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The results of a relaxation-mode analysis are presented for two cases of trapped-defect 
relaxation in t he NaC] structure, in which both defects occupy the same type of site (e.g., 
impuri ty d ivalent ion and trapped vaca ncy), or in wh ich t hey occupy the two different 
types of sites (vaca ncy pai r). The relaxat ion analys is is prese nted in t he form of a set of 
basis vectors in occupation-probabili ty space and a set of secula r equations. Soluti ons to t he 
eq uations provide t he relaxation rates a nd a lso the coefficients in t he li near combiuat ions of 
t he basis vecto rs whi ch constit ute the relaxat ion modes. 

Calcu lations of t he relaxat ion rates a nd co ntribut ions to t he pola ri zabilityof the various 
modes for a three-shell model with jump frequ encies chosen to represent the relaxat ion of 
an impuri ty- ion vacancy pair in NaCI(Mn) have co nfirm ed t he resul ts of Lozovskii . Even 
t hough t he t hird shell makes a significa nt and even la rge co nt ri bution to t he process, one 
mode dominates and t he relaxation as see n in a-c mea m ements would ta ke place with es
se nt ially a single relaxat ion t im e. The d-c techniques of Drey fu s a rc sensit ive enough to 
detcct more t han one of these relaxations at low tem peratures, but t he slowest of t hese\\ ill 
a lways be t he do mina nt one. Any relaxation 810\\'er t han t he maj or one must be asc ri bed to 
some othe l' mechan ism. 

1. Introduction 

Point defects in crystfils give rise to mechanical and elastic relaxfition in a variety of ways. 
In particular, because of their in temction with en.ch otlter, p fLirs of them CfLll become mutually 
trapped, forming centers which can contribu te to the r esponse to applied mechanical or electrical 
stresses. If one defect is considered fLS the trap, then the tmpped defect can occupy various 
lattice sites in the neighborhood of the trap. These accessible sites mfLy be restricted to those 
in the nearest neig hbor shell to the trap because of very strong interaction, or t hey ma.y include 
sites in shells further away Jrom the trap . U nd er the influence of the appli ed stress, some of 
the fLccessible s ites become preferred O\rer others that are equivalen t in the stress free crystal, 
and the redis tribution of the trapped defects according to the new scheme co nstitutes the 
r elaxation process. 

The r fLte equations governing this redistribution process constitute fLn eigenvn.lue problem, 
for which group representation theory combined with a Im owledge of the symmetry around the 
trap provide a powerful tool for solution [1- 3]. 1 The resul ts of this treatmen t are expressed in 
terms of relaxa tion modes, which represent certain distribu tions of the trapped defec ts among 
t he fLccessible sites. E ach of these distributions relaxes as a unit wi th the same exponential time 
function, exhibiting a single relfLxfLtion time, governing the occupation probability of all the 
sites. 

H aven fwd van SfLnten [1, 2] applied t he group theory technique to the case of CfLtion 
vacancies tI"fLpped ncar divalen t cation impurities in the N aCI structure, wi th only the nearest 
neighbor site's includ ed. vVachtmfLn [3] showed that the relaxation m odes of the undriven 

'Tempora rily attached to United Kingdom Ato mic Energy Hesea rch Establishment, Harwell, Berks, England. 

1 Figures in brackets illdicate the literature r eferences at the end of this paper. 
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situation were also solutions for the driven case in the limit of small applied stresses, and 
applied the technique to the relaxation of oxygen vacancies trapped at divalent cation im
purities (Ca ions) in Th02 , again restricting the vacancies to nearest neighbor sites. Bhaga
van tam and Pantulu [4] have summarized this approach for the case of nearest neighbor sites 
and have emphasized the similarity of the symmetry arguments to those arising in the treat
ment of infrared and Raman spectra. Franklin [5] showed that the technique could be ex
tended to the case in which additional shells, further out than the nearest-neigh bor shell, were 
accessible, and gave solutions for the case of cation vacancies trapped at divalent ca tion 
impurities in the NaCI structure, including two shells of accessible sites. 

In considering the dielectric and mechanical behavior of these centers, the more distan t 
shells of sites must, at least in principle, be included. It is expected that, at least beyond the 
first two shells, the binding energy of the sites will decrease with distance from the center, 
and the probability of occupation will fall off in the more distant sites. However, there are 
more sites available in the more distant shells. In the dielectric case, also, the more distant 
sites will make a larger contribution through their larger dipole moments, so that even a 
relatively small occupation probability could be important. The influence of the more dis
tant shells is expected to be important when the differen ces in binding energies of the shells 
are not too large, and when the temperatures are high. 

The experimental data are best defined in the case of dielectric relaxation in the alkali 
halides containing divalent impurities [6- 10]. When care is taken to avoid precipitation of 
the divalent impurity, the frequency spectrum of the relaxation ascribable to these centers 
can be described as a typical D ebye peak, with but a single relaxation time. LidiaI'd [11] has 
shown that this is to be expected il' the first two shells of neighbors are included in the calcu
lation , and reasonable values assigned to the probabilities for jumps of the vacancy between 
and within shells. Recently, Dreyl'us [12], using a d-c technique of considerably greater time 
resolution than found in the usual a-c methods, was able to separate two distinct relaxations \ 
for which he could account using Lidiard 's treatment, and another, slower, relaxation which 
he has ten tatively ascribed to the third and more distant shells. J 

Lozovskii [13] has made a relaxation mode analysis for this dielectric relaxation including 
three shells of sites, but considering two rather special cases. For binding energies of the 
various shells, he chose (1) purely Coulombic values arising from the electrostatic interaction 
between point charges in a dielectric medium, and (2) the same value for all shells. He cal
culated both the relaxation times relative to the jump time in the first shell and the relative 
contributions to the polarizability from each mode. His results indicate that there should be 
four active modes, but that one will predominate, so that a close approximation to a Debye 
peak should result even when the third shell is included. Furthermore, the dominant relaxa
tion in both cases was the slowest one . Dreyfus "fast" and "very fast" polarizations can be 
ascribed to the dominant mode and a superposition of t he other three ; but since the dominant 
mode should be the slowest, Lozovskii's result suggests that Dreyfus' "slow" polarization 
should not be ascribed to the outer shells. 

