.3041.15
________________ 13.2 156 5.7 1.20 4.4
TasrLe 3. Summary of reanalysis of Keller's gaseous He* isotherms [11]

The various quantities have the same meaning as in table 2. The three constant fits gave a statistically better fit for only one isotherm, so the results of the two

constant fits have been accepted as being more meaningful and have been used for figure 2 of Part II1.

Isotherm A B (0] D E
Units
No. of points 12 14 12 17 9
I_’A_ el mm Hg 588. 55 291.31 147. 55 52.758 35. 541
Tss(_l’.s),_ - mdeg 3954. 2 3339.2 2864. 0 2315.1 2147.3
P3(Py) . TS o S | SO | DU 528.42 254. 50 195. 21
Too Ps(Pa)] oo mdeg || 2864. 0--0. 2 2315, 0£0. 2 2147, 640. 2
TWO-CONSTANT FIT
mdeg 3953.742.1 3338.44-2.1 2863. 540. 9 2316.7+2.3 2148.9+0.9
cm?/mole —83. 9740: 66 —103. 6040. 78 —124.16-+0. 63 —153.38+4.21 —176. 0442, 04
________________ 8.7 17.8 3.6 23.4 1.69
mdeg —1.52.1 0.84+2.1 0.5+0.9 —1.642.3 —1.6£0.9
1 R | | e S .0. 5+1.1 —1.742.5 —1.341.1
THREE-CONSTANT FIT
mdeg 3953.844.3 3335.343.7 2860.941. 5 2311.946.1 2146.542.8
cms/mole —82.1643. 52 —99.804+3.78 —118.474-2. 86 —132.1425.7 —162. 6:15. 8
emf/mole? —14524:2773 —3133 43042 —67414-3331 — 50, 49060, 20 —38, 900445, 160
,,,,,,,,,,,,,,, 9.4 1757 2.8 23.9 1.75
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The results of the reanalysis of Keller’s gaseous
He? data [12] were fitted to empirical equations for
the He® second and third virial coefficients. These
equations are

B=(4.942—270.976/T) em 3/mole (10)
and B
C=(2866/y/T) cm ®/mole 2. (11)

The deviations of both He? and He! isotherm
temperatures from the 1962 He? and 1958 He!
Scales are shown in figure 2 of Part II. Keller
used a He* vapor-pressure thermometer for all but
one of his isotherms, but his observed P,’s have
been interpolated to P3’s by use of the direct in-
terpolation cquations of Part I. The weighted
average of the isotherm temperatures is 1.50 +1.0
mdeg above the corresponding 75 values and 1.52 +
1.2 mdeg above the Ty values. For one isotherm
He? containing about 0.25 percent He* was con-
densed in the vapor-pressure bulb. The corrected
average pressure for pure He? was 197.62£0.02 mm
He (T,=2.1550 °K) at an isotherm temperature of
2.15374-0.0010 °K. It was concluded that nothing
would be gained by trying to base a He?® scale
more directly on these isotherm temperatures since
the 1958 He* Scale is based on these data. More-
over, the 1962 He? Scale, as it has been set up to
agree with the 1958 He* Scale, adequately expresses
the experimental He?—He* vapor-pressure relation
for most practical purposes.

2. Thermodynamic Properties of He? Con-
sistent with the 1962 He’ Scale

Two temperatures which are frequently given in
discussing helium vapor pressure scales are the
boiling point and the eritical point. The boiling
point of He® on the 1962 He? Scale, at a vapor
pressure of 760 mm Hg at 0 °C and standard gravity,
18 3.1905 °K. The temperature at the eriticl
point for He® was measured by Sydoriak and Sher-
man [46] by observing the He' vapor pressure.

This measured critical temperature on the 1958
He* Scale was 3.3240+0.0018 °K at a He?® critical
pressure, P, of 873.0+£1.5 mm Hg. The calculated
critical temperature on the 1962 He® Scale is the
temperature given by eq (9b) of Part Il [6] corre-
sponding to P, and is 3.3246-+0.0017 °K. This
close agreement with the directly measured tem-
perature is quite gratifying and somewhat unexpected
since the scale-defining equation was fitted over the
full range of the vapor-pressure intercomparisons.

