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Thin slabs of dielectric materials are often tested for their dielectric properties in plane

parallel plate capacitors.

When surface conductivity is present, as for instance in freshly
split mica, losses not connected with the bulk of the material arise.
with the general theory of such measurements.
lumped elements superimposed on distributed transmission lines.
the presence of possible airgaps underneath the plates of the test condenser.
that such losses depend on the reciprocal square root of the frequency.

The present paper deals
The system is reduced to an assembly of
The treatment includes
It is shown
Losses due to this

effect cannot be eliminated by guard ring measurement and much of the published data on

the losses in mica must be reexamined in the light of the present work.

may apply in the case of other materials.

1. Introduction

The present paper had its origin in an attempt to
interpret the results of some recent work on mics
described in a paper by S. Ruthberg and 1. Frenkel !
which will henceforth be referred to as (I). In (I)
we describe some results obtained during measure-
ments of the dielectric losses of freshly split mice
and attempt to account for these in terms of the
physical properties of an assumed surface layer on
the mica. The present paper extends and generalizes
the theory of loss measurements in the presence of
surface conductivity. It is shown that all the
features described in (1) may alternatively be
accounted for in a simple manner by the surface
conductivity of the specimen alone.

The present paper is however a general contribu-
tion to the theory of dielectric measurement and the
applicability of this theory is not limited to any
particular dielectric. Furthermore some loss meas-
urements in mica and other dielectrics should be
reexamined in the light of the theory given here to
sort out what part of the losses reported may be
ascribed to the bulk of the dielectric and what part
is in fact due to surface conduction.

Before introducing a specific model for theoretical
analysis we shall examine briefly the salient features
of the results reported in (I).

The experimental arrangement used is shown in
ficure 1 and consists of a parallel plate capacitor
made up of a large grounded plate (A), a sheet of the
dielectric under test (B) and a disk electrode (C)
which is connected to a suitable bridge.

Suppose now that a dielectric having one slightly
conducting surface is placed in the capacitor with the
conducting face resting on the smaller disk (arrange-
ment 1).

It is clear that current will flow away from the
edge of the small disk via surface conduction thus

1 8. Ruthberg and L. Frenkel, Dielectric behavior of the film formed on mica
cleaved in moist air, J. Res, NBS 68A (Phys. and Chem.) No. 2, 173 (1964).
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Experimental arrangement for the measurement of
dissipalion in mica.

Ficure 1.

oiving rise to losses which are added to the losses
incurred in the bulk of the material, and it is shown
in (I) that these losses are inversely proportional to
the square root of the capacitance of the capacitor
formed in the manner described above.

The depth of penetration of this edge effect is quite
small. This may be seen as follows: A typical value
of the surface resistance on freshly split mica? is
10'* @ while the capacitance across a typical sample
is 10 uf per em? thus the resistive component of the
impedance along a square of 1 em edge is in the
order of 10 © while the shunting impedance across
the sample to ground at 1000 ¢/s is of order 107 Q.
The edge current is therefore quickly attenuated.
This fact, as is pointed out in (I) makes it impossible
to exclude such losses by means of guardring meth-
ods.

Suppose now that the sample is reversed so that
the conducting surface is resting on the large, grounded
plate (arrangement 2). In this arrangement the field
lines all cross the conducting surface at right angles
and there are no losses due to surface currents.
Since, however, the conductive layer on the surface
will also have transverse conductivity one might

2J. M. MaCaulay and D. Carson, J.'"Roy. Tech. Coll., Glasgow 2, 161 (1930}.



expect some losses to occur in this case also. The
value of the losses in the two arrangements as well
as their dependence on the thickness of the dielectric
and on the frequency used are subject to physical
and instrumental interpretation.

In attempting to explain the lossesin the transverse
field (arrangement 2) in terms of the physical prop-
erties of the surface layer one runs into difficulties.
In particular the magnitude of the losses is such that
one must assume either a dielectric constant smaller
than 1 or a thickness of the layer of the order of
millimeters. Neither of these conditions is reason-
able.

The salient experimental features which any theory
of this effect must explain are listed below.

I. The loss induced by splitting is proportional to
the capacitance of the piece when measured with
the fresh side in contact with the large plate (ar-
rangement 2).

II. If the fresh side is placed in contact with the
smaller plate the losses increase due to the edge
effect. This difference in loss is found to be inversely
proportional to the square root of the capacitance of
the piece.

IIT. All induced losses vary as the inverse square
root of the frequency.

The order of magnitude of the losses with the two
arrangements is the same.

