JOURNAL OF RESEARCH of the National Bureau of Standards—A. Physics and Chemistry
Vol. 684, No. 1, January-February 1964

Calculation of the Higher Order Dipole-Dipole
Effect in Paramagnetic Crystals

Paul H. E. Meijer
(August 13, 1963)

This report is an attempt to investigate the influence of dipole-dipole coupling in a
paramagnetic spin system at low temperatures. It consists of two parts. The first part is
a discussion of the use of €'y =Cg— for a system with mutual interaction. It is pointed
out that only if the external field is large compared to the internal field is this equation correct.

The other part consists of a calculation of higher order correction of the dipole-dipole
interaction on a system of paramagnetic spins which is subject to a crystalline field which
we chose of the Y, , type. The total Hamiltonian consists of a spin Hamiltonian in accord-
ance with this symmetry, a term representing the external magnetic field and the dipole-
dipole interaction between the spins. The partition function is calculated by means of the
Schwinger trace formula considering a representation in which the first two terms of the
Hamiltonian are diagonal. The trace of the density matrix can be expressed as the trace of
a product, one factor is the density matrix of the noninteracting spins, the other factor consists
of a sum of commutators. These commutators are worked out in detail and the result is
given in the form of a finite series over the quantum number m. There seems to be no ob-
vious way to perform these summations.

1. Introduction

In a system of paramagnetic dipoles in a crystalline field the magnetic specific heat at con-
stant magnetization is equal to the specific heat in zero magnetic field. This is easily seen from
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and the fact that the magnetization in a system without any spatial correlation (i.e., ideal gas-
like) is always proportional to 77 for small fields, hence M as well as (dM/dT) will go to zero if
there is no field and we have ;= Cy_,.

As a consequence of the lack of correlation M=0 if //=0, hence the relation should be
Chr—o=Cyo. The general question when C),=Cy_ is discussed in appendix 1.

If there is no crystalline field both these quantities are zero and the magnetic specific heat
at constant 10 is merely determined by the Curie law

o CH’
H= (1.2)
where O is the Curie constant.

For the case of dipole-dipole interaction between the spins the value of the specific heat at
constant magnetic field was calculated by Van Vleck in 1937 [1]." The result can be expressed
in the limit of high temperatures in the form of an internal magnetic field 77,, which has an average
value zero, but a root mean square value 71, that is non-zero; then
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I Figures in brackets indicate the literature references on page 118.
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We want to calculate (), again, the reason being that the ratio of ()}, to Cy determines
among other things the real part of the susceptibility at high frequencies. The result that
Chyy=0Cy-o was used in the calculation of this ratio [2], although this is correct only if a Curie law
holds. Although the error is not very important, at least not at external fields large compared to
the internal field, there is a certain inconsistency in the fact that H,;0 is in contradiction
with the Curie law, which assumes the total absence of any mutual interaction.

In order to reconsider the equation of state, one can draw up a modification of the Curie
equation by replacing the field 77 by either H+H,; or by H?+H? and then recalculating the
difference between Oy and (), again; this is not equal to zero for H=0. As a matter of fact it
is infinitely large with the second choice

M—cH T[Hf—m;,—(zu: —QHTLZHLX (1.4)
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The failure of such attempts is due to the fact that the Curie law is a high-temperature
expansion in the case where the internal field is small. That is, the internal field itself is
temperature dependent in such a way that it will vanish for 7->«. The difference between C,,

and (y 1s now
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since for high temperature /1, is small and we find that this difference goes to zero for //=0 and
that the correction is proportional to 7*.  This could have been obtained in a much simpler
way if one assumed the Curie-Weiss law for the magnetization

H

Mif=C! T8 (1.6)
which leads to -

The introduction of interaction between the spins is not in contradiction with the assumption
that AC goes to zero for H—0.