Table 4 gives a number of quantities which are
consistent with the 1962 He?® Scale, including, for
comparison, values of He* vapor pressures from the
1958 He* Scale. The concentration derivative of
In Py, (d In Px/dX); x—;, where X is the mole
fraction of He® and Py is the corresponding mixture
vapor pressure, is useful for correcting for the
He* impurity in a He® vapor-pressure thermometer.
This correction is discussed in section 3.

The table values for (', the specific heat of the
saturated liquid, were calculated from the empirical
equation, eq (3b) of Part II, fitted to specific-heat
data for the derivation of the 1962 He® Scale.
The calculated values agree with the experimental
data to -1 percent; the deviations are given in
table 2 of Part II. Values for S;, the entropy
of the saturated liquid, were calculated from the
relation

Su(T)=8,(1.0% + f (CudTHIT  (12)
1.0

using the above-mentioned (', equation and the
1962 He? Scale value of S,(1.0°), given in eq (4).

Values for the second and third virial coeflicient
were calculated from eqs (10) and (11) while Vi,
the molar volume of the saturated vapor, was
calculated from the equation given for Z in eq (8).
These calculated values of Vg, agree to within
1 percent with the smoothed fit to the experimental
data of Kerr [59] up to 2.8 °K. The values of
V., the molar volume of the saturated liquid, are
taken from the table of Kerr and Taylor [60].
The values of L, the heat of vaporization, are calcu-
lated from eq (6).

Tasre 4.  Thermodynamic properties of Hed and vapor pressures of Het consistent with the 1962 He? Scale
| ‘ ;
b | <d In Px> ‘ Virial coefl. |
dln P3 = | |
T Ps Py(Tss) ( ar ) d;}t ‘ C: St Ve | Vi L
X=1 | |
(see notet) | B C | 1
‘ |
— - - | | S| S————
°K microns Hg at 0 °C and std. g deg1 J/deg mole | J/deg mole cm3/mole | cm3/mole J/mole
0 ||| 0 | () | USROS FOU O | SN S | 36.8346 20. 56
0.2 73.32 0.23 2.728 3.703 1031067
0.4 21.04 0.47 3.146 5.731 887X103
0.6 10. 57 0.70 3.477 7.071 68274 |
0.8 6.650 0. 88 812 8.117 16909 |
1.0 4.721 0.92 9 6776. 6 |
1.2 3.613 0.92 9 3476.7 |
1.4 2.908 0.91 2060.7 |
156! 65467 5689.9 2.425 0. 89 1338.9 |
1.8 102516 12466 2.077 0. 88 925. 5 [
2.0 151112 23767 1.815 0. 86 667.8 |
2.2 212673 40466 1.611 0.810 496. 6 [
2.4 288613 63304 1.448 0.781 376.7 ‘
2.6 380383 93733 1.317 0. 754 288.8
2.8 489549 132952 [ 1.210 0.728 221.0
3.0 617907 182073 “ 1.122 0.705 163.1

tHere X is the He3 mole fraction. The He! mole fraction, (1—X), is used to make the impurity correction.
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The heat of vaporization at absolute zero, L,

can be obtained from the fitted constant, a, of eq
(3) if the specific heat integral is evaluated. The

specific heat of liquid He® under a pressure of a
few centimeters of mercury has been measured by
Anderson, Wheatley, and coworkers [61] down to
a temperature of 0.015 °K.  Their empirical equation
for C,, the specific heat at a constant pressure of
0.12 atm, is (C,/R)=2.89T—7.807*+7.097% for
0<T<0‘%° Integmtion of this equation yields

0.
f Oadili= f C,dT=0.3314+0.013 J/mole. This

value 1s in excellent agreement with the wvalue
0.333+-0.010 J/mole obtained by eraphical inte-
J t=]
gration of the smooth curve through recent specific
heat data g¢iven by Strongin, Zimmerman, and
- ey, = ) )
Fairbank [62]. From the empirical equation for
|
1

=
(i used for the Ty, scale, j CoidT=2.784+0.056
JO0.2

J/mole. Our corresponding 20.56
+0.07 J/mole.

