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An Iterative Unfolding Procedure
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(March 25, 1964)

An iterative procedure for unfolding the effects of the finite resolution of a detector
from an observed pulse height distribution is discussed. The process is demonstrated for a

particular detection system.
discussed empirically.

Convergence and uniqueness properties of the method are

A general expression for the propagated error resulting from errors in the detected
pulse height distribution is derived. Approximations are made in order to evaluate the

propagated error for a particular detector.
resolution of the detector improves.

a limit of from 1.5 to 3 times the error in the observed distribution.

in approximately three iterations.

1. Introduction

In measuring y-ray spectra it is frequently neces-
sary to remove the effects of the resolution of the
detector from an observed pulse height distribution.
This is known as “unfolding”, “unscrambling”’, or
“unsmearing’”’.  To do this a matrix representing
the response of the detector must be found. Let
the incident spectrum be denoted by an m dimen-
sional vector N:

Ty

N: Ty

Tom,

The response may be represented by an m>Xm
matrix /2. The detected pulse height distribution,
P, is then given by

I)i:; RNy (1)

Unfolding is the name given to the process of finding
N such that

Nj:Z. Rl_JIP,,
J

where I2,;7! is the inverse to the matrix 22;;.

It is frequently undesirable to obtain a solution
N, by inverting the response function matrix.
Usually the response function matrix is a very large
square matrix. In this experiment one form of the
matrix was 700x700. The inversion of such a
matrix would be a formidable task, even when
utilizing computer techniques.

For this reason, iterative approximations to solu-
tions have been developed by Scofield [2] and by
Skarsgard, Johns, and Green [3]. An iterative
technique similar to that described by the latter
has been developed independently in this laboratory.
Convergence criteria for this technique have been
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These approximations become better as the
The results indicate that the error rapidly approaches

This limit is reached

discussed by Geiringer [1]. In applying the tech- |
nique, empirical evidence has been obtained for the |
validity of solutions obtained by this method. This
evidence is discussed below. In addition, the
propagation of error in the unfolding process is
mvestigated in detail.

2. Iterative Solution

2.1. Procedure

Equation (1) may be written in matrix form as |
P=RN.
Then this initial estimate will give
[2= 150
A measure of the closeness with which U, represents
the true N is given by the difference
Ay=P—P,.
U, may be corrected to form
Ui=U,+A4,,
and the new correction
A =P—RU,
For the n** iteration
[]71:: lrn—l +An~l
A,=P—RU, . (2)
U,,,'.] == U7- + A

It has been found for the present work that it is
satisfactory to use P itsell as the initial estimate U,
The technique has been used primarily in unfolding
pulse height distributions obtained with the NBS
Two Crystal Pair Spectrometer. Details of the
detector and its response are described by Ziegler,
Wyckoff, and Koch [4].

Various methods for arresting the iterative pro-
cedure may be used. In this work the data were
unfolded using a predetermined number of iterations.

Assume N=1U,.

1s found.

2.2. The Response Function Matrix

This section will discuss the problem of finding
a matrix representation for the assumed analytic
form of the response function. The response at
pulse height e due to one incident photon of energy
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ky may be written [4]
R (e ko)
E ko—k L k—e\?
:I‘ dkl:Cﬁ(k—kﬂ)—l--(’zg__ m>]-(746_‘-‘( p
JO

®3)
ko
f R (e ko)dky=1
0

where O, (,, Cs, Oy, and « are constants character-
istic of the detector. The pulse height distribution
becomes

Pe)— ﬁ " dkoR (e k) N (o) @)

where N (k) is the continuous incident photon num-
ber spectrum. KEquation (4) is the continuous form

of (1). Experimentally the vector
e;tHA;

P,= P(e)de
ei_Ai

is the quantity measured as counts per channel in
a multichannel pulse height analyzer.

The integral equation (4) does not possess an
exact solution. Integrating over £ in (3), (4)

becomes
JP(e)= dko{(n(»! exp (knje) :'
208

- 1 .
+ G0, <a\/()>[(¥p <‘@+%
)
R ) | R SR
(\/2(1 \/203 >]}N<k0> &

where ®(z) is the error integral [5]. Thus (5) is
seen to be an integral equatmn with a Gaussian
kernel; such an equation does not possess a general
unique solution [6]. This is a manifestation of the
inability to experimentally differentiate between a
smooth spectrum and a spectrum containing a series
of sharp spikes. The Gaussian broadening is respon-
sible for this.

