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An iterative proced ure for unfolding t h e effects of the finite resolution of a d etector 
fro ,~ an observe~ pulse h eight distribut ion is disc ussed . The process is demonstrated for a 
partICular detectIOn system. Convergence and uniquen ess properties of t he method are 
discussed empirically. 

A general expression for th e propagated error r esulting from errors in t hc detected 
p ulse heigh t distribution is derived. Approximations are made in order to evaluate t he 
propagated error for a particular detector. These approximations become better as t he 
res?lL~tion of t he detector . improves. Th: results indicate t ha t th e error rapidly approaches 
a ltmIt of from 1.5 to 3 t imes t he error 111 t he observed distribut ion. This limit is reached 
in approximately three iterations. 

1. Introduction 
In measuring ')'-ray spectra i t is frequ ently neces

sary to remove the effects of the resolu tion of the 
detector from an obser ved pulse heiaht distribution. 
This is known as "unfoldino'" "un";,cramblin o'" or b' - - b , 

" unsmearing". T o do this a matrix representing 
the response of the detector must be found . Let 
the incident spectrum be deno ted by <1,n m dim en-
sional vector N: . 

[n] N~ ~. 

nm 

The response may be represented by an m X m 
matrix R. The detected pulse height distribution 
P, is then given by , 

Pi=~RijNj ; 
j 

(1) 

Unfolding is the name given to the process of fll1din g 
N such that 

where R ij- I is the inverse to the matrix R jj. 
It is frequently undesirable to obtain a solution 

N j by inverting the response fun ction matrix. 
Usually the !'esponse f.unction.matrix is a very large 
square matn x. In t hIS expenment one form of the 
matrix was 700 X 70Q. The inversion of such a 
matrix would be a formidable task eITen when 
utilizing computer Lechniques. ' 

For this reason, iterati ITe approximations to solu
tions have been developed by Scofield [2] and by 
Skarsgard, J ohns, and Green [3]. An iterative 
technique similar to that described by Lhe latter 
has been developed independen tly in this labo ratory. 
Con vergence cri teria for this technique have been 
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discussed by Geiringer [1]. In applying the tech
nique, empiri cal evidence has been obtained for the 
validity of solutions obtained by this method. This 
evidence is discussed below. In addition, the 
propagation of error in the unfolding process is 
investigated in detail. 

2. Iterative Solution 

2 .1. Procedure 

Equation (1) may be written in matrix form as 
P = RN. 

Assume N = Uo. Then this initial estimate will give 
Po= RUo· 

A measure of the closeness with which Uo represents 
the true N is given by the difference 

D.o= P - Po· 
Uo may be corrected t.o form 

U1= Uo + D.o, 
and the new correction 

D., = P - RU1 

is found. For the nil. iteration 
Un=[Tn_ l+ D. n_ 1 } 
D. n= P- I? U" . 
U""_' = U,.+ 1 ., 

(2) 

It has been found for the present work t hat it is 
sa tisfactory to use P itself as the initial estimate Uo· 
The technique has been used primarily in unfolding 
pulse height distributions obtained wi til the NBS 
Two Crystal Pair Spectrometer. D etails of the 
detector and its response are described by Ziegler , 
Wyckoff, and Koch [4]. 

Various methods for arresting the i tcrati \'e pro
cedure may be used. In this work the data were 
unfolded using a predetermined number of iterations. 

2.2 . The Response Function Matrix 

This section will discuss the problem of finding 
a matrix represen tation for the assumed analytic 
form of the response function. The response at 
pulse height E due to one incident photon of energy 
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ko may be writ ten [4] Both cases lead to essentially the same form for 
the matrix. The latter case will be carried through 
to obtain the matrix expli ci tly. 

L et N (ko) = 'L,a/3(kj- ko). Then (4) becomes 
j 

(k.-. )2 
j(k ;, f)=e -; ~ . 

(6) 

where 01, O2 , 03, 04, and a are constants character-
istic of the detector. The pulse height distribution From the above the number of counts in channel 
becomes f i IS 

(4) 

where N(ko) is the continuous in cident photon num
ber spectrum. Equation (4) is the continuous form 
of (1 ). E xperimentally the vector 

is the quan ti ty measured as coun ts pel' channel in 
a multichannel pulse height analyzer. 