The entropy of the saturated liquid can be assumed
T

to be approximately equal to I ',/ T"d T’ from

Jo
the 0.12 atm (’, equation of Anderson et al. I(ill
given above. From this approximation §,(0.23 °K)
is 4.054+0.17 J/mole deg. Strongin et al. [62]
also have computed the entropy from their extrap-
olation of specific heat data to 0 °K.  Their value
for the entropy at 0.23 °Kis 3.974+0.17 J/mole deg.
These values are in good agreement with the value
4.024-0.25 J/mole deg obtained by Weinstock,
Abraham and Osborne [4], who used eq (5) to cal-
culate S.(1.5°) from their three separate latent
heat melslnomonls at  that temperature. The
equivalent of eq (12) was used by WAO to compute
other entropies in the range of the then available
specific heat data. The value of S.(0.23°) con-
sistent with the 1962 He? Scale, calculated from eq
(12),18 8.(0.23°)=4.094+0.10 J/mole deg, estimating
a +2 percent limit of error for the specific heat

ralue of L, 1s

integral term. The good agreement among these
values is gratifying but it may be fortuitous. For

example, the He® temperature scale used by
Weinstock et al. [4] to assign temperatures to
observed He? vapor pressures was the 7, Secale,
eq (9) of ref. [9]. The deviations of the 7, S alo
from the 1962 He?® Scale are shown in figure 5 and
ange from 46 to —3 mdeg. At 1.5 °K, however,
the two scales are in good agreement as to the
temperature. 'Thus the value of 7"used in computing
both S¢ and L/7 in eq (7) would give essentially
the same value for liquid ('ntm[).' at T'~1.5 °K on
the 77 and 1962 He® Scales. If, however, a value
of L calculated from eq (6) is ll\(‘(l in eq (7) instead
of a WAO experimental value of L, significantly
different values are obtained for S, depending
upon which of the two scales, 7, or 1962 He? is
used for the calculation of (dF;/dT)s. since there
is a difference of about 0.4 percent in these derivatives
on the two scales as inferred from the slope of the
AT curve in figure 5 (see, for example, ref. [63]).

T l T ‘ T I
61— _
He: TL-Tep
n 4 -
8 4
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@
D
8 2 )
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=
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He: T 55~ Tsg
-4 L | L [l L 1
0 ] 2 3

T.°K

Ficure 5.—Graphs of differences between old and new Hed and
Het temperature scales.

The He? curve, TL(P3)— Ts(P3), is a graph of the difference between the 77,
Scale [9] and the 1962 He?® Scale. The He# curve is the difference between the
T'Lss Scale [25] and the 1958 He¢ Scale given in table 6 of ref [2]. It was intended
in their de itions that the 7', Scale would re prmluu-lhv T'Ls5 Scale, and that the
1962 Hes Seale would reproduce the 1958 He# Scale.  The difference between the
two curves is explained principally by the new (Ps, Ps) intercomparison data of
Sydoriak and \hvrm i [46] used in derivi ing the 1962 He? Scale.

3. Corrections to the Measured Pressure of
a He’ Vapor-Pressure Thermometer for
the He' Impurity

Sydoriak and Sherman have discussed in Part [
corrections to be applied to an observed pressure
as measured in the laboratory in order to obtain
the vapor pressure at the surface of liquid He®.
The correction for a small He* impurity will be
discussed in more detail here.

The presence of He' in liquid He® thermometers
lowers the vapor pressure below that of pure He?®.
Much of the He? available for purchase up to the
present has contained significant quantities of He';
even the He® used for the 1962 He' Scale input
data measurements [46] contained about 0.04 per-
cent He'. Specially purified He® containing less
llmn 0.01 percent is being made available for
purchase through the Division of Research of the
United States Atomic Energy Commission [64].

The correction for small amounts of He* may be
calculated from the approximate relation

Py—P,~(1—X) (dP,/dX) 7 x- (13)
where £, is the observed vapor pressure for mole
fraction, X, He®.  Although very little data
has been published for the vapor pressures of dilute
solutions of He* in He? the liquid phase diagrams
of Sydoriak and Roberts [32] and Esel’son and
Berezniak [38] indicate that (dF,/dX), is probably
a constant for X>0.9 and hence eq (13) may be
valid for concentrations of up to 10 percent He*.