In order to obtain a matrix representation for
R(e, ko) a particular form must be assumed for
N(ky). Two forms have been investicated. One
may assume the incident spectrum to consist of a
series of discrete steps so that over a fixed small
energy width the spectrum is constant [7]. Alter-
natively one may assume the spectrum to be com-
posed of a sum of Dirac delta functions so that
when an integration is performed over a small energy
width the area of the delta function gives the number
of photons in that width.

Both cases lead to essentially the same form for
the matrix. The latter case will be carried through
to obtain the matrix explicitly.

Let N (ko) =35 (k;—Fy).
2 Kf(k), ea; (6)

Then (4) becomes
IREE

where K;= C,C,+k,C,C5C,(1—¢7/“3) is a number, and

Tk, 9= ()"

From the above the number of counts in channel
€; 1S

eitAi A
= 2 K f (k;, €)a;
Jei—A; Jj
which, after interchanging integration and sum-
mation becomes
Pi=2 ;[ K;b(k;, e:, Ar)] ™
J
where

eitAi f%(b)2
b(lc,-,ei,Ai):f ¢ C5) de=b,u (0.

€i— A

Identifying a; with N, and Kb, with R,; (7) becomes
identical with (1).

3. Empirical Justification
3.1. Convergence

In setting out on this course there was no reason
to believe the technique to be convergent. It has
been shown [3] that convergence is assured for a
smooth function if the eigenvalues A; of the response
function matrix satisfy the requirement

0<A<2.

This was not a useful test because the size of the
matrices used made calculation of the eigenvalues
impractical. Therefore the primary justification
is empirical.

In analysis utilizing a 200 X 200 form of R, eleven
iterations were ordinarily performed. However,
as a check on convergence, as many as twenty-one
iterations have been performed, during which A, of
equation (2) continues to converge.

In figure 1 a typical set of points to be unfolded is
plotted Let A denote this set. On the same figure
1s plotted B, the result of unfolding A. The set A
contained polnts only up to 40 MeV. TIn order to
avold introducing a large discontinuity in the first
derivative at 40 MeV, a straight line tail has been
added. The work was done with an energy grid
width of 0.5 MeV. Typical standard deviation is
shown for a point of A at 16 MeV.

In order to compare B with A, the difference
Ay=A-RB (see (2)) 1s plotted in figure 2. 1If B is
the “correct’”” unfolded set of points then A;; must
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Figure 2. Difference, A, between the original curve of figure 1
and the folding of the unfolded curve of figure 1.

X9, indicates percentage difference A/A. Ordinate scale is in same units as
figure 1.

vanish. Convergence requires that A, vanishes for
increasing .

Some values of the difference in percent are in-
dicated on the plot. The very small (0.79) differ-
ence at 19.5 MeV is at the peak of A.

In order to further check the convergence proper-
ties of the scheme a set of points with large
uncertainties was unfolded, using twenty-one itera-
tions. The set (' and its “unfold” D are shown in
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Fraure 4. The difference A, between the original curve of
figure 3 and the folding of the unfolded curve after n ilerations,
for n=0, 1, and 4.

Ordinate scale in figures 4 and 5 is in the same units as figure 3.

figure 3. Again a straight line tail has been added
to O at 40 MeV.

Because of the poorer statistics on € there are
more fluctuations in 7). The slope of € appears to
have a large discontinuity at 32.5 MeV. A spike in
D is observed to grow at this energy with successive
iterations. This demonstrates that fluctuations are
magnified as one approaches an exact solution.

The question of convergence is best illustrated by
examining A,, for various values of n. Figures 4
and 5 show A, for n=0,1,4,11, and 21. It is ob-
served that A, converges rapidly for small n. The
maximum of the ratio A,./A, is approximately 1072
The maxima of A,; in percent of C'are +0.4 and — 0.5
percent.

A numerical criterion for testing convergence in
this sense is suggested by Skarsgard, Johns, and
Green [3] for a pulse height distribution containing
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Note that the ordinate scale is expanded from figure 4.

pure Poisson counting errors, i.e. the standard

deviation on P;1s P,

AR - .
If %,fl < <1 then the deviation for the point

U, is well within the limits of random measurement
errors. Therefore if

M
2o p <M (8)
i1

&

the unfold is regarded as satisfactory. This test
was used in unfolding a pulse height distribution
for which the errors on each point were purely count-
ing errors. The results were similar to those found
by Skarsgard, Johns, and Green, [3] namely, con-
vergence is rapid until (8) is satisfied (~3 itera-
tions). After this convergence proceeds slowly.

One might hope to be able to prove convergence
from the classical theorems [1]. It is easily shown
that if one denotes (/-R) by A, then:

U(n) —UT :A" (UO—UT) .