In part 1 of the present paper , we extend the mode analysis to the third shell of neighbors 
for two cases in the N aCI structure. The Matched Point Defect Pair, in which the trap and 
the moving defect are both on lattice sites of one kind, as for a cation (anion ) vacancy trapped 
near a cation (anion) impurity; and the Unmatched Point Defect Pair, in which the trap is 
on one kind of site and the moving defect is on the other, as in a vacancy pair, where either 
vacancy can be considered as the trapped and the other as the moving defect. This analysis 
includes all possible relaxation modes under all possible stresses, and includes a discussion of 
the determination of which modes are excited by a given applied stress. Tn part 2, we present 
calculations similar to those of Lozovskii for the relaxation times and polarizabilities for the 
dielectric relaxation of the three-shell model of a Matched Pair. These calculations have 
been made with a set of binding energies chosen to provide as realistic as possible a description 
of the situation in N aCI (Mn), and the results are compared to the available data. 
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2. Relaxation Modes of Pairs of Point Defects in the Noel Structure 

2.1. Matched Defect Pair (Impurity Ion- Vacancy) 

This calculation is a straightrorward extension of that reported previously [5] I"or the two
shell model. The modes for t he three-shell model will be lin eitr co mbinations of the previous 
ones together with new contributions rrom the third shell. B ecituse o[ th e complexity of the 
situation, with 42 sites availitble to the moving defect, it is preferable to report the mod es in 
tabular form rather than grap hically as done before. A 42-fold vector sp:Lce is d efin ed by t he 
occupation probabilities of the accessible sites. Any distribution is then expressed as fL vector 
p in this space. The rate equations are expressible in matrix form, involving a IlJ atrix C whose 
elements are Cii> the negative probabilities per uni t time that t he m.oving del"ect will jump from 
the i th site to the .jth si te, and Cii, the s um of itll jump probabilities ou t of t he itlt site. The 
solu tions to the mte equations are then expressible as SUlnS of the eigenvectors of the matrix 
C, 

In this eq uation , the Ui are the nonnali zed eige nvectors of C, 111 is t he eigenvector [or whidt t lte 
eigenvalue (jump r ate) is zero and which represenLs t he equilibriulll distributio n, a nd t he 
Ul k are the componeHts 01" UI' N is t he total number or accessible sites, t lte Ai are the eigenvalues 
(jump nttes, or reciprocal relaxation t imes), and the .liO a re dete l"mined by the i ni tial dist ri bu tion. 

III th e irreducible representation techniqu e, the eigenvec tors Ui fLre ex pressed in terill s of 
a set of normalized basis vectOl'S v ij . To each irreducible rep resen taLion or the poin t group or 
the relaxing center in t he vector space or site occupation probabiliLies corresponds ft subsp,tce, 
spann ed by one set of these basis vectors, ,tnd rrolll which an equal number or eige nveeLo rs can 
be co nsLructed . TI' a tl'ansrol'llHttio n matrix is constructed of all o[ these vec t,ors as colullll1s, it 
can then h3 used to trans rorm the IlHttrix C to reduced fOL'lIl . Th e problem has t hen been re
duced to it set of secular equatioll s, one Jor each irredu cible representatioll whose solu tions pro
vid e the cigenvftlues and t he coeffL cients in the linear cO lnbin a tiolls or t he r ectors Vij lIHtL for III 
the eigenvectors Uio 

In table 2. ] below, we list the 42 basis vectors used [or t his problem. Th e first COIUIllIl 

!luillbers Lh e 42 si tes in the fil'st three shells of neighbors, and the seco nd coluilln identifies t lleir 
la ttice position with respect to th e impuri ty ato lll, relative to the c}ttion-anion separatioll. III 
the succeeding columns ftl'e listed the vectors used ,tS basis vectors, a rnwged by irred uci ble rep
rese ntations, which are identifted ,Lt the top of the columns. As it stands, this table is also t he 
transformation matrix, excep t t hat for co nven ience or presentation , t he b,tsis vecto rs have not 
been normalized. The irreducible representations are identifi ed in the Ilo t:ttion or E y ring, 
Walter, and Kimball [14) . 

The secular equations corresponding to each irreducible l'epresen tfttioll :lre presented nex t. 
It is understood that in solving these secular equations, the norm alized basis vectors must be 
used . The W i} are the probabilities per uni t time that the vacancy in ,t si te in the itll shell will 
jump into a lleighbol'iJlg one in th e jth shell . Only jurnps from a site to one o[ its ] 2 nefuest 
neighbors are allowed. For the in tereha llge o[ the impuri ty ion and fl vacancy on a first shell 
site, W i is used. Analytical solu tions for the eigenvalues :wd for the coefficien ts in the lineal' 
combina tions o[ the bn,sis vectors to form the eigenvectors ha,"e ]Jot been obt:tined f01' tl16 E g, 

T! u and the T 2U representtttions. 

r A 
- 2..j2w21 - 2,12W,"] 

--t -7 

A 1g : l-2"112WI2 
B -2W32 u = /-..u 

- 2·.J2W13 - 2W23 C 
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Site 

L _____ _ 
2 ______ _ 
3 ______ _ 
4 ______ _ 
5 ______ _ 
6 ______ _ 
L _____ _ 
8 ______ _ 
9 ______ _ 10 _____ _ 
IL ____ _ 
12 _____ _ 

13 _____ _ 
14 _____ _ 
15 _____ _ 
16 _____ _ 
IL ____ _ 
18 _____ _ 

19 _____ _ 
20 ___ __ _ 
2L ____ _ ..,.. 