The considerations above were mainly intended to provide a reasonable excuse to introduce
an internal field by means of those terms in (£7) ! which arise from the dipole-dipole interaction.
These terms can be classified in two groups, classical and quantum mechanical. The quantum
mechanical terms are the result of the noncommuting of the operators. For zero external
field they occur only if there is a crystalline field splitting. It is the main purpose of this work to
calculate these quantum mechanical effects in the internal field. The method followed is straight-
forward. The effects should be observable in the “intermediate’” temperature region, that is,
the high temperature expansion should hold far enough down, but not too close to the Curie
temperature of the dipole-dipole interaction [3].

2. Operator Expansion
We will separate the Hamiltonian into two parts: the first part, F(,=a/kT, contains the
diagonal terms,; the spin Hamiltonian in the crystalline and the external field; the second part,

F(2=b/kT is the dipole-dipole interaction. It has no diagonal terms.
The expansion of the exponential needed for the evaluation of the partition function is

8_(a+b):6_a+zl (_—l)ne—aSn- (2‘1)
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As is well-known [compare 4] S, contains the b-operator n times. If one actually wants to
have concrete values for S, one has to perform another expansion, this time with respect to
a. 'The practical question is how far do we calculate this double power series. The term
¢ " b contained in S; is a product of a purely diagonal term and a purely nondiagonal term.
Hence the trace is zero [5], which means that the average value of the field created by the
dipole-dipole interaction at a certain point is zero. The field has, however, a mean square
value, and the first term in S, is the major contribution to its value. This is a purely “classical”
term in the sense that it is also nonzero for commuting operators. All first terms in S, are
classical, but since we assume that the dipole-dipole interaction is small compared to the
thermal energy of the system the description on the basis of the first term in S, will be sufficient
for the classical part as long as there is no evidence of an approaching cooperative phenomenon.
Another argument for dropping the next terms is to notice that the range of the dipole-dipole
interaction squared is 7~¢, and all higher classical terms with even n-value will give rise to weak
interactions of extremely short range unless the temperature is so low that a strong correlation
between the spins occurs.
The expressions for S; and S, are given by

0
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and expanding b(s):

b(s)=e™be~*=b+sla, b]+. . . (2.3)
The result of the integration is

e~ @t =018, 485} =e¢~*(1—b+1[a, b]+iala, b]]+ b
+3bla, b]+s5blala, b])+3[a, b]b+ila, b]*+Llala, b]]b. (2.4)

None of the terms of S; contribute to the trace since they are the product of a number of
diagonal matrices and one nondiagonal matrix.
The terms of .S, up to the second order in b are

1,,. 1 1
5 b bla, bl [a, blb. (2.5)

It is shown in the app. 2 that the only contribution to the weighted trace is
tr {e=® (3 b>+1% [bla, b]])}. (2.6)
3. Calculation of the Double Commutator

In order to calculate the double commutator we introduce the following notation

g(g: (/262 Z SlcSl_';OSA];M) (‘S 1"A-I)/"Z'l: ? Y\, ASYZ(‘),);?]S{, (3 1)
' k=1 Ik a, B k=l

Where the position indices are written as superscripts and the matrix 0 is given by:
Ou=¢6*(y*+2*"—22%)[r%; O1.=0n=¢"Bzy
Q2 =98 (x*+2*—2y") [r%; 2= =96z
Oz =9 (x*+y*—22°) [r’; O1=05=¢"8"2z (3.1a)

leaving out all superscripts.
Since the leading part of the Hamiltonian is of the form (a, b, and ¢ are constants)
Fli= >3 aS:+bS.+c (3.2)
positions
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we have to calculate the commutators (7, and double commutators D),:
=[8s, (S.)?] and D,=[S., [Ss, (S.)"]], (BE)

where all spins are at the same location. In order to avoid confusion with the superscripts,
which have been omitted, the powers are placed outside parentheses. Table 1 shows that
there are four nonzero values of ;. However two have zero’s in the diagonal, hence if multi-
plied by the (diagonal) weight factor only a=pg=z or y will give a contribution. The same
holds for IJ,. The trace of the two elements of C is #*m. The trace of the two elements of
D is —1*[3m*—S(S+1)]. This has to be inserted in the multiple sum over all positions
containing two @’s and multipled by the weight factor exp (F(,/kT).