Therefore [1] U™ converges to the true solution
Uy if and only if the eigenvalues of A are less than
one in modulus. From the rapid convergence which
is observed empirically, one is led to believe that
the eigenvalues of A are indeed less than one in
modulus.

A sufficient condition for convergence is that
the maximum of the absolute row sums p, satisfy

w2441 )<1.

However, this is not the case for the matrix A= /-
on which the present work is based.

4. Error Propagation
4.1. Empirical

In order to demonstrate the effect of statistical
fluctuations, two different experimental determina-
tions of the same pulse height distribution have
been unfolded. A portion of the unfolded spectra
for both sets of data are presented in figure 6.
The spectra are designated U/, and U,. The two
pulse height distributions are not presented because
of the typographical difficulty in distinguishing the
two sets of data on a meaningful scale.

Differences between the two spectra should be
purely statistical. Tet the measured pulse height
distributions from which 7, and U/, were obtained
be P, and P, The ratio p=(P,/U,) /(P,/U,) has
been plotted in figure 7 for the region from 15 MeV
to 25 MeV. One would expect this ratio to be ran-
domly distributed about unity due to the statistical
fluctuations in P, and ,. This is observed.

In addition, if the unfolding procedure does not
introduce false structure, then, for P, >P, one ex-
pects the relations U7, >0, and therefore p>1, to
hold approximately. Examination of figures 6 and
7 will show that for U, >U,, p>1, and for U, < U,,
p<1, except when U,~U, where fluctuations in
adjacent points become important. 'This indicates
that the iterative procedure does not introduce false
structure.

Some qualitative effects of error propagation are
illustrated quite well by figure 6. The most pro-
nounced effect is the increase of fluctuations in the
unfolded curves with increasing energies. The rea-
son for this will emerge from the discussion following.
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Ficure 6. A portion of the unfolded spectra for two different

experimental determinations of the same pulse height distri-
bution after eleven iterations.
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See text for definitions.
4.2. Calculation of Error

The calculation of error for an individual point in
an unfolded spectrum is made difficult, because, in
folding, correlations arise between errors in adjacent
points.

Assume that error in the detected pulse height
distribution is known as a function of energy and
denote it by o,. The folded set of points, which are
obtained in the first step, may be written

[S(P)]i:Z_Rijpj- (9)
J
The standard deviation of S; becomes
51:[;(1&70:)2]5- (10)

From (2) the solution after one iteration may be
written

U§I)Z2Pi—$RﬁP1 (11)
with corresponding error
6U(1)i:[(Q_Rii)2012+Z(RijO’j)2]%. (12)
=

The second iteration gives:

U(‘z) =W +1)_2R])+R2P
=3P—3RP-+R*P

RQI):ZkIgijlgjkl)M
Jk

where

Expanding U® in the same way as U™ the error on
U® becomes

6U,-(2’:[(3—3RH+RHZ)G,-2+ Ot‘hel' terms]*.

The “other terms” have numerous cross products.

For example, the contribution to [6U® |* from o, is
[—3R1, i+1+RuRi,1+1+Rf. H—lRi-H. i+1]201+12-

The general form for the solution after » iterations
may be written symbolically as

U=, I:I—(I—R)"‘“:IP (13)

where is the identity matrix and 1/R=R™". If
the variance Var (P)=¢*/, then the variance of
U™ may be written formally as:

Var (U™)
=R[I—(I—R)"[I—(I—R)" |7 (R~Y)7s,

where 7" denotes the transpose. Here we have used

8]
Var (CP)=C[var (P)]C".

Since all elements of 1 are less than unity, it is evi-
dent that in the limit as » approaches infinity

1im V}ll‘ (U(n)):R—l(R—l)T 2.

n—rwo

In order to simplify the error calculation the
response function and the error will be assumed to
satisfy the following conditions:

(1) The half-width of the response function is
narrow. This corresponds to good resolution in the
detector.

(2) The shape of the response function does not
change rapidly with incident photon energy. This
is equivalent to assuming that

]{(E,kl)ER(é—l_Ak],kl—}—Akl)
or Ry~R; n jim and R;_, ~F; jim,

where m is an integer. See figure S.

(3) The error, ¢, is a constant, ¢, over the half-
width of the response function. Note that the first
condition makes this more likely.

Let R;;=w,, Ry (=wy, Ri_s ;=w,, ... But, from
condition (2) R, ,~w;. Using this (9) may now be
written

[RP]i:;wkl)k+ir (9a)

where the w, may be obtained from the response at
one incident energy. )
In the appendix it is shown that the solution has
the general form:
UP=ayPi+aPiy1+a:Pipst . .. (14)
If the error is assumed to be a constant, o, this
gives

U™ = (JZ&?)%U (15)
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Figure 8. Illusiration of the relation between the response
functions al two different energies.