Smooth values of this derivative in reduced form,

(@0 PoJdX) g x 1= (1/P3)(dP,)dX) 7 x—:

Lo

—X), (14
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are listed in table 4 and are compared with the raw
data of Sydoriak and Roberts [32] in figure 6.
Between 0.6 and 2.0 °K the table 4 entries and the
solid curve in figure 6 were calculated from eq (14)
using the X=0.9 values from the smoothed table
of ref. [32]. Below 0.6 °K the derivative has been
assumed to go linearly to zero at 0 °IKX mainly because
such an extrapolation is consistent with the data
below 1 °K, as shown in figure 6. Actually for all
practical purposes this derivative may be zero
below about 0.2 °K since at these temperatures
liquid He®*—He* mixtures with very small amounts
of He* undergo phase separation [65] and, when
this happens, the vapor pressure becomes independ-
ent of further decreases in X. Above 2.0 °K,
the table 4 values were calculated from Raoult’s law,

(d1In P,/dX)p x-1=1—(Py/Ps), (15)
shown as the dashed curve in figure 6. That law
is in fairly good agreement with all existing vapor-
pressure data for X>0.89 and 7>1.7 °K.

The concentration of He* in the saturated vapor
will be much less than that of the liquid. This
fact can cause fractionation and may require further
correction in precise thermometry if much of the
He? in the thermometer system is not condensed.

The correction to a temperature measurement
made with a He® sample containing 0.1 percent
He* in the liquid phase ranges from 0.02 mdeg at
0.4 °K to 0.71 mdeg at 3.2 °K. For most purposes
the correction may be calculated from the approxi-
mate relation

P,—P,~(1—X) P,(dIn P,/dX)p x-;. (16)
The derivative below 2 °K may be interpolated
from a curve through the values listed in table 4
or from figure 6. Above 2 °K the derivative can
be easily calculated from eq (15). A careful experi-
mental determination of the correction above 2 °K
would improve the accuracy of this correction.

RAOULT'S LAW

X) % (dInPy /0 X)g. g,
o o -
(2] @ ?
8
{
b
/

/P3)) /-
o

(-5

Ficure 6.—The correction factor for Het mpurity.

The circles are the data points of Sydoriak and Roberts [32] for ITe3 mole frac-
tion, X, of 0.897. The solid curve from 0.6 to 2.0 °K is drawn through the
smoothed table values of ref. [32] for X=0.9. The long and short dashed curve
is an arbitrary extrapolation to 0 °K. The dashed curve is Raoult’s Law, eq (15).
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Fiaure 7.—Correction for Het impurity, (Teo—T\y), to be added
to the uncorrected temperatures, T, calculated from the ob-
served vapor pressure and the 1962 He? Scale.

The correction is calculated as To— Tw=(1—X) (dIn P;/d X)7,x=1/(dIn P;/d T)
based on eqs (13) and (14) and using the derivative values listed in table 4. The
curves can be used for ten times the indicated percent of et in the liquid if the
ordinate is multiplied by ten.

Figure 7 may be used to read the temperature
correction directly for known He* concentrations
in the liquid.

4. Status of the 1962 He* Scale of Tem-
peratures

The 1962 He® Scale was presented [66] at the
Eighth International Conference on Low Tem-
perature Physics in London, September 17-21, 1962.
During the next week the new scale was discussed in
detail by the Advisory Committee on Thermometry
of the International Committee on Weights and
Measures. A scale proposal along with ref. [54]
has been published along with the minutes of the
meeting of the Advisory Committee in Sévres,
France, September 26 and 27, 1962. Quoting from
the draft of those minutes [67]:

“Il a estimé que I"Echelle *He 1962 doit également
étre recommandée pour l'usage général, avec la
désignation 7',. )

“Les deux échelles 7sg (I’Echelle *IHe 1958) et T,
peuvent étre utilisées concurremment dans le domaine
ou elles sont valables. Cependant, quand il s’agit
de I'adoption de cette nouvelle échelle *He comme
partie de I'E.I.P.T., on doit prendre soin d’éviter
toute ambiguité dans le domaine de recouvrement
avec I’échelle *He.” ?