Since both Hamiltonians are series over all positions and since all commutators with
respect to two different positions are zero we have to figure out in which ways these two
summations can “overlap”. The first commutator gives (k=1):

[0 H1=a 32 [ 33 860084, (S2) ]+03 [ Si8t00s, (57 ] (3.4)

The summation over m contains only two terms m=F£ and m=I[. These terms are equal
since the matrix @ is symmetric in both the upper and lower indices and since £/ the operators

commute.

[H 2 ﬂ1]=2a§§[32, NAICH Sg+2bZZ S, (82)*1045S5. (3.5)

The double commutator introduces a sum over four positions, say k, [(k>l) and 7, j(i5]).
There are six different terms (table 2). The first four give all the same contribution because
of the symmetry of ® mentioned above, and so do the last two. Writing for short

S(87)=a(87)*+b(S:)

we have

(8 (s, FOI=2] (STSHS%, S 10Kk S5}

o' B all different

+[S%, St 10 ﬁ’fﬂ/[S‘f,f(Sé)]Sé}Jr‘ik;{ w[Sa, f(8) 106505 /S5, S5]

+[S%, [S%, f(S)]110::08 5 Sk S—[Ser, [S&, F(SHI] a,ﬂ,[S’,S’]}> (3.6)
TABLE 2
i j
TaBLE 1 Q —O
Dy/(if)? 1 4
|
' z v 1 z O 0
k l
i =S 0 0 4 j
" 0 Gt 0 %ﬂf?
2 Sz Sy 0
| 2 5
Do (if)? ‘
1 O———0
f=z v o k /
i j
a=z 2(S?—S2) —(SySe+S:y) 0 O<V“O
y (S:Sy+SySz) 2(82-8?) 0 N 3 p
—(S:8c+8:82) (S:8,+8,82) 0 AN
N
O——0
3 i
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using for the second set of terms the following commutator identity:

(AB, CD\=AC|BD|+[AC|BD—[AC|[BD]
if only
[AC]#0 and [BD]#0

and all other commutators are zero. Only the diagonal part of this double commutator
contributes to the partition sum, and as a result of this the summation over a, 8, o’ and g’
has a number of restrictions:

First term: a=a’'=z or y; B=B"=z=.

Second term is always zero since [Sg, /(S:)] has no diagonal elements for every g’.

Third term: «, o’ =z or 7, and 8, B’'=x,y or y, x

Fourth term: a=a’=2 or y and B’, B==z. In case it is z,y it will be canceled by the
diagonal contribution from y,

Fifth term: a=a'=z or y and ', B=u,y or y, x.
The diagonal parts of the spin operators to the second power are:

(82)p=(8}) p=2[S(S+1)—S]
LS.

27

(*SVI‘S’]/)I): — (S,,S )

and using table 1 we find (combining the first and fourth term):

[H o [H o, F o =S 25 (LWJL [3(8%)*— (8M)*](00:— 05:0;:) SiS:

fiod
+bSH(OKOL+ 0316} SfSl\erZ 4 3 (18, /(5155 OOk (S}, S3 ). (3.1)
aB’
The last term is calculated with the help of
[S*, S2ST=(F2LS,+7?)S=STHh2(S2—382%) £ 73S, F24S,.(S2—S?2). (3.8)