~ ~L :::: 
24 _____ _ 

25 _____ _ 
26 _____ _ 
27 _____ _ 

28 _____ _ 
29 _____ _ 
30 __ ___ _ 

3L ____ _ 
32 _____ _ 
33 _____ _ 

34- ____ _ 
35 _____ _ 
36 _____ _ 

3L ____ _ 
38 _____ _ 
39 _____ _ 

40 _____ _ 
4L ____ _ 
42 _____ _ 

TARLE 2.l. Basis vectors (unnonnalized) fOT the matched point defect pair in the NaGI structure 

~I A" 1/1,"1 E, I~I_~I T lu I----~ _____ I T,u 
, I , I I . ,J I , I 

110 
all 
ITo 
oTT 
101 
101 101 
101 
110 
all 
110 
olI 

200 002 
200 
002 
020 020 
211 
IT2 
121 

211 
121 
112 

lZI 
211 
ll 2 

121 
211 
1I2 

m m 
ZIT 

2IT 
112 
121 

ZIT 
112 
IZI 

____________ -2 
____ ____ ____ 1 
____________ - 2 
________ ___ _ 1 
____ ____ ____ 1 
____ ____ ____ 1 
____________ I 
____ ____ ____ 1 
____________ - 2 
____________ I 
_ ___ • ___ _ 1 ___ ,-2 

a 
____ ____ 0 
_ ___ 1 ____ - 1 

_____ ---1-1 
1 
1 
1 
I 
a ____ ' ____ 1-1 

----,:::: -~ 
_ ___________ - 1 
____ ____ ____ 2 
____________ - 1 

____________________________ - 1 
____ ____ ____ ____ ____ ____ ____ 0 
______________________ _ ____ I 
____ ____ ____ ____ ____ ___ _ ____ a 
________________ ____________ - 1 
___ _ ____ _________ __________ _ I 

1 
____________________________ - 1 
____________________________ - 1 
____ ____ ____ ____ ___ _ ____ ____ a 
___________________ ________ _ I 
____ ____ ____ ____ ____ ____ ____ a 

- 1 :::f::::::=l 
----1---- :::: ~ 
:::: :::: :::: ~ 

1 
I 
1 

____ ____ ____ a 
___ _ ____ ___ _ 1 
____ ____ ____ a 
________ ____ - 1 
____________ I 

___ ____ ____ 1 
_ ___________ - 1 
____________ - 1 
____ ____ ____ a 
____ ____ ____ 1 
____ ____ ___ _ 0 
___ _ _______ _ - 1 

1 ____________________________ - 1 ____________ a 
o ____ ____ ____ ____ ____ __ __ ____ 0 ____ ____ ____ a 
1 ____ ____ ____ ____ ____ ____ 1 ____ ____ __ __ 0 

____ , ____ , ____ , 1 

a 
____________ - 1 
___ _ ____ ____ 0 
____ ___ _ ____ a 

a ____ ____ ____ 0 
____ ____ ____ 0 
___ _____ __ __ - 1 

o 
1 
a 

o 
I 
a 

____ ____ ____ 2 o ____ ____ ____ ____ ____ ____ ____ 0 ____ ____ ____ 0 __ ,-1 
__ ______ ___ _ - 1 
_ ___________ - 1 :::r::I=i :::: :::: :::: :::: :::: :::: :::: g :::: :::: :::: - i 

__ , ____ ,-1 1 ____ 1 ____ 11 I - ~ II 11 1-1 I 0 2 ____ ____ 0 " 0 0 I 1 
__ , ____ ,-1 ________ - 1 - 1 - I - 1 0 - 1 

-11-0 1----1----1 01=1 a 1 ____ ____ 0 1 
a - 1 ________ - 1 a 

a 
o 

a 
____ , ____ ,-1 

o 
a 
a 
o 

o 
1 
a 
a 
o 
a 
a 
1 
a 

___ 1 ____ 1-1 

____ ,- 1 

____ ,-1 I 0 
o - 1 
a - 1 

I 
- 1 

1 
o 
o 
a 
o 

a 
____ , ____ ,-1 

a 
1 
1 
I 

:::I ::::I = ~ ____ a 
____ , __ __ - 1 

o 1-1 o -1 
- 1 0 

o 
1 

____ ,-1 
a 
1 
o 
1 

:::: I= ~ 
I 

___ _ , - 1 
o 
1 
o 

1 ____ 1-1 
____ 1 
____ - 1 

o 
o 
o 
o ____ 1-1 

___ I 
____ - 1 

1 

1 1 ____ 1 0 a ____ 1 
_, -1 ____ - 1 

=11----1----1=11----1---- 1-1 II I-I 1-1 I-I I a 1----1----1-11-0 1 ____ ____ 1 ____ ____ 1 1 1 1 a 1 ____ ____ a 1 -1 ____ ____ Z ____ ___ _ a - Z a a I - I ____ ____ 0 -1 
o 
1 
o 

1 I---~' 0 1- 1 1 ____ 0 - 1 
o ___ _ - I 0 

1 I 01----1- 0 I-I 1 ____ 1_1 a 1 ____ I a ____ I 
o 1 ____ 0 - I ____ 0 

a 
-I 

1 

_ __ _ ,-1 - 1 - 1 - I a I 1 -1 1 I 1 0 ::::I::::I=i 

- I 1 ____ 1 ____ 1-1 I----I----I- ~ : ~ ~ - ~ = ~ - I ________ -1 ____ ____ 1 1 - I - I 1 a -1 ____ ____ 2 ____ ____ a -2 a 0 -1 1 
____ ,-1 II 11 1-1 I a 11 o - 2 0 0 - 1 - I 1 1 -1 1 1 0 