The recommendation by the Advisory Committee
of the 1962 He?® Scale was approved in October 1962,
by the International Committee on Weights and

34Tt (the Advisory Committee) has deemed that the 1962 Ie3 Scale ought
equally to be recommended for general usage with designation 7.

“The two scales 75 and T2 can be used concurrently in the range where they
are valid. However, when it is a question of adopting this new He3 scale as a
part of the I.P.T.S. (International Practical Temperature Scale), care should be
taken to avoid any ambiguity in the region of overlap with the Ie# scale.
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Measures meeting in Sévres. The International
Committee requested the United States and Russian
Governments to take steps to make high-purity He?
available internationally for vapor-pressure thermom-
etry, and to prepare and distribute known mixtures
of He® and He* for the calibration of or the checking
of the calibration of apparatus for measuring the
isotopic purity of He?.

The status of the 1962 He® Scale and proposed
changes in the International Practical Temperature
Scale have been discussed by Stimson [68] and

Brickwedde [69].

5. Practical Lower Limits for He’ and He*
Vapor-Pressure Thermometry

Practical lower limits for helium vapor-pressure
thermometry are determined by the desired precision
of temperature determination, the accuracy with
which the vapor pressure can be measured, and by
how small or how well known the temperature
difference is between the thermometric fluid and the
object of the measurement.

Below about 2.2 °K| He? can much more easily be
made isothermal with an object the temperature of
which is being measured than can He?, for the reasons
discussed in Part I. A major factor in fixing a
practical lower limit for He? thermometry is the time
necessary to achieve an equilibrium thermomolecular
ratio, P./P,, of cold pressure, I”,, to warm pressure,
P,, and more importantly, of sufficient data to
permit accurate calculation of that ratio.

To measure temperatures from 0.3 to 0.25 °K to a
millidegree precision using He?, vapor pressures from
1.9 to 0.24 u would have to be measured to 4 or 5
percent accuracy. This accuracy in the pressure
system is relatively easy to achieve. However, the
error in P./P, may amount to several percent because
of marked quantum effects in the gas viscosity and
because no He? measurements have been made of the
empirical thermal transpiration coefficients postu-
lated by Weber [70]. The He® thermomolecular
pressure measurements made by Roberts and
Sydoriak [37] showed that for a cold temperature of
2 °K observed He® P./P, ratios from 1.0 to 0.5
agreed within 1 percent with ratios calculated for
He* using the Weber-Schmidt equation [71].

Roberts and Sydoriak also discuss the possible
effect of the low-temperature viscosity on pressure
ratios in the tubing at liquid helium temperatures.
For warm and cold temperatures, 7', and 7', below
5 °K and pressure ratios close to 1, eq (5) of ref. [37]
is (po/pw)?*=1—0.005642 (T,—T>2/(Rp,)?* where
R is the tubing radius in centimeters and p, is in
microns of mercury. In order to be reasonably sure
that the calculated thermomolecular ratio is within
4 or 5 percent of the true ratio for He? it is suggested
that the calculated (p./p.) be kept greater than 0.5
in the rest of the pressure sensing tube. For the
stepped pressure sensing tube used by Sydoriak and
Sherman with dimensions shown in figure 4 of Part I
[46], this suggests a practical lower limit of Rp,=
0.155 em microns or a vapor pressure of 1.16 u
(Tyy=0.287°).

The practical lower limit for He' vapor-pressure
thermometry is strongly dependent on numerous
details of the particular technique and apparatus
used. In many cases experimental temperatures are
determined from the vapor pressure of the bath in
which the experimental apparatus is immersed. For
bath temperatures and with proper corrections for
pressure drops associated with film reflux and/or
motion of effluent vapor from the bath, temperatures
may be determined down to about 1 °K. Fioure 1
of Part I shows errors due to film reflux pressure
drops for typical sizes of pressure sensing tubing.
However, for temperatures determined by thermal
contact with a closed-bulb He' vapor-pressure ther-
mometer the practical lower limit is raised to just
below the X\ point, because of the large and variable
temperature discontinuity at the bulb wall associ-
ated with recondensation of the refluxing film.
Figure 1 of Part I also shows this “correction” for
a variety of conditions.