The integral equation (4) does no t possess an 
exact solution. Integratin g oyer k in (3), (4) 
becomes 

where <I> (x) is the error in tegral [5]. Thus (5) is 
seen to be an integral equation with a Gaussian 
kernel; such an equation does not possess a general 
unique solu tion [6]. This is a manifestation of the 
inabili ty to experimentally differentiate between a 
smooth spectrum and a spectrum con taining a series 
of sharp spikes. The Gaussian broadening is respon
sible for this. 

In order to obtain a matrix representation for 
R(f, ko) a particular form must be assumed for 
N(ko). Two forms have been investigated. One 
may assume the incident spectrum to consist of a 
series of discr ete steps so that over a fixed small 
energy width the spectrum is constant [7]. Alter
natively one may assun'le the spectrum to be com
posed of a sum of Dirac delta functions so that 
when an in tegration is performed over a small energy 
width the area of the del ta function gives the number 
of photons in that width. 

which, after interchanging integration and sum
mation becomes 

where 

Fi= 'L,a j[K jb (k;, f i , L'. ;)] 
j 

(7) 

Identifying a j with N j and K jbij with H ij (7) becomes 
iden t i cal wi th (1) . 

3. Empirical Justification 

3.1. Convergence 

In setting out on this course there was no reason 
to believe the technique to be convergen t. It has 
been shown [3] that convergence is assured for a 
smooth function if the eigenvalues Ai of the response 
function matrix satisfy the requirement 

This was not a useful test because the size of the 
matrices used made calculation of the eigenvalues 
impractical. Therefore the primary justification 
is empirical. 

In analysis utilizing a 200 X 200 form of R ih eleven 
iterations were ordinarily performed. However, 
as a check on convergence, as many as t wenty-one 
iterations have been performed, during which L'. n of 
equation (2) continues to converge. 

In figure 1 a typical set of points to be unfolded is 
plotted. Let A denote this set. On the same figure 
is plotted B , the result of unfolding A . The set A 
contained poin ts only up to 40 MeV. In order to 
avoid introducing a large discontinuity in the first 
derivative at 40 MeV, a straight line tail has been 
added. The work was done with an energy grid 
width of 0.5 MeV. Typical standard deviation is 
shown for a point of A at 16 MeV. 

In order to compare B with A, the difference 
L'.n = A- RB (see (2)) is plotted in figure 2. If B is 
the "correct" unfolded set of poin ts then L'.n must 
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FIGURE 1. Original curve ~ and the T c01Tesponding unfolded 
curve after eleven itemtions, for ~a)ypical spectrum. 
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FIGURE 2. DiffeTence , /:;, between the original curve of figure 1 
and the fold1:ng of the u nfolded curve of jiguTe 1. 

X % indicatcs pcrcc ntage difTCl'cncc i'> /A. Ordinate scale is ill sallie lmits as 
figure 1. 

:vanish.. COlwergcncc rcquires Lil a t tJ n vanishes for 
mcreastng n. 

Some valu cs of the diffcrcnce in pcrcent arc in
dicated on t he plot. The ,'e ry small (0.7%) differ
ence at 19 .5 MeV is at t he peak of A . 

In order to furLil er check Lhe cOlwergence proper
ties of t he scheme a set of points with large 
uncertainties was unfolded, using twenty-one itera
tions, The set G and its "unfold" D are shown in 
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FIGum. 3, Original cnrve with poor statistics and unfolded 
curve after twenty-one i terations. 
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FIGURE 4. The difference /:; n I)eiween the ori ginal CUT!'e of 
figure 3 and the folding of the unfolded curve after n iterations, 

for n = O, 1, and 4. 
Ordinate scale in fi gures 4 and 5 is ill thc same uni ts as fignre 3. 

figure 3. Again a straight line ta,il has been added 
to Cat 40 MeV. 

Because of the poorer statistics on G there are 
more fluctuations in D. The slope of C appears to 
have a large discontinui ty at 32.5 MeV. A spike in 
D is obser ved to grow at this energy with successive 
iterations. This demonstrates that fluctuation s are 
magnified as one approaches an exact solu tion. 

The question of convergence is best illustrated by 
examining ~n, for various valu es of n. Figmes 4 
and 5 show ~n for n = O,l ,4, ll , and 21. It is ob
served t bat ~n convergcs rapidly (or small n. The 
maximum of t lte ratio ~d~o is approximately 10- 3• 

The maxima of ~2 l in percent of G are + 0.4 and - 0.5 
percent. 