=1 1 ____ 1 ____ 1-1 1 ____ ____ 2 
- 1 ________ - 1 

1 
o 

o I - ~ 
---,- ~ - ~ 

- 1 a 
a - 1 

o 
o 
1 

, - ~ -~ 1 ____ 1 ____ 1 01- 1 o - 1 ________ - 1 0 
a - 1 ____ ____ 0 -1 

o 
1 

01- 1 1----1 ~ - 1 a - 1 ____ - 1 a 
,-1 a ____ 0 - 1 

o 1 
a 1 
1 a 

- I 1 
1 a a ____ -1 

____ ,-1 1 
1 a a ____ - 1 

1 
o 

____ ,- 1 

- 1 
1 
o 

----'----' -~ 1 ____ 1 ____ 11 1-1 11 I-I 1_1 I 01----1----1 -1 1-0 _ ____ ____ 0 2 a a 1 I ____ ____ a I 
____ , ____ , - 1 ________ -1 - 1 - 1 1 a - 1 ____ ____ a - I 

01-1 1----1 01-1 1 ____ 1-1 I a _ ___ , ____ ,-1 _ 0 ____ - 1 _ 0 ___ _ 0 =1 
a 1 ____ a 1 ____ a 1 

____ , - 1 1 ____ 1 a o ____ 1 
1 ____ - 1 

- I - 1 I a I 1 
o - 1 

- 1 1 ____ 1 ____ 1-1 1 ____ 1 ____ 11 =1 ________ _ 2 ---- --- - _ 0 1-2 1 ____ ____ 1 ____ ____ 1 1 

a 
1 
1 

a - I a 
____ - 1 a I ,-1 I a 1----1 a -1 ---- -1 0 o - 1 ____ 0 - I 0 ____ - 1 

o - I ____ - I 0 1 1 

zIT __ ______ - I I - 1 

~U 
1 I-I - 1 I 0 1 - 1 a 1-1 1----1:::: ~ =: :::: ~ I-I a - I ____ - 1 0 

J I ~ 112 Z 0 2 
121 ________ - 1 ________ - 1 - 1 o 1 

a -1 ________ -1 0 ____ -1 a 
,-1 0 ____ ____ a - 1 ____ 0 - 1 

a -1 a - 1 
____ ,-1 a I 1 

- -- ---- -- -- --- --- -- - -- - - --

1 
- 1 

o 
- 1 

o 
1 

o 
- 1 

1 

a 
1 

- 1 

o 
- I 

1 

- I 
1 
o 

- 1 
1 
o 
1 

-1 
o 

Vector No_______ 3 10 11 12 I 13 I 14 I 15 I 16 I 17 I 18 I 19 I 20 I 21 I 22 I 23 I 24 I 25 I 26 I 27 I Z8 I 29 I 30 I 31 I 32 I 33 I 34 I 35 I 36 I 37 I 38 I 39 I 40 I 41 I 42 

--'j 



where 

Solutions for J.. are 

-4 -4 -4 -4 

u = avI + bv2+ CV3. 
-4 

(The vectors VI, etc., are given in trtble 2.1.) 

[ IJ 
--/2WI 2 

- -.J2WI3 

wh erl' 

or 

F ,,: 

r 
]{ 

- 2W1 2 

'/ '11/ : l - 2w" 

- -J2W 13 

- ·fiW 21 -~~'] -4 --> 

B - 2W32 U = A1J. 

- 2W23 E 

-4 -4 -4 -4 

u = av5+ bV6+ CV7 
-4 -4 

= avs+ bVO + CVlO 

-4 

1J. = VlI or Vl2 

-4 -4 -4 -4 

U = VI 3, V I 4, or v].; 

- 2W21 - 2W3I 

B - 2W32 

- 2W23 G 

0 --/2W 33 
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-.f2W31 

0 

--/2W33 

H 

-4 -4 

u = J..u 



where 

01' 

or 

where 

or 

or 

where 

~ ~ ~ ~ ~ 

U= aV16+ bv17 + CV18+dv19 
~ ~ ~ ~ 

= aV20 + bV2 1 + CV22 + dV23 
~ ~ ~ ~ 

= av24+ b1125+CV26+ dv27 

r F 

o 

l-2W13 

o 

G 

-.,f2W33 

G= 2w31 + W32 + 2W33 

H = 2w31 + W32 + W33 
~ ~ ~ ~ 

U= aV28+ bV29+ CV30 
~ ~ ~ 

= aV31 + bV32 + CV33 
~ ~ ~ 

= aV"4 + bV3fi+ CV36 

Solutions for A arc: /.. = 1/2 { (J + E ) ± [(J-E)2+ 8w13W3111 /2} 

~ ~ ~ 

U= aV37+ bV38 
01' 

01' 

2.2 . Unmatched Point Defect Pair (Vacancy Pair) 

The method of calculation is similar to that for the matched point defect pair. Each 
configuration can be changed into another accessible one by jump of either the cation or the 
anion defect. Hell ce, the jump probabilities always occur as the sum of that for the cation 
and that for the anion defect, and in the notation used here, only these sums will be used . It 
should also be noted that there are two different types of jumps from a site in the third shell to 
another in the same shell , distinguished by the path taken. For example, the sites in the third 
shell are designated by (2,1,0) and its permutations, including negative signs. A jump can 
only be made to another site in this shell for which the x,y,z differ by ± 1. If the zero stays 
fixed, there is only one such jump, and the defect remains in a (100) plane as i t moves. During 
the jump, it is screened from the other defect by an ion of opposite sigll , in the same (100) 
plane. The other two possible jumps are with the two remaining fixed , for which the path is 
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not screened. Presumably, the activrttion energies for these two jumps will not be the sam e, 
and so they will have differ en t ju mp probabili ties. These 'will be designated by W~3 for the 
screened and w~; for the unscr eened jump. Wi th t hese chrtnges, the notation as used for the 
previous example will be used to designate the jump probabili ties . 