If the bulb wall is a poor thermal conductor, a
still higher limit is imposed due to the effects of the
density maximum at about 2.18 °K, discussed by
Chase, Maxwell, and coworkers [72]. )

In the case of precision measurements using He?
thermometry, the publication of only a few pertinent
details, such as the diameters and temperatures of
any stepped junctions in the pressure sensing tube,
will enable future correction of data as improved
thermal transpiration corrections become possible.

6. Conclusion and Considerations for the
Future

These papers on the development of the 1962 He?
Temperature Scale have emphasized marked differ-
ences between liquid He®* and He*. One is in the
low-temperature variation of the liquid entropy.
The quantum mechanical exchange forces in liquid
He® lead to appreciable correlation of the nuclear
spins in the liquid at temperatures as high as 1 °K.
The difficulty in fitting the entropy curve with a
simple analytical expression has led to difficulty in
attaching theoretical significance to certain terms in
empirical vapor-pressure equations at temperatures
below the temperature of fitted data.

The superfluid transition of liquid He* makes
accurate isothermal intercomparisons of He? and He*
vapor pressures difficult below the He* A-point. The
1961 intercomparison data of Sydoriak and Sherman
[46], however, are considered to be valid to a few
tenths of a millidegree. The 1962 He® Scale, which
is based on these intercomparisons, is believed to be
in agreement with the 1958 He* Scale to within two
or three tenths of a millidegree over the full range of
the intercomparison data, from 0.9 °K to the critical
point, 3.324 °K. A lower limit for practical He?
vapor-pressure thermometryis 0.25 °K corresponding
to a He* vapor pressure of 0.24 , Hg.

A number of independent measurements, including
measurements of the latent heats of vaporization of
He? and He*, precise isotherm measurements, and
preliminary acoustical interferometer measurements,
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indicate that both the 1962 He?® Scale and the 1958
He* Scale may be 2 or 3 mdeg lower than true
thermodynamic temperatures between 1 and 3.3 °K.
When more accurate data on the thermodynamic
properties of He® and He* are available, together
with better determinations of absolute thermo-
dynamic temperatures, the precise intercomparison
data will allow both the He?® and the He* scales to be
adjusted consistently and simultaneously. He?* and
He! scales, thermodynamically consistent between
1 and 3 °K, may be extended by precision para-
magnetic salt thermometry above 3 °K using He*
and below 1 °K using He®*. Also, the scales may be
extended downward by thermodynamic calculations,
using coefficients evaluated between 1 and 3 °K as
in the development of the 1962 He® Scale and the
T He* Scale [25]. Further measurements on He?
that would be helpful in improving the Scale are
measurements of the vapor pressure and thermo-
molecular pressure ratio down to temperatures of
0.25 °K, more accurate specific heat measurements
on the liquid below 2 °K, and specific heat, latent
heat, and high-precision vapor-density measurements
above 2 °K.

7. Appendix A. Method of Multiple Vari-
able Least Squares Analysis

In the usual least squares adjustment of experi-
mental data the implicit assumption is made that
only one measured quantity, often called the de-
pendent variable, is in error. This dependent vari-
able is measured as a function of one or more inde-
pendent variables. The usual procedures for the
adjusting of sets of observations to an empirical or
theoretical equation assume no error in the inde-
pendent variables. Frequently, however, the “in-
dependent variable’ is also determined by a physical
measurement and is just as subject to error as the
dependent variable.

Deming [47] has discussed a method of adjust-
ment of sets of observations of two or more variables
when all variables are subject to error. His method
is essentially equivalent to statistical weighting of
the data. The method has been coded by P.
McWilliams of the Los Alamos laboratory for use
with the Gaussian method of iterative least squares
analysis adapted by Moore and Zeigler [73] for high-
speed computers. We will give a simple example
of the method of analysis with exaggerated scatter
and uncertainty.

7.1. Simple Example

As a simple illustration consider fitting the best
straight line to the following three points:

X Y
IES! 1+1
41 S+1
5+1 4+1

5F— (4.5 @ //
Z ® -
sav?
MINIMIZED
Y
/ S(AY% AX?)
/ MINIMIZED
/ (1, n
v
0 5

X

Ficure 8.—Simple example of the least squares fit of a straight
line to the three observed points shown as dots.