A numerical cri terion for testing con vergence in 
t his se nse is suggested by Skarsgard, Johns, and 
Green [3] for a pulse height dis tribution containing 
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FIGU R E 5. The difFerence !1 n jor n= 4, 11, and 21. 

~ ate that the ordinate scale is expanded [rom fi gure 4. 

pure Poisson counting errors , I.e. the standard 
devia tion on P i is -J F t. 

If (~:2 « 1 then the deviation for the point 

U ; is well within the limits of random measurement 
errors. Therefore if 

(8) 

the unfold is regarded as satisfactory. This test 
was used in unfolding a pulse height distribution 
for which the errors on each point were purely count
ing errors. The results were similar to those found 
by Skarsgard, Johns, and Green, [3] namely, con
vergence is rapid until (8) is satisfied ("-' 3 itera
tions). ~fter this convergence proceeds slowly. 

One mIght hope to be able to prove convergence 
from the classical theOI'ems [1]. It is easily shown 
that if one denotes (I-R) by A, then: 

U(nJ-U T=An(uo-U T)' 

Therefore [1] U rn) converges to the true solution 
U T if and only if the eigenvalues of A are less than 
one in modulus. From the rapid convergence which 
is observed empirically, one is led to believe that 
the eigenvalues of A are indeed less than one in 
modulus. 

A sufficient condition for convergence is that 
the maximum of the absolute row sums fJ. i satisfy 

However, this is not the case for the matrix A = I-R 
on which the present work is based. 

4. Error Propagation 

4 .1. Empirical 

In order to demonstrate the effect of statistical 
fluctuations, two different e.x.']Jerimental determina
tions of the same pulse height distribution have 
been unfolded. A portion of the unfolded spectra 
for both sets of data are presented in figure 6. 
The spectra are designated Ua and Ub • The two 
pulse height distributions are not presented because 
of the typographical difficulty in distinguishing the 
two sets of data on a meaningful scale. 

Differences between t he two spectra should be 
purely statistical. Let the measured pulse heigh t 
distributions from which Ua and Ub were obtained 
be P a and Pb' The ratio p= (P a/ Ua) / (Pb/ Ub) has 
been plotted in figure 7 for the region from 15 ::\1e V 
to 25 MeV. One would expect this ratio to be ran
domly distributed abou t unity due to the statistical 
fluctuations in P a and P b. This is observed. 

In addition, if the unfolding procedure does not 
introduce false structure, then, for P a>Pb one ex
pects the relations Ua> Ub and therefore p> 1, to 
hold approximately. Examination of figures 6 and 
7 will show that for Ua> U b, p> 1, and for Ua< Ub, 
p<l , except when Ua,,-,Ub where fluctuation s in 
adjacent points become important. This indicates 
that the iterati \Te procedure does not in troduce false 
structure. 

Some quali tati \'e effects of error propagation are 
illustrated quite well by figure 6. The most pro
nounced effect is the increase of fluctuations in the 
unfolded curves with increasing energies. The rea
son for this will emerge from the discussion following. 
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FIGURE 6. A portion of the unfolded spectra for two different 
experimental determinations oj the same pulse height distri
bution after eleven iterations. 
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4.2. Calculation of Error 

The calculation of errol' for an individual point in 
an unfolded spectrum is made difficult, because, in 
fol~ing, correlations arise between errors in adjacen t 
pom ts. 

Asswne that error in the detected pulse height 
distribution is known as a function of energy and 
denote it by I]"k. The folded set of points, which are 
obtained in the first step, may be written 

[S(P) L= '2:,R tjP j . 
j 

The standard deviation of St becomes 

0;= ['2:, (R; j l]" j) 2]t . 
j 

(9) 

(10) 

From (2) the solution after one iteration may be 
written 

with corresponding error 

The second iteration gives: 

where 

U (2)=U(J) + P - 2RP+ R2P 

=3P-3RP+ R2P 

(11) 

(12) 

Expanding U (I) in the sarne way as U(1), the error on 
U(f) becomes 

The "other terms" have nmuerous cross products. 

For example, the contribution to [OU?)]2 from I]"H I is 
[-3R ,. HI + RitRt. HI + R ;. t+1 R H l, ;+1)21]";+12. 