The basis vectors are given in table 2.2, again using t he cation-anion separa tion lattice 
parameter as the repeat distance in designating the sites. The secular equations are given 
below from which the eigenvalues and coefficien ts in the linear combin ations of basis vectors 
consti tu ting the eigenvectors can be deri ved as before. 

[

A' 

-2.J3WI2 

- 2 W13 

B' 

where 

Solu tions for A are 

~ ~ ~ 

U = aVl + bV2+ CV3. 

(The vectors VI, etc., arc give n in table 2.2.) 

where 

- ·/ 3W31 
[ D' 
-~3W13 E' 

-W13 

-

-~3w~~ 

~ ~ ~ ~ 

U = av6+ bV7 + CVg 

~ ~ ~ 

= av9+ bv lO + CI'1l 
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-w" ] 
1/ -7 -7 

-.J3W33 U= AU 

E" 



~ 
Co) 
to.) 

Site 

2 _____________ _ 
3 ___ __________ _ 
4 _____________ _ 
5 _____________ _ 
6 _____________ _ 

8 _____________ _ 
9 _______ __ ____ _ 
10 ____________ _ 
11 ____________ _ 
12 ___________ _ 
13 ____________ _ 
14 ____ _______ _ 

15 ____________ _ 
16 ____________ _ 
17 ____________ _ 
18 __ __________ _ 
19 ____________ _ 
20 ____________ _ 
21. __________ _ _ 
22 ____________ _ 

23 ____________ _ 
24 _____ __ _____ _ 
25 ______ ______ _ 
26 ___________ _ 
2i __ _________ _ 
28 _________ _ 
29 _______ _____ _ 
30 _____ _______ _ 

31.. __________ _ 
32 __ ___ __ _____ _ 
33 ___________ _ 
34 __ _________ _ _ 
35 __ __________ _ 
36 ____________ _ 
3i ____________ _ 
38 __ __________ .. 

Vector No __ . _ 

TABLE 2.2 . Basis vectors (unnormalized) JOT the unmatched point deject pair in the N aClsinlcture 

xy: 

100 
100 
010 
010 
001 
001 

AI, A" IA,. 

____ 1 ____ 1 __ __ 1 ____ 1- 1 _ _______________ =1 
____ ____ __ __ ____ 1 

_ _______ - 1 

_ ___ I _ _ _ _ ' ____ 1 ____ 1 __ 2 

1 

E g 

1 
1 

:::r::I=t 
o 
o 

']'lg 1 '11.1 

:::1::: :::: :::: :::: -~ :::: :::: :::: ~ 
___ __ __ ____ 0 

____ ____ ____ 0 
____ ____ ____ 0 

__ __ ____ ____ ____ 0 ____________ - 1 ____ ____ ____ 0 

::::1:::: :::: ~ :::: :::: :::: ~ 
____ ____ ___ _ 1 
___ _ ________ - 1 

1 1 111 
TIT 
TIl 
111 
III 
III 
1TI 
I II 

____ ____ 1 
_ _ __ 1 ____ - 1 ____ 1 __ --1----1----1 ----1- ___ 1 ___ 1 ____ 1- 1 ----,----,---- ---- ----::: :::: ::::::: :::: =t ---, -::r:: I = t - -- _1 ____ 1 __ - - 1 ____________ - 1 

____ ____ ___ _ 1 
_ _______ - 1 
____ ____ 1 ____ , ____ , ____ , ____ , ____ , ___ _ ________________ 1 

210 
120 
210 
120 
120 
210 
120 
210 

_ __ _ ____ - 1 

1 
_ ___ , ____ - 1 

1 
- 1 

1 
- 1 
- 1 

1 
- 1 

1 

0 
0 
0 
0 
0 
0 
0 
0 

021 1 1 - 1 1 

~H -t ---- ---- -t =t I 
012 - 1 _____ ___ - 1 - 1 I 

~H -t --- ---- -t =i I 
012 -1 ___ _ - 1 - 1 
021 1 1 - 1 

---- - 2 
2 

- 2 
2 
2 

---- - 2 
2 

-- -- - 2 

1 
---- - 1 

1 
- - -- - 1 
--- - I 

1 
--- - 1 

1 

0 1 
0 1 
0 1 
0 1 
o - I 
o - 1 
o - 1 
o - 1 

1 0 1 
1 0 1 
1 0 1 
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or 

or 

where 
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2.3. Excitation of the Modes by Applied Stresses 

While the analysis above reveals the modes by which a relaxation process can take place it 
does not provide any way of deciding which modes will be excited by a given applied stress. 
This question can, however, be answered in the following way. Consider the system under a 
constant stress of the specified sort. The influence of the stress will be to lower the symmetry 
of the crystal to that common to the applied stress and the undisturbed crystal (Curie's law [15]). 
Thus, from a knowledge of the symmetry of the applied stress and the undisturbed point group 
of the defect center under consideration, the point group under stress can be determined. It 
will be a subgroup of the unstressed point group. In the presence of the stress, the system will 
adopt the equilibrium configuration appropriate to the new point group, and represented by the 
new A lg mode, for which the relaxation rate is zero. When the stress is removed, the system will 
begin to relax, but now with the modes appropriate to the undisturbed point group. Hence, 
the problem of deciding which modes will be excited is the problem of expressing the equilibrium 
mode under the stressed point group in terms of the unstressed modes . 

