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This report is an attempt to investi gate the influence of dipol e-d ipol e coupling in a 
paramagnetic spin syste m at low temperatures . It consist s of two parts . Th e first part is 
a d isc ussion of the use of C M = CH - O for a syste m with mutual interaction. It is pointed 
out that only if the externa l field is large compared to the internal fi cld is th is equation co rrect. 

The other part consist s of a calculation of hi gher order correction of the dipole-d ipole 
interaction on a system of paramagnetic spins whi ch is subj ect to a crystalline field which 
we chose of the Y,.o type. The total H a miltonian consists of a spin Hamiltonian in accord­
ance with th is symmetry, a term. r epresenting the external magnetic fi eld and the dipol e­
dipole interact ion between th e spins. The partition function is calculated by means of the 
Schwinger trace formula considering a representation in which the first two te rm s of t he 
Hamiltoniall are diagonal. The trace of the density matrix can be expressed as the trace of 
a product, one factor is the density matrix of th e noninteracting spins, the other fac tor consists 
of a sum of co mmutators. These commutators arc wo rked out in deta il and the result is 
given in the form of a fini te se ri es over the quantum number In. There seems to be no ob­
,·ious ,,·ay to perform these summations. 

1. Introduction 

In fL systcm of paramagnetic dipoles in a crystalline field the magnetic specific heat at con­
stant mfLgnetization is equal to the specific heat in zero magnetic field. Tbis is easily seen from 

(oM) (oH) OM= OH+T aT H 01' M (1.1) 

and the fact that thc magnetization in a system without any spatial correlation (i.e., ideal gas­
like) is always proportional to H for small fields, hence jI,;[ as well as (dlYf/dT) will go to zero if 
there is no field and we have CM = Off _O. 

As a consequence of the lack of correlation M = 0 if H = 0, hence the relation should be 
Oflf=O= OH=O· The general question when OM= Olf=O is discussed in appendix 1. 

If there is no crystalline field both these quantities are zero and the magnetic specific heat 
at constant H ~ 0 is merely determined by the Curie law 

(l.2) 

where 0 is the Curie constant. 
For the case of dipole-dipole interaction between the spins the value of the specific heat at 

constant magnetic field was calculated by Van Vleck in 1937 [1].1 The result can be expressed 
in the limi t of high temperatures in the form of an internal magnetic field Hi, which has an average 
value zero, but a root mean square value H i, that is non-zero ; then 

Cit 
O(FJ2+ !HD 

1'2 

1 .E'iguros in brackets indi cate the literature references on page 118. 
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We want to calculate OM again, the reason being that the ratio of OM to OH determines 
among other things the real part of the susceptibility at h igh frequencies. The result that 
OU= OH=O was used in the calculation of this ratio [2], although this is correct only if a Curie law 
holds. Although the error is not very important, at least not at external fields large compared to 
the internal field , there is a certain inconsistency in the fact that H irfO is in contradiction 
with the Curie law, which assumes the total absence of any mutual interaction. 

In order to reconsider the equation of state, one can draw up a modification of the Curie 
equation by replacing the field H by either 1-1+ Hi or by -VI-P + 1-1 : and then recalculating the 
difference between OH and OM again ; this is not equal to zero for H = 0. As a matter of fact it 
is infinitely large with the second choice 

M = OHtH i"--7 0H- O\f= (1.4) 

(l.5) 

The failure of such attempts is due to the fact that the Curie law is a high-temperature 
expansion in the case where the internal field is small. That is, the internal field itself is 
temperature dependent in such a way that it will vanish for T"--7 oo . The difference between OM 
and OH is now 

since for high temperature H i is small and we find that this difference goes to zero fo[, FI = 0 and 
that the correction is proportional to T -3. This could have been obtained in a much simpler 
way if one assumed the Curie-Weiss law for the magnetization 

which leads to 

lM.=O 1-1 , 
T- 8 (l.6) 

(l. 7) 

The introduction of interaction between the spins is not in contradiction with the assumption 
that t:,.0 goes to zero for 1-1"--70. 