The folded spectrum at i is Ri; Pi+R; i1 Pix1i+ . . . where R and P are defined
in the text. R;i+1™2Ri-1.i.

for the error at point 7 in the nth iterated solution.

For the response described in [4] the error after
three iterations has been calculated at 18.5 MeV and
48.5 MeV. (See appendix.) 'The results are +2.36
o at 18.5 MeV and +3.23 ¢ at 48.5 MeV.

In both cases if all terms in (A3) which are cubic
in w were omitted, the difference in U/, would be
small, and the difference in 67;% would be negligible.
The terms which are cubic in w are approximately
an order of magnitude smaller than the quadratic
terms. The conclusion is that 60U has converged
for n > 3.

From (A1), (A2), and (A3) it may be observed
that after a large number of iterations the coefficient
of P, in (A3) will converge to:

ao=[1— (1 —w,) "']/w,.

For the cases at 18.5 and 48.5 MeV this gives
a,—2.21 and 3.104 respectively, for n=3. Compari-
son with the results for 60/, above shows very close
agreement. Thus one concludes that three iterations
satisfy the large number criterion.

This coefficient then places a lower limit on the
propagated error at each point of the solution. In
general w, decreases with increasing incident photon
energy, for this experiment. Therefore the error
must increase with energy. This is independent of
the shape of the curve to be unfolded. Figure 9
shows a, plotted as a function of energy for n=3.
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5. Summary

Because of the uncertainties associated with any
point on a measured pulse height distribution, any
“solution” for the unfolded spectrum is acceptable, 1f
the difference between the measured distribution and
the fold of the solution lies within the uncertainty
associated with the measured distribution. The
additional requirement of smoothness is sufficient to
ensure that the iterative process converges to a
useful solution.

General error analysis is difficult. However,
approximations may be made which become better
as the resolution of the detector improves; these
approximations make an error estimate possible.

Interesting results from the use of this technique
may be seen in the work of Ziegler, Koch, Wyckoff,
and Uhlig [9].

The author gratefully acknowledges the help and
encouragement of H. W. Koch, R. A. Schrack, and
Michael Danos in the development of this method,
and their suggestions for improvement of this paper.
The original work in finding a suitable form for the
response function and the fitting of that form to
experimental data was done by R. A. Schrack.

Special thanks go to Joseph Cameron and Brian
Joiner for their help in studying the propagation of
error.

6. Appendix

In this appendix it will be shown how the general
form of the solution, equation (14), may be found.



Using (9a) and expanding (13) the general solution
becomes:

n(n

—1
um ZﬂPi—;Q,—) 2 WPy
: J

—1) (n—2
T D ) 2R N

n(n—1) (n—2)(n—3)
+II,(II )n4' ) (n

lekﬁjlwzwkwjl)zﬂﬂwr ... (A1)

Choosing an arbitrary zero point for index 7 (Al)
may be written:

U =4Py—62 w; ;442 wiPy;+8 Zk;wszpkﬂ
j J J
—Zw?PSJ_:j ZI\)/]Z:wiijzk—l- —3Zj<zwzwjp2k+j
J (< &

=R T S (A2)
1 <k<j

Expanding and collecting terms:

U§P = (4—6w,+4ws—ws) Po+ (—6w; +Swow—3wiw,) Py
| -+ (— 6wy 4wT 4 8wywy— 3wws, — 3ww?) Py
‘ TF (‘“ 6w; - Swyws 18wy w, — wi— 3wiws
— 6w ws) Py (— 6w, 4w, + Swows - Swiws
— 3waw,— 3wiw, — 3wiw,— bwyw ws) Py~ (— 6ws
—+ 8wy~ Swi w4 - Swatws— 3wiws — Swiws— 3wIw,

—G’Uﬂgwl104_67,U()WQW3)P5+ 5o o (A3>

At 18.5 MeV the response function for the detec-
tion system described by Ziegler, Wyckoff, and
Koch [4] was given by

407

(w07w17w21w3;w41w5: o © )
—(0.39,0.225,0.138,0.088,
0.056,0.035, . . .).

Using these values in (A3) one finds:

U®=2.209 Py—0.751 P,—0.317 P,
—0.129 P;—0.084 P,—0.003 P;— . .

and from (15):
6U0(3):2.360'o
Similarly the response at 48.5 MeV gives

Uy®=3.103 P,—0.642 P,—0.454 P,
—0.333 P;—0.242 P,—0.174 P;— . .

which leads to

=323 0
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