One further feature of the experiments must now
be described since it provided the clue for the present
solution of the problem. If one examines the capaci-
tance of the test capacitor with progressively thinner
pieces of the mica between the plates one finds upon
plotting the inverse of the capacitance versus the
thickness of the dielectric that the resulting straight
line does not go through the origin but has, at zero
thickness, a positive intercept. This indicates that
in practice there is a fixed effective airgap between
the plates of the test capacitor and the dielectric.
Causes for the airgap may either be inherent in the
mica surface or of an instrumental nature. What-
ever its origin however the existence of the airgap
suggests that surface currents will occur also when
the lossy surface is exposed to the large plate since
there will be currents along the surface wherever the
surface contact with the plate is interrupted. In (I)
the existence of the gap was taken into account by
a correction applicable for measurements in uniform
airgaps but no actual losses at the contact edges
underneath the plates were assumed to occur.

The magnitude of the correction is quite large and
corresponds, for thin samples, to airgap thicknesses
amounting to several percent of the thickness of the
specimen under test. Consequently the losses asso-
ciated with this type of contact current cannot be
neglected.

2. Description of the Model

We are now ready to set up a model representative
of the arrangement deseribed above. In practice
there may be many areas of contact under the plates
and their shape and thickness may be quite varied.
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Remembering however that the attenuation is quite
rapid and that the losses in the various gaps may be
summed we need to treat only one typical case, i.e.,
the loss in a cavity under the plates. It will be
easily seen that the edge loss is only a special case of
the general model, namely the special case where the
airgap capacitance has gone to zero.

The equivalent circuit with the airgap under the
plates is indicated in ficure 2. A represents the
region beyond the edge of the smaller plate where the
capacitance of the sample is in series with the
resistance of the surface. The region B represents
the area under the small plate where the resistive
path is shunted by the effective airgap. ) is the
capacitance across unit area of the sample, R is the
surface resistivity of a unit square of the surface and
(), is the capacitance across unit area of the airgap.

Since the edge effects are confined to a small area
near each contact edge one may regard the surface
near the edge as forming a part of an infinite parallel
plane transmission line, of width equal to the length
of the respective edge. In the case of the edge of the
upper plate this length is the circumference of the
plate but under the airgap one cannot determine the
length of the contact edges directly. The qualitative
features of the model do not depend on the length of
these edges however, and the actual lengths required
to account for the phenomena described in (I) are of
the order of the plate circumference which is entirely
reasonable.

Because the attenuation is very hich we may
assume that the characteristic inductance of the line
is negligible and that the progress of the wave into
the line is slow. The progress of the signal along the
metal plates by contrast is infinitely fast. 'These
assumptions may be made plausible as follows:
Assume that a potential V" is suddenly applied to the
upper plate. The potential V' will be established
across the entire upper plate with a speed close to the
speed of light and the surface of the mica will assume
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Frcure 2. FEquivalent circuit representing the mica capacitor
near the edge of the upper plate.

Only the edge of the upper plate touches the mica surface



a potential determined by the capacitance divider
consisting of ) and (5. After a time determined by
the time constant (C;R) the surface of the dielectric
will however reach the potential V' by conduction
along the surface. Our assumption now implies that
this time is long compared to the time required to
establish initial equilibrium in the upper plate.

3. Theory

In practice a sinewave in a frequency range from
10 to 1000 ¢/s is used for this experiment and the
upper plate is therefore at potential:

V() = Vet «t. (1)
Our task is to calculate the in-phase component of
the current in section 7.

Our plan of attack is the following. We shall
establish transmission line equations for the surface
potential V. (x#) and the surface current I (z¢) in
order to find the current into the line, 1,(0,t). To this
we will add the current flowing at any time into the
airgap. This current is determined for each point
.1 on the surface by the potential difference (V(f)—

Vi(eit).). The airgap current must therefore be
obtained as an integral over the entire line. This
transmission line is described by :

ol oV oVt b\
2 o, (£ 2
or Lot -t ( 2)
and
oV
=—I R 5
or . (3)

The solution can easily be guessed. We note that
for large values of z, V', must ‘1])1)10.1(11 a fixed value.

. , . @)
lim V(z, )=Voe' 777 (4)
while at z=0
V0, t)=Voe'«'; (5)

accordingly we try:

‘, _T/ zwtl: —f(a+1k){ _(v_+ (V}+(Y_|_( (6)

since this funcetion has the correct limiting dependence.
Further we assume

[X;[N.“(/iwl—,r((,{—ik); (7)

substitution of the trial solutions (6) and (7) into
eqs (2) and (3) gives

\nll* (1<a+blt) I:( +(

I o(atik)=ViwCi;

and

from (8) and (9) we obtain by elimination of (a--ik)

e
O+ G,
The loss factor depends on the real part of this
expression.