The considerations above were mainly intended to provide a reasonable excuse to introduce 
an internal field by means of those terms in (kT)- l which arise from the dipole-dipole interaction. 
These terms can be classified in two groups, classical and quantum mechanical. The quantum 
mechanical terms are the result of the noncom muting of the operators. For zero external 
field they occur only if there is a crystalline field splitting. It is the main purpose of this work to 
calculate these quantum mechanical effects in the internal field . The method followed is straight­
forward. The effects should be observable in the " intermediate" temperature region, that is, 
the high temperature expansion should hold far enough down, but not too close to the Curie 
temperature of the dipole-dipole interaction [3] . 

2 . Opera tor Expansion 

We will separate the Hamiltonian into two parts: the first part, [J{ i= a/kT, contains the 
diagonal terms; the spin Hamiltonian in the crystalline and the external field; the second part, 
[J{ 2= b/kT is the dipole-dipole interaction. It has no diagonal terms. 

The expansion of the exponential needed for the evaluation of the partition function is 

00 

e-(aH)=e-a+ 2.::: (- l)ne- aS /! . 
n= l 
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As i well-known [compare 4] Sn contains the b-operator n times. If one actually wants to 
have concrete values for Sn one h as to perform another expansion , this time with respect to 
a. The pract ical question is how far do we calculate this double power series. The term 
e-a . b co ntain ed in SI is a product of a purely diagonal term and a purely nondiagonal term. 
H ence th e trace is zero [5], which means that the average value of the fi eld created by tbe 
dipole-dipole interaction at a certaiu poin t is zero . The field has, however, a m ean sq uare 
value, and the first term in S2 is the major co n tribution to its value. This is a purely" cla ical" 
term in the sense that it is also nonzero for commuLing operators. All flrst Lerm s in Sn are 
classical, but since we assume that the dipole-dipole in teraction is sm all comp ared Lo the 
thermal energy of the system the description on the basis of the fir st term in S2 will be suIftcicn t 
for the classical part as long as there is no eviden ce of an approaching coopern,tive phenomenon. 
Another argument for dropping the next terms is to notice that the r ange or the dipole-dipole 
in teraction squared is 1'- 6, and all higher classical terms with even n-value will give rise to weak 
in teractions of extremely short rn,nge unless the temperature is so low Lhat a sLrong correlation 
between the spins occurs. 

The expressions for SI and S2 are given by 

(2.2) 

a nd expanding b (8) : 
(2.3) 

The result of the inLegraLion is 

e-<aH)=e-a { 1-S1 + S 2} =e-a( I- b+ ! [a, bl+ Ha[a, b ] l+ ~ b 2 

+ i b[a, bl+ 21;rb[a,[a, b]] +-Ha, b l b + ~[a, W + Ha[cL, b]] b. (2.4) 

None of t he terms of SI co ntr ibu te Lo Lhe tm cc sill ce they 11,rc the produ ct of a number of 
diagonal matrices a nd one nondiago nn.l m at rix. 

The terms of S2 up to the sccond ordcr in b 1U'C 

It is shown in the app . 2 that Lhe only co nLribu tion Lo Lhe wcighted trace is 

Lr {e-a (! b2+t [b[a, blJ) }. 

3 . Calculation of the Double Commutator 

In order to calculate the double commutator we in troduce the following notation 

Where the position indices are written as superscripts and th e m atrix 8 is given by: 

011 = g2(32(y2+ z2-2x2)/r5; 

0 22= g"f3 2(X2+ Z2 - 2y") / r5; 

0 33 = g2(32(X2+ y2_ 2z2) /1'5; 

leaving out all superscripLs. 