The general form for the solution after n iterations 
may be written symbolically as 

(13) 

where is the identity matrix and I/R= R- I, If 
the variance Val' (P) = 1]"21, then the variance of 
U (n) may be written formally as: 

Val' (U(n» 

= R-I[1- (1-R) n+I][1- (1-R) IL+ l)T(R-I) T1]"2, 

where T denotes the transpose. Here we have used 
[8] 

Val' (CP) = C[var (P)]CT, 

Since all elements of R are less than unity, it is evi
dent that in the limi t as n approaches infinity 

11m Val' (U(n»= R-l(R-l) T(J'2. 
n'"7'" 

In order to simplify the enol' calculation the 
response function and the error will be assmued to 
sati fy the following conditions: 

(1) The half-width of the response function is 
narrow. This conesponds to good resolution in the 
detector. 

(2) The shape of the response function does not 
change rapidly with inciden t photon energy. This 
is equivalent to assuming that 

R(E,le l ) "-' R( E+ Mehlel + illet ) 

or Rt/:::::::!.R ;+rn. Hm and R j _ m. j':::::::.Ri. Hm , 

where m is an integer. See figure 8. 
(3) The error, I]"k, is a constant, 1]", over the half

\vidth of the response function. Note that the first 
condition makes this more likely. 

Let Rit= wo, Ri_l • j=WI, Rt-2. i=W2, . .. But, from 
condition (2) Ri,i+k':::::::.Wk' Using this (9) may now be 
written 

(9a) 

where the Wk may be obtained from the response at 
one incident energy. 

In the appendix it is shown that the solution has 
the general form: 

mn)=aOP;+ aIPH1+a2PH2+ ' •. (14) 

If the error is as umed to be a constant, 1]", this 
gIves 

oU; (n) = CL~aDtl]" 
j 

(15) 
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functions at two different energies. 

The folded spectrum at i is R"Pi+Ri i+l Pi+l+ ... where Rand P are defined 
in the text. Ri i+l~Ri-1.i. 

for the error at point i in the nth iterated solution. 
For the response described in [4] the error after 

three iterations has been calculated at 18.5 MeV and 
48.5 MeV. (See appendix.) The results are ± 2.36 
IJ at 18.5 MeV and ± 3.23 IJ at 48.5 M eV. 

In both cases if all terms in (A3) which are cubic 
in w were omitted, the difference in U i (3) would be 
small, and the difference in 8U/3) would be negligible. 
The terms which are cu bic in ware approximately 
an order of magnitude smaller than the quadratic 
terms. The conclusion is that 8U(11) has converged 
forn~3. 

From (AI), (A2), and (A3) it may be observed 
that after a large number of iterations the coefficient 
of Po in (A3) will converge to: 

ao= [1- (l - wo) n+l]/wo. 

For the cases at 18.5 and 48.5 MeV this gives 
ao= 2.21 and 3.104 respectively, for n = 3. Compari
son with the results for 8U/3) above shows very close 
agreement. Thus one concludes that three iterations 
satisfy the large number criterion. 

This coefficient then places a lower limit on the 
propagated error at each point of the solution. In 
general Wo decreases with increasing incident photon 
energy, for this experiment. Therefore the error 
must increase with energy. This is independent of 
the shape of the curve to be unfolded. Figure 9 
shows ao plotted as a function of energy for n = 3. 
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FIG URE 9. The function ao = [l- (l-wo) n+1]/wo as a function 
of energy for n =3. 

5. Summary 

B ecause of the uncertainties associated with any 
p,0int on a measured pulse height distribution, any 
'solution" for the unfolded spectrum is acceptable, if 

the difference between the measured distribution and 
the fold of the solution lies within the uncertainty 
associated with the measured distribution. The 
additional requirement of smoothness is sufficient to 
ensure that the iterative process converges to a 
useful solution. 

General error analysis is difficult . However, 
approximations may be made which become better 
as the resolution of the detector improves; these 
approximations make an error estimate possible. 

Interesting results from the use of this technique 
may be seen in the work of Ziegler, Koch, W'yckoff, 
and Uhlig [9]. 