The dashed line is the usual least squares solution of Y=a+bX which mini-
mizes Z(Y,—Y.)2. The solid line is the solution assuming both X and Y are
subject to equal absolute errors.

The dashed line in figure 8 shows the fit of the usual
least squares solution of Y=a+bX assuming that
only Y is in error and equally weighting the points.
The solid line, Y=X, is the solution assuming that
the X and Y values are all equally subject to equal
absolute errors. The general case of fitting to a
straight line is discussed in detail by Deming. For
our special case of equal weighting, the two solutions
go through the centroid but have different slopes.

Actually the quantity which is minimized by the
least squares solution is

M
S:ZI [wy, i(Yu, i_—}rc. i>2+wa:, i(Xo, i_Xc. 1‘)2] (] 7)

where the subseript o indicates the observed value;
subscript ¢ indicates the calculated or adjusted value;
and w, ; and w, ; are the weights of the 2th of M sets
of observations. Thus in figure 8 the solid line is
identified as minimizing

S=2 [(AY)*+(aX)?]
since all the individual weights are equal. AY is
defined as (Y,—Y,) and AX=(X,—X,).

The geometrical relation between AY and AX
that is assumed in Deming’s method of solution is
illustrated in figure 18 of ref. [47]. The relation for
each point depends on the individual weights for
that point.

If w,=w,, this condition requires that the line
from the observed point, (X ,Y,), to the calculated
point, (X,Y,), be perpendicular to the calculated
curve.
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7.2. General Discussion of Method

In many cases the least squares problem can be
expressed as minimizing eq (17) subject to M equa-
tions:

F(X,:Y,:)=0. (18)

As an example consider a case in which three coeffi-

cients, a, b, and ¢, are to be fitted by least squares to

the relation Y=f£(X, a, b, ¢). We take

Iﬂ(X} Y>:Y‘f(X7 a, b, C)- (19)

Using his geometrical relation between AY and AX,

and using the Gaussian method of linearization of

the problem by a truncated Taylor’s Series expansion

of the function, Deming derives a typical least squares
solution “normal” equation as

Mo M
A(LZ W, EF: i+AbZ W.F, .F,
i=1 i=1
M M
+Aac DWW, Fe i=> WiF, JF, ;. (20)
i=1 i=1

In this equation, the subscripts a,b, and ¢ designate
the partial derivatives of / with respect to the
respective coefficients; Ae=a,—a,, the difference
between the initial value, a;, and the calculated or
adjusted value, a.; F, ,=F(X,;, Y, a, b, ¢);
and the weights are
W= (F3, i/w,,+F5, iJw,, )" (21)
F,,and F, are the partial derivatives of F with
respect to X and Y| respectively. Where a set of
observations, X,; and Y,, can be assigned re-
spective standard deviations ¢, ; and o, ; we take
the weights as:
W,,i=1/0%,; Wy, i=1/07 1. (22)
If variations in X" and } are independent, substitu-
tion of eq (22) in eq (21) yields
I/I/ri——_l/o'%"'i (23)
and hence the method is equivalent to statistical
weighting of the individual sets of observations.

Using the Gaussian method, several iterations
using the successively improved values of the coeffi-
cients may be used. The partial derivatives are
usually evaluated using the observed values of X
and Y in each iteration.

As pointed out by Deming, an advantage of the
method is that the solution is unequivocal; i.e., the
coefficients are independent of variations in the
way of writing the equation. Thus a straight line
can be written as either Y=a+4b0X or X=—a/b+}
Y/b and correspondingly /" would be (Y —a—b6.X) or
(X+a/b—Y/b). The values of @ and b and the
adjusted points will be the same to within higher
powers of the residuals, AN and AY.

The least squares code used computes standard
deviations of the fitted parameters based on the
fit of the observed points to the calculated points.
The code also permits computation of standard
deviations of points calculated at interpolated or
extrapolated points as well as at data points.

We are indebted to R. K. Zeigler and P. McWil-
liams for many discussions and for the development
of the computer code.
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