0 23= 0 32 = g2(32yz 

013= 0 31= g2(32xz 

Sin ce th e leading part of the H amiltonian is of the form (a , b, and c ar e constants) 

8{1= ~ as;+bSz+ c 
positions 
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(3.1) 

(3.1a) 

(3.2) 



we have to calculate the commutators e n and double commutators Dn: 

(3.3) 

where all spins are at the same location. In order to avoid confusion with the superscripts, 
which have been omitted, the powers are placed outside parentheses. Table 1 shows that 
there are four nonzero values of D 1• However two have zero's in the diagonal, hence if multi­
plied by the (diagonal) weight factor only a=(3= x or y will give a contribution. The same 
holds for D 2 • The trace of the two elements of e is li}m. The trace of the two elements of 
D is - j j} [3m2-S(S+ 1)]. This has to be inserted in the multiple sum over all positions 
containing two 0's and multipled by the weight factor exp ([J{ l/kT). 

Since both Hamiltonians are series over all positions and since all commutators with 
respect to two different positions are zero we have to figure out in which ways these two 
summations can "overlap" . The first commutator gives (k~l): 

(3 .4) 

The summation over m contains only two terms m= k and m= l. These terms are equal 
since the matrix 0 is symmetric in both the upper and lower indices and sincek~l the operators 
commute. 

(3.5) 

The double commutator introduces a sum over four positions, say k, l(k~l ) and i, j(i~j). 
There are six different terms (table 2). The first four give all the same contribution because 
of the symmetry of 0 mentioned above, and so do the last two. Writing for short 

f (S,:) =a(S~n)2+ b (S.) 

we have 

[[ [J{ 2, [[J{ 2, 8{ dl= 2: (82: { [S~, [S~" J(S~) ]l0~~0~l'p'SbS~, 
ap jl: l 

01' P' all different 

+[S~, S~,]0~j~0~l'Il'[S~" f (SD]Sb } +42: { S~,[S~J(Sk) ]0~~0~1'1l'[S~"S~] 
k,e l 

TABLE 2 

TABLE 1 

D t/(ih)2 

x y 
--- ---- -

j j j j 
0---0 0 

/0 
1 4 

0/ 0 0 0 
k I k I 

x -8, 0 j j i 

Y 0 -8, 0 

8. 8 y 0 

D ,j(ih)2 

P=x y Z 

0---1 °xO I 2 5 

I 
0---0 0---0 
k I k I 

a=X 2 ( 8~-8~) -(8,8,+8,8,) 0 

Y (8,8,+8, 8.) 2(8;-8~) 0 

z - (8,8,+8,8,) (8,8y+8y 8,) 0 

j j j j 

o~o 
r 

1 
3 I 6 

I 0 - --0 0 - --0 
k I k I 

ll6 



~ 
I 

using for the second set of terms the followin g conlllluttLtor identity: 

[AB , CD] = A C[BD] + [AC]BD - [ACHBD] 
if only 

[AC ] ~ o a nd [BD] ~ o 

a nd all other commutators are ze1'o . Only the d iagonal part of t his double commuta tor 
contributes to t he partition SUIll , a nd as a r esul t of this th e summation over a, (3, a' and (3' 
has a number of restrictions: 

First term: a = a' = x or y; (3 = (3' =z. 
Second term is always zero sin ce [SIl, } (S 2) ] has no diagonal elem en ts for every (3'. 
Third term: a, a ' = x or y , and (3, (3' = x, y or y , x. 
Fourth term: a = a' = X or y and (3', (3 =z. In case it is x, y it will b e canceled by the 

diagonal contribution from y, x. 
Fifth term: a = a' = X or y and (3', (3 = x, y or y, x . 

The d iagonal parts of the spin operators to t he second power are : 

(S ;) D= (S D D= ![S(S + 1) - S ;] 

(SxSY)D = - (SySX)D=r~~z 

and usin g table 1 we find (combining the first a nd fourth term) : 

r 
[[f{ 2, [[f{ 2, [f{ d]DI Ilg. = 8 t;1 (ih)2 t § [3(S;)2- (Sk)2J(8~te~;- e~te~D S~S~ 

kr'l 

The last Lerm is cill culated wi th the help of 

[S ±, S ;] S "'= (=F 2hSz+ h2)S ±S '" + h2 (S2 -3S;) ± /i,3 S z =F 2hSz( S 2-S;). (3 .8) 