The irreducible representations of the unstressed group each correspond to a subspace of 
the total vector space, such that these subspaces are mutually orthogonal. Under the stressed 
group, the equilibrium mode corresponds to a single vector, which must of necessity be a linear 
combination of mutually orthogonal components drawn from the appropriate subspaces 
identified with the irreducible representations of the unstressed group. Since each of these 
components, in turn, can be expressed as a linear combination of the basis vectors of the 
corresponding unstressed irreducible representation, then the stressed equilibrium mode must 
be expressible as a linear combination of the unstressed modes whose corresponding irreducible 
representations have as a component the stressed irreducible representation A lu' Hence, the 
problem is to examine the irreducible representations of the unstressed group and determine 
which of these has as a component the stressed A lg irreducible representation. 

This determination is readily done with the character table. Since the irreducible repre
sentations of a group are also representations, although not necessarily irreducible, of its sub
groups, the character table of the irreducible representations of the full group can be consulted, 
and the examination restricted to the entries under the elements of the subgroup. For a given 
irreducible representation of the full group, these constitute the characters of that representation 
of the subgroup, and by inspection and comparison to the character table for the subgroup, the 
components among the irreducible representations of the subgroup determined. In this way, 
all of the irreducible representations of the full group can be found that have as a component 
the A I g representation of the subgroup. The corresponding relaxation modes of the unstressed 
system are those that will be excited by the stress that produced the subgroup. 

As an example, consider the case of the matched point defect pair in N aCI, and let the 
stress be an electric field applied along one cube axis . The unstressed group is the full cubic 
group, m3m in the international notation; while under the field, this is reduced to 4mm. In
spection of the character tables reveals that the unstressed irreducible representations which 
have the Al irreducible representation of the stressed subgroup as a component are the A lg , the 
E g , and the TI U' On the other hand, a simple tension or compression along a cube axis reduces 
the point group to 4/mmm, and results in excitation of the A Ig and the Eg. This result can b e 
interpreted as follows. The Al u mode will always be excited in principle, because a stress will 
never shift the distribution completely away from the equilibrium distribution, and there 
must be a term to describe what is left. The Eg mode represents the departure from equilibrium 
that provides the symmetric extension or con traction along the cube axis produced by the 
tension or compression. Under the axial electric field , this mode is also excited and corresponds 
to the electrostriction. 

There is a rather simple way of determining the number of independent relaxation times 
to expect for the exci ted modes that parallels the above development. Under the applied stress, 
in the new point group, the sites will have been further subdivided into independent and non
interacting subspaces, analogous to the various shells of neighbors of the unstressed crystal. 
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The A ig mode in the stressed point group will be the sum of vectors, one from each subspace, 
each formed simply by assigning uni ty to each site in the subspace. These vectors are the 
mutually orthogonal components m aking up the new eq uilibrium as discussed above. The 
number of distinct relaxation times observable in principle under the applied stress will be just 
the number of these independent subspaces produced with the pro viso that one of these relaxa
tion times will be infinite, corresponding to the equilibrium mode, and the others finite . 

This treatment can, of course, be generalized. A listing of all subgroups reached by the 
application of any homogeneous second rank tensor stress to any crystal was given by W acht
m an and Peiser [16]. In table 2.3 , we complete this tabulation by listin g all subgroups reached 
by the application of a vector stress, such as an electric field. Koptsik [17] has tabul ltLed the 
subgroups reached by various types of influence, but his tables apparen tly do not Itppl y to t hc 
present case. The subgroups which can be reached by appli cation of an electric field hlt\lc 
previously been listed by Vlokh and Zhelude\T, [18] but the meaning of their table for t he cubic 
groups is hard to interpret, at least in th e English translation. T able 2.3 Itlso gives some 
additional information . The subgroups are classified as to whether tbey are norm al subgro ups 
(sometimes termed self-co njugate or in variant subgroups) of the startin g point gro up. This 
classification shows that the cry ptosymmetry theory of Niggli [19J and Wittke [20] apparently 
cann ot be applied directly to the treatment of relaxation modes. ]n Niggli 's th eory, each a tom 
is considered to have so me addi tional proper ty, such as magnetic moment, and the symmetry 
group possessed by the crystal wh en this addi tional property is taken in to account must be a 
subgro up of the group ob tained when this addi tional property is ignored. One might atte illp t 
to take the probability of occupation by a vacancy as the additional property and discuss 
relaxation modes in terms of cryptosymmetry. However, in Niggli 's theory, ollly normal 
subgroups are permitted, and table 2.3 shows that m any of the subgroups whidl can be reached 
by t he action of an electri c field are Il ot normal subgroups . ., t thus appears that some lllodi
fication or extension of the co ncept of cryptosymmetry would be requircd if i t werc appli ed 
to relaxation modes. 

Original p oin t 
gr oup 

TABLE 

Vector field 

Subgroups 

2.3 

T ota l 
number of 
sy mmetr y 

1----,-----,-----.,-----;----;---.,----,---.-,----,----1 ~t't~t:~h~~ 
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Table 2.3 also shows that some groups can occur as their own subgroups under the action 
of electric field while others cannot. This distinguishes between cases in which it is possible 
to apply a suitably oriented electric field which will excite no relaxation mode (except, of 
course, the trivial mode) and other cases in which any field no matter what its orientation will 
excite a nontrivial mode. It should be noted that if a purely arbitrary direction of the stress 
axis be chosen, it can always be arranged that no symmetry elements exist in common with 
the unstressed point group and the stress, so that the symmetry is reduced to the identity 
operation 1, and all modes are excited. The application of a homogeneous tensor stress to a 
centrosyrnmetric crystal can reach I, so that any centrosymmetric mode can be excited. These 
results have their parallel in the expansion of the thermodynamic potential of a crystal in 
terms of elastic, dielectric, piezoelectric, electrostrictive, etc., coefficients , including higher order 
terms. 