The author gratefully acknowledges the help and 
encouragement of H. vr. Koch, R. A. Schrack, and 
Michael Danos in the development of this method, 
and their suggestions for improvement of this paper. 
The original work in finding a suitable form for the 
response function and the fitting of that form to 
experimental data was done by R. A. Schrack. 

Special thanks 0'0 to Joseph Cameron and Brian 
Joiner for their h~p in studying the propagation of 
error. 

6. Appendix 

In this appendix it will be shown how the general 
form of the solution, equation (14), may be found . 
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Using (9a) and expanding (13) the general solution 
becomes: 

+ n(n- l )(n- 2)(n - 3) 
4! 

L:L:L:WZWkWj P ZH+Hi+ ... (AI ) 
I k j 

Choosing an arbitrary zero point for index i (A I ) 
may be wri tten: 

m 3) = 4Po- 6L:wjP j+ 4L:W;P 2J +8 L: L:WkWJP HJ 
j j k<J 

- L:w}P3J- 3 L:L:w~WjP2k+ - 3L:L:WZWjP 2Hj 
j k<J i<k 

(A2) 

Expanding and collecting terms: 

m3) = (4-6wo+4w~-wg)Po+(-6wl+8woWI-3wgWl)Pl 

+ (-6W2+ 4wi+8woW2-3w6w2-3wowDP 2 

+ (- 6W3+8woW3+8wIW2-W~-3w~W3 

- 6WOWIW2) P 3+ (- 6W4+ 4w2+ 8woW4+8wM 3 

-3w5w4-3wiw2-3w~wo-6woWIW3) P4+ (- 6W5 

+8WOW5+8wIW4+8w2W3-3w5w5-3wiw3-3w~Wl 

- 6WOWIW4- 6woW2W3) P 5+ . . . (A3) 

At 18.5 :MeV the res ponse function for Lhe detec
tion system described by Ziegler, Wyckoff, and 
Koch [4] Wtl,S given by 

407 

(WO, W/) Wz , W3, W4 , W5, . . .) 
= (0. 39,0.225,0.138,0.088, 

0.056,0.035, . . . ). 

Using these vl.1Jues in (A3) one finds: 

Uo(3)= 2.209 Po-0.751 P 1 - O.317 P 2 
- 0.129 P 3- O.O 4 P 4-O.003 P 5 -

and from (15) : 

BUO(3) = 2.36u. 

Similarly t he response at 48.5 MeV gives 

Uo(3)= 3. 103 Po- 0.642 P 1- O.454 P 2 
- 0.333 P 3- O.242 P 4- O.174 F\ -

which leads to 

7. References 

. . "' 

. . "' 

[1] rf. Gc iringcr, Rciss llcr Anni vcr sary Volume (J . Edwa rds 
Bros., Inc., Ann Arbor, J9 L19) p . 365. 

[2] N . K Scofi eld , Application of Co mpu ters t o Nu clear a nd 
Raciio che mi~ Lry, p. 108, N AS- NS 3107 (Office of 
Tf'e lmieal Serv ices, D epartment of Commerce, 
\\Tas hington, D.C.). 

[3] L . D . Ska rsgnrd, IJ. E. Johns, and L . K S. Grcen , R ad ia
Lion Hf'sea rch 14, 261 (H)6 I ) . 

[4] B. Ziegler, J. Wyc koff , a nd II . W. K och, NucL Inst. aud 
M etl!. 24, 30J (1963). 

[5] W. :\'[agnu s ;,nd F. Oberhettinger, Formulas and Theorems 
for the Functions of MatllCm aLica l P hysics, (Chelsea 
Publishing Co., N ew York, 1954). 

[6] The a llUlOr is grnteful t o Dr. M . D anos for point ing out 
Lhis fact. 

[7] H . E. Ra nd , N lI cl. Inst. a nd Meth . 17, 65 (1962) . 
[8] 1\1. Ze]en in Survey of N ulTl erical Analysis, J . T odd, Ed. 

( i\[ cCrn \\"- lli lllnc., New York, ]962) p . 559. 
[9 ] B. Zi cgler , lJ. W. Koch , J . Wyckoff , a nd R. P . Uhlig, t o 

be p Llblished. 

(Paper 68A4- 288) 


	jresv68An4p_401
	jresv68An4p_402
	jresv68An4p_403
	jresv68An4p_404
	jresv68An4p_405
	jresv68An4p_406
	jresv68An4p_407
	jresv68An4p_408