The sum.rnation over a, (3, a', (3 ' contain s 8 term s. I t Lurns ou t, however , that 4 ca ll ccilllutu­
ally: if a ftnd (3 ar e eq ual (bo th x or both y) th e subscripts a'(3' are eiLher x a nd y or y a nd x. 
Both have the sam e coefficien t e~;e~\, but Lhe commu tators have the opposiLe s ign. The 
fact that these cancel could have been seen on the following; gener al grounds . A commu Lator 
is anti-Hermitian and a double commutator is H ermitian. H ence Lhe last factor has imagin ary 
diagonal elements and the total expression has r eal diago n ~cl clem en ts, a nd the fu·st factor must 
have an imagin ary diagonal p art: 

[Sy, } (SY]Sx=-[Sx, } (S z)] S y 

=~ ([S+, }(Sz) ]S--[S - , }(Sz)]S+ 

=-~ [a {2hSz(S 2_ SD - IPS z } + bh(S2 - S ;)]. (3 .9) 

The final result for the last term is : 

(3.10) 

In order to obtain a value for the p artition funct ions t he tr ace has to b e calculated nu­
m erically sin ce the sums of the type 

(p = O, 1, 2, 3) (3.11) 

canno t be evaluated in closed form. 
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4. Conclusion 

The complication of the calculation lies mainly in the fact that the commutator of two 
spin operators is not a c-number but again an operator. This makes many tricks used to 
evaluate exponential operators useless . For instance, one could have written the original 
total Hamiltonian with step up and step down operators S+ and S-. The expansion of the 
exponential would have created a polynomial containing S+, S- and S z to certain powers. 
A general conclusion is that only those terms which contain an equal number of S+ and S­
at the same location will have a nonzero diagonal element. To calculate the actual value, 
however, one has to shift the S+ and S - operator such that they are all at the end or the be­
ginning of the monomial and in conjunction to each other. This rearrangement of operations 
is accomplished with the help of Wick's theorem if we deal with creation and annihilation 
operations. It is still possible to formulate a Wick-like theorem for spin one-half. This 
was done by Kenan [6]. It introduces an additional numerical factor into each diagram. 
For spin not equal to one-half, his treatment fails . The crucial point is that only for spin 
one-half is (Sz) 2 a c-number. Otherwise S z is an operator and hence can not be taken outside 
the trace and the contraction operator cannot be defined. These considerations indicate 
that i t seems unavoidable to calculate the trace straightforwardly. Actually the straight­
forward calculation consists of doing the same steps as in the 'iVick-theorem. 

Finally, the summation of the positions has to be performed. It is possible to restrict this 
to the immediate env ironment since the radial dependence decreases very rapidly. 
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6. Appendix 1 

"Ve want to investigate under what conditions C.~£= OlI= O for arbitrary El. To calculate 
the specific heat at constant H we find from the :Maxwell relation oS/oFl= oJ1/0 T 

the second term at the right-hand side of (11) is 

an d the condition OM= OlI=O gives 

O = 0 + T(01v['\2j oM 
1>1 1I aT} oEl 

T ( II 02}'1 dEl= T(oM)2j oM 
Jo OT2 aT oEl 

llS 



which leads to t he differen tial equ ation 

whi ch is fu lfilled by 

where j is an arbitrary fun ction Hnd Cl and C2 t wo constants. The initifLl co ndi tion fo rces 
us to take Cl = O . For kT larger th an the crystal field spli tting this condi tion is fulfilled . 

7. Appendix 2 

From the sum and differ ence 

bra, b]-[a, b]b= [b, [a, b]j 

we find 

H ence the r elevant terms in (2 .5) are 

Since a is di agonal we have 

t 1". [ (f(a)ab2) } = tr. { (1(a) b2a) } , 

hCll ce the con tr ibuLioll Lo Llw tr ace is 

tr. {J(aH[b[a, b]J} . 
(Pa pcr 68Al -259) 
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