The abi lity of a suitably oriented electric field to excite all relaxation modes does not 
conflict with the classification of modes by Haven and van Santen [1 , 2] into electrically ac
tive, mechanically active, etc., provided that their classification is taken to mean the modes 
which are most strongly excited by the appropriate influence with the understanding that 
other modes may be less strongly excited. One can understand how this occurs by consider
ing the effect of an electric field upon an electrically active mode and upon a mechanically 
active mode. The effect of a static electric field is to shift the energy levels of the sites. These 
energy shifts, Ej, affect the occupation probabilities exponentially through their appearance 
in Boltzmann factors ; each exponential can be expanded in a power series and only the first 
few terms kept if the energy shift is small compared to kT. The zeroth order terms are each 
multiplied by the shift in occupation probability for the corresponding site and then summed 
to give the change in potential energy. For an electrically active mode (one with a dipole 
moment) the sum will not be zero, and the mode will be excited to first order in the field ; for 
a mechanically active mode, the sum must be exactly zero because the mode is centrosymmetric 
so that the mode will not be excited to first order in the field. However, the second order 
terms from the power series will all be of the same sign and when multiplied by a centrosym
metric pattern of occupation probability and summed, these will give a nonzero result so that 
a mechanical mode can be excited in second order by an electric field . This line of argument 
leads to the following rule for the excitation of relaxation modes in terms of their lowest order 
nonzero moments: Modes having a dipole moment can be excited in the first order by electric 
field; those with a quadrupole moment can be excited in the first order by mechanical stress 
or in the second order by electric field; those having an octapole moment can be excited in 
the third order by electric field; those having a 16-pole moment can be excited in the second 
order by mechanical stress and in the fourth order by electric field. 

Chang [22] has recently tabulated the mechanical modes (in the above sense) for paired 
point defects in a number of structures with m3m point group symmetry. 

3. Dielectric Relaxation in NaCI Containing Divalent Impurity Ions 

In order to assess as realistically as possible the influence of the third shell on the dielectric 
behavior of a real system, we have calculated the dielectric relaxation times and polarizabilities 
using jump frequencies estimated to correspond to a vacancy trapped near a Mn++ ion in 
N aCl, and employing the results of the present paper. The jump frequencies were chosen 
as follows. It was assumed that the jump frequency from the ith to the jth site could be 
given by Wu exp [(Ej - E i )/2kTj, where the E j are the binding energies of the various sites, 
,md the Wll is the jump frequency in the first shell. Furthermore, following Haven [21], W33 

was taken to be }~ WI! and Wi was neglected. For the binding energies, the value of 0.41 e V 
given by Watkins [23] for the first shell was used, and the value of 0.38, derived from his deter
mination of 0.034 e V as the difference in binding energies between the first and second shells, 
was chosen for the latter. Coulombic energies were plotted for the first nine shells, and a 
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s lHooth curve dmwJl through ' Va tkins two values and joinin g the Co ulolnbic curve at and 
above the fif th shell. Telllpemtures of - 46° and 227 ° (' ,,'ere chosen to match the experilllen tn,l 
nLnges of Dreyfu s [12] and vVa.tkin s [2 :~] l'espec Lively. 

' Vi t li these values fo r Lhe binding ell ergies, an es tim aLion of t he pola rizabili ty per ('enLer 
co uld be m ade Io]' m odels allowi ng access Lo v :lri ous n um bel's of shells of n eighbors. The 
rela tive polnl'izabilities per cen ter , in units of (ea)2 jkT where e is t he charge p CI' defect ,tnd 
a is t he distance between ll e:tresL fl eighors, are show n ill fi gure 1 for t he t wo telll pem Lures. 
At - 46°C, li ttle errol' is made ill stopping at t he third shell, buL at 227 °C, Lhe m aglli t ude 
of t he polarizabili ty is ,tL least three times t lmL estimn.ted from a single s hell of neighbors. 
The influence of ou ter shells ceJ' tai lll~T C:"lIlOt be neglected, at len.st ,tt t h.e higher te lllpemLul'es. 

The con t ribu Lion or eltc h of the elcetric,tlly active modes to Lhe total polarizabili ty is give n 
ill Ln.ble 3.1. The outsUtncling feature is t he do min ance of the slowesL mode. This co nt rib'utes 
06 perce ll t or the total pol l1rizability at both - 46 0(' and 227 °C, andleacl s to t lte conclusion 
thn.t a D ebye peak would res ul t from a ll ,t-C s tudy of Lhe clieletLric relaxaLioll with 11.11 a.pparent 
single relaxation time, even il' t he influ ence o ( t hl' t hird shell were in clud ed. 

Tn the present cnJcula tioll , Lhe third shell cont ri buted 46 percent or the polal'i zl1bili ty 
at 227 o( I, and 10 percell t at - 46°C'. It appears til ,t t the dominall ce of one mode in the 
poh rizabili ty m ,ty be I~ general reatm e or t hese nLOdels, regardless or the nu mber of shells 
includ ed. 

The effect of tempem ture upon t he reln.xa tioll can be seen from the figures in table 3.1. 