The summation over «, 8, o/, 8 contains 8 terms. It turns out, however, that 4 cancel mutu-
ally: if a and B8 are equal (both z or b()th y) the subscripts o’g” are either z and ¥ or v and .
Both have the same coefficient OO, but the commutators have the opposite sign. The
fact that these cancel could have been seen on the following general grounds. A commutator
is anti-Hermitian and a double commutator is Hermitian. Hence the last factor has imaginary
diagonal elements and the total expression has real diagonal elements, and the first factor must
have an imaginary diagonal part:

[Sy, 1(8:)°18:=—[8;, f(S2)]S,
:é ([S, J(S)IS™—[S7, f(S)]ST

:—% [a{25S,(S?— S2)—#S, } +bFi(S2— S2)]. (3.9)
The final result for the last term is:
4 > W{(01:85)—(05)%] [26:82(5*—8;— §R2) +-58.( 82— S7)] (3.10)
k#l

In order to obtain a value for the partition functions the trace has to be calculated nu-
merically since the sums of the type

S .
L Zsmz’e“”Lsz”"L (p=0,1,2,3) (3.11)
m=—

cannot be evaluated in closed form.
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4. Conclusion

The complication of the calculation lies mainly in the fact that the commutator of two
spin operators is not a c-number but again an operator. This makes many tricks used to
evaluate exponential operators useless. For instance, one could have written the original
total Hamiltonian with step up and step down operators ST and S=. The expansion of the
exponential would have created a polynomial containing S*, S~ and S. to certain powers.
A general conclusion is that only those terms which contain an equal number of S* and S-
at the same location will have a nonzero diagonal element. To calculate the actual value,
however, one has to shift the S* and S~ operator such that they are all at the end or the be-
einning of the monomial and in conjunction to each other. This rearrangement of operations
is accomplished with the help of Wick’s theorem if we deal with creation and annihilation
operations. It is still possible to formulate a Wick-like theorem for spin one-half. This
was done by Kenan [6]. It introduces an additional numerical factor into each diagram.
For spin not equal to one-half, his treatment fails. The crucial point is that only for spin
one-half is (S,)? a ¢-number. Otherwise S, is an operator and hence can not be taken outside
the trace and the contraction operator cannot be defined. These considerations indicate
that it seems unavoidable to calculate the trace straightforwardly. Actually the straight-
forward calculation consists of doing the same steps as in the Wick-theorem.

Finally, the summation of the positions has to be performed. Tt is possible to restrict this
to the immediate environment since the radial dependence decreases very rapidly.
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6. Appendix 1

We want to investigate under what conditions Cy,=0Cy_, for arbitrary H. To calculate
the specific heat at constant -/ we find from the Maxwell relation 0S/0H=0M/0T

O]]A f a_l]y{(]II—}—OH =0

the second term at the right-hand side of (11) is

oM

oM\’
O‘I[*CH—}_T( aH

and the condition Cy;=Cy_, gives

& O J[ /AN 01[
T
f aH=1 (7 Bz
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which leads to the differential equation

oM\ o*M , o*M oM b\[ b\[ ‘O'M

ol ) o1 "2 oTol oT ol OH*

A

where f is an arbitrary function and ¢, and ¢ two constants. The initial condition forces
us to take ¢;=0. For k7T larger than the crystal field splitting this condition is fulfilled.

7. Appendix 2

which is fulfilled by

From the sum and difference

bla, bl+|a, blb=ab’—b%a bla, b]—|a, blb=|b, [a, b]]
we find

bla, b]=3[b,la, b]|+ 3ab*—3b%a [a,blb=1%[b, a, b]|—3ab*+ 3b%a.
Hence the relevant terms in (2.5) are
sbla, bl+3la, b]b=14(b, [a, b]l++'5ab*—1sb%a+3[b, [a, bl]—§ab’+§b*a=1[b, [a, b]|—yab’+ {5 ba.

Since @ is diagonal we have

tr. [ (f(@)ab®) } =tr. {(f(a)b%a) },
hence the contribution to the trace is

tr.{ f(a)1[bla,b]]}.
(Paper 68A1-259)
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