We must next calculate the real part of the current
entering the capacitance (), via the metal surface
above the airgap. This current is given by:

1wy

Fo=Viq 4G (10)

I=0 [ 2 (V) —V.)de (11)
- Jo ot
where 2 is the extent of the line.

Using our solution (6) for V, this becomes:

@
#('

Ioy=iw T(t)f (1—e~"at®)dy  (12)

we note that for very high resistivity the integral is

(13)
as expected.

We are however interested in the general case and
particularly in the real amplitude

(oNe

~O (L .,wf) sin kre *dx.  (14)

e, , real
Now a may be found from (8) and (9) to be
a=k—— RO, Cy) (15)

V2

and the integral (14) evaluated for a sufficiently large
upper limit gives

ICg,o real- ; Y (16)
combining (15) and (16) gives

: wly | O < G

Ic, , real \/21; \/(Hf('._, C,+C,

The total “in phase current”” per unit edge of section B
consists of the real parts ol eqs (17) and (10), i.e.,

Viz (ara)

A, ) is unchanged and ;=0 so that

(17)

I realz=— (18)

In section
from (18)
e

/ 1'(‘211_1'—; \/2_15 (19)

This formula was reported in (1) but may now be
regarded as a special case of (18).



We must next determine the total current in the
capacitor so as to form the loss factor. This current
will arise from contributions of many sections of the
capacitor having various values of (5 but since we
can only measure an average value of C; we proceed
as if (5, were the same at all points, then

a (/Yl (172 >

—— 20
(/Yl + Cv2 ( )

I imag=wV

where a is the area of the capacitor, i.e., the area of the
small plate.

We are now in a position to calculate separately
the loss tangents due to sections A and B of figure 2.
Dividing (18) and (19) by (20) and multiplying each
of the resulting expressions by an effective edge
length gives:

G 1 [ 1 21
$5=74 0, \/ 2R \/ O1G, =)
and
a1 [ 1 046G
¢A*Ti w/a \/sz ( 02 > (22>

4. Discussion

For large values of (; eqs (21) and (22) reduce to

¢ Ci1/yw (23)

and
¢acc (11N w) (29)
respectively. If now the sample has its conductive

face on the larger plate, there are no edge effects
and (23) is applicable thus confirming that much of
the experimental observations. If on the other hand,
the sample is reversed, then both effects operate and
the difference will be due to ¢4 thus confirming the
remainder of the observed dependence on capacitance.

In practice the approximations (23) and (24) are
not justified since C; and (; are generally of the same
order, but it must be remembered that the correc-
tion as used in (I) is now included in (21) and (22).
A check on the results in (I) showed that agreement
with experiment is just as good using (21) and (22)
on the experimental values that were quoted in (I)
provided that the corrections =sed there are
discarded.

It also follows from eqs (21) and (22) that the
losses due to tangential current in the surface all
depend on the inverse of the square root of the
frequency. We reproduce in figure 3 the frequency
dependence of the losses of split and unsplit mica
together with arbitrarily drawn lines of slope (—1/2).
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Frcure 3. Relationship between the disstpalion in a mica
capacitor and frequency for wvarious experimental ar-
rangements.

The agreement of the two curves representing split
samples is very gratifying. Of considerable interest
is the fact that the curve for the old surface also
follows the —1/1 power law. This indicates that all
losses measured in mica are possibly due to surface
currents and the intrinsic losses in this material may
be much smaller than values usually quoted in the
literature.

The final question arises whether the effective
airgap is physical or instrumental. If it were
physical we would have to suppose that the mica
surface is uneven to a suflicient degree to cause the
effective airgap. If the explanation were instru-
mental one would have to suppose that the mica
sample, though smooth, did not make good contact
with the plates perhaps because of a warping in the
plates. In any case it is hoped that the theory
presented here will be generally useful in the mea-
surement of dielectric properties of thin samples.

5. Conclusions

The present work indicates that whenever thin
slabs of material are examined for loss characteristics,
one must expect disturbing influences due to surface
losses. These generally depend on the inverse
square root of the frequency. Though the theory is
developed specifically to account for a rather esoteric
experiment with mica, its general significance for
dielectric measurements is obvious.
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