T ABLE 3. 1. Dielectric l'claxal'ion 0./ 3-shell model 

Relaxation ra tc I Contrihution to polarizahility 

Mode - 46 °C 227 DC -46 ° C 227 ° C 

1 2. 38 lj ' ll 2.07 WIJ 96.0% 96.5% 

2 11.14 WII 6.3 1 Uill 2.7 0.5 

3 14. 2J WI! 8. 10 lUll 1. 2 1.2 

4 15.54 WIl 10.05 ,"11 0. 1 2.8 

4. Summary 

The results of a relaxation mode analysis are presented for two cases of tr apped-defect 
• elaxation in the N aCl structure, in which both defec ts occupy the same type of si te (e.g., 
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impurity divalent ion and trapped vacancy), or in which they occupy the two different types 
of sites (vacancy pair). The relaxation analysis is presented in the form of a set of basis 
vectors in occupation-probability space and a set of secular equations. Solutions to the equa
tions provide the relaxation rates and also the coefficients in the linear combinations of the 
basis vectors which constitute the relaxation modes . 

The lIlodes excited by the applica tion of a given stress can be deduced from the subgroup 
of the full symmetry group of the crystal reached by action of the s tress. Under this sub
group, some of the group representations that were irreducible under the full group become 
reducible. Some of them contain the A) g irreducible representation of the subgroup as a com
ponent. The corresponding modes are then the ones that are excited by the stress . 

Calculations of the relaxation rates and contributions to the polarizability of the various 
modes for a three-shell model with jump frequencies chosen to represent the relaxation of an 
impurity-ion vacancy pair in N aCI (Mn) ha\Te confirmed the results of Lozovskii [13] . E ven 
though the third shell makes a significant and even large contribution to the process, one mode 
dominates and the relaxation as seen in a-c measurements would take place with essentially a 
single relaxation time. The d-c techniques of Dreyfus [12] are sensitive enough to detect more 
than one of these relaxations at low temperatures, but the slowest of these will always be the 
dominant one. Any relaxation slower than the major one must be ascribed to some other 
mechanism. 

The authors thank: H . S. Peiser for help with table 2.3. 

5. References 

[1] Y . Ha ven and J. H. van Santen , .T . Chem . Phys. 22, 1146 (1954). 
[2] Y . Haven and.T. H . van Santen, Nuovo Cimento 7, 605 (1958) . 
[3] .T. B. Wachtman , .Tr. , Phys. Rev . 131, 517 (1963) . 
[4] S . Bhaga vantam a nd P. V. Pantulu , Point Defects and Relaxation Phenom ena in Crystals, Proc . Indian 

Academy of Sciences 58,183- 196 (1963) . 
[5] A. D. Franklin , .T. Res. NBS 67A, 291 (1963) . 
[6] A. B . Lidiard in Handbuch der Phys ik 20, 246 (1957) (Ed . S. Flugge ; Springer- Verlag, Berlin). 
[7] .T. S. Dryden a nd R . .T . Meakins, Disc. Far. Soc. 23, 39 (1957). 
[8] G . D . Watkins, Phys. Rev. 113,91 (1959). 
[9] .T. S. Cook and.T. S . Dryden, Australian.T. Phys. 13,260 (1960). 

[10] G . .Tacobs, L . G. Vandewiele, and A. Hamerlin ck, .T . Chcm. Phys . 36, 2946 (1962). 
[11] A. B. Lidiard, Defect s in Crystalline Solids- Report of 1954 Bristol Conference (The Ph ys ical Society, 

London 1955), p . 283. 
[12] R. W. Dreyfus, Phys . Rev . 121, 1675 (1961). 
[13] V. N. Lozo vskii , I zv. Akad. Nauk S. S. S. R . 24, 161 (1960) . 
[14] H . E yring, .T . Walter, and G. E. Kimball , Quantum Chemis try (.Tohn "Viley & Sons, New York, N .Y. , 

1944) . 
[15] P . Curie, J . de Phys. 3, 393 (1894). 
[16] .T. B . Wachtman , .Tr., and H. S. Pciser , Appl. Phys. Ltrs. 1, 20 (1962). 
[17] V. A. Kopts ik, Poly morphic Phase Transitions and Symmetry, Soviet Ph ysics-Crystallography 5, 889- 898 

(1961). Tra nslated from Kristallografiya 5, 932- 943 (1961 ). 
[18] O. G. Vlokh and 1. S. Zheludev, Changes in the Optical Paramet ers of Crystals Caused b y Electric Fields, 

So \·iet Physics- Crystallography 5, 368-380 (1961). Translated from Kri stallografiya 5, 390- 402 
(1961) . 

[19] A. Niggli , Zur Systematik und gruppentheoretischen Ableitung der Symmetri e, Antisymm etrie- und 
Entart ungssy mmetriegruppen . Z . Kristallogr. 111" 283- 300 (1959). 

[20] Osca r Wittke, The Colour-symmetry Groups and Cryptosymmetry Groups Associated with the 32 Cr ys
tallographic Point Groups, Z. Kristallogr . 117, 153-16.5 (1962). 

[21] Y . Ha ven , Defect s in Crystalline Solids- Report of 1954 Bristol Conference (The Physical Societ y, London 
1955), p . 261. 

[22] Roge r Cha ng, Mechani cal Relaxation Associated with Paired Point Defect s in Cubic Lattices of Oh 
Poin t Group Syn"lmetry . Submitted to .T . Phys. Cham . Solids. 

[23] G . D . \\Tatkins , Phys . R ev. 113, 79 (1959) . 
(Paper 68A5- 290) 

438 


	jresv68An5p_425
	jresv68An5p_426
	jresv68An5p_427
	jresv68An5p_428
	jresv68An5p_429
	jresv68An5p_430
	jresv68An5p_431
	jresv68An5p_432
	jresv68An5p_433
	jresv68An5p_434
	jresv68An5p_435
	jresv68An5p_436
	jresv68An5p_437
	jresv68An5p_438

