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In this paper the gamma family of probability distributions is studied in connection

with the distribution of hourly median received power or transmission loss.

By taking a

mixture of Rayleigh distributions with gamma distributions as mixing distributions the

long-term distributions of instantaneous signal power are theoretically derived.
distributions are evaluated in closed form under several hypotheses.

estimating the parameters is discussed.
application of the theory to the data.

1. Introduction

When incoherent scatter is the dominant mode of
radio wave propagation, as is the case with VHE and
UHF tropospheric transmission, the distribution
functions of samples of instantaneous or hourly
median received power show a great deal of vari-
ability. Some of the variability, ascribable to some
obvious physical parameters such as the diurnal
and seasonal variation and the angle of transmission,
may be separated out from the data. However,
due to the sheer complexity of the physical mecha-
nism involved, most of the variability in the data
could only be studied statistically. Since on certain
statistical hypotheses the sum of a great many
random variables is normally distributed, 1t has
been assumed that the short-term distribution of
instantaneous received power, z, is Rayleigh distrib-
uted. In statistical literature the Rayleigh distribu-
tion is more familiar under the name of exponential
distribution or x* distribution with 2 deg freedom.
The Rayleigh distribution, however, does give a
good fit neither to the long-term distribution of
instantaneous power, z, nor to the distribution of
short-term (say hourly) mean or median power, ¢,
of the received signal. In previous work on this
subject it has been tentatively assumed that ¢ is
lognormally distributed.

In this paper we consider an alternate family of
distributions to lognormal, i.e., the two parameter
gamma family. The arguments in favor of choosing
this particular family are the following. First,
among the various distributions which could be
defined on the positive real line (0, ©) the gamma
family is a natural extension of the Rayleigh distri-
bution. Second, the generalized Laguerre poly-
nomials associated with the function ¢ 7z« form a
complete orthogonal basis for the space of functions
which are integrable over (0, ). Hence, choosing
an appropriate gamma probability density function
will give a zeroth order approximation to the prob-
ability density function of any positive random
variable, such as the power or amplitude of a vector.

1 Boulder Laboratories, National Bureau of Standards, Boulder, Colo.

These
The question of

Graphs and tables are prepared to facilitate the

If further approximations are desired, they could be
easily obtained in terms of partial sums of the La-
cuerre polynomial expansion. Third, if we assume
that z=»xN¢°, N >0, B0, is a gamma variate, we
obtain a family of distributions which has great
flexibility to meet the demands of the variously
shaped empirical distributions of ¢. Fourth, the
assumption that ¢ or 1/¢ is a gamma variate leads to
the distribution of z which can be evaluated in closed
form, whereas the lognormal assumption for ¢
(hence for 1/¢ as well) leads to an integral which re-
mains intractable. Lastly, of course, the final
criterion between several hypotheses is a “goodness
of fit” test to the actual data. A comparison of the
general shapes of the theoretical distributions with
those of the empirical distributions sugeests that in
the majority of cases the gamma family may give a
better fit to the data than the loenormal. However,
the lognormal family cannot be completely ruled
out. Thus, at present, it seems desirable to keep the
statistical approach flexible enough to include both
these families in the analysis of scatter propagation
data.

2. Distribution of Hourly Median Received
Power

In NBS Technical Note Number 43 entitled, “A
survey of VHF and UHFE tropospheric transmission
loss data and their long-term variability,” William-
son et al. [1960] present empirical distributions of
hourly median basic transmission loss for 135 beyond-
line-of-sight radio paths in the United States.
Transmission loss is defined as the ratio of total
radiated power to resulting signal power available
from the receiver. All data are reported in terms of
basic transmission loss, defined as the transmission
loss expected between isotropic antennas, and ex-
pressed in decibels.  The empirical distribution func-
tion is plotted on the normal probability paper as it
is tentatively assumed that the hourly median
transmission loss will be lognormally distributed. A
survey of the graphs indicates, however, that most of
them are not straight lines. Broadly speaking, the
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Fraure 1. ¢(x) versus x for selected values of N and o.

In each case mean of z=1.

graphs tend to fall in the following three categories:

Category 1.
Category 2.
Category 3.

Straight lines.
Convex curves.
Concave curves.

Again, generally speaking, it seems that convex
curves are more numerous than straight lines or
concave curves, although the proportion of the latter
mentioned curves is significant. A very few ex-
ceptional curves have inflexion points, and, for the
present, we will ignore them. To give more precise
meanings to this discussion, we introduce the follow-
ing notation:

g=hourly median received power,

go=long-term median of g,

Q=10 logy (¢/qe),
Gy)=Pr(gzy), Gi(y) =Lr@=y).

Now if @ is normally distributed so is B@-+v, where
B#0 and y are arbitrary real numbers. This is to
say that if ¢ is lognormally distributed so is A¢?,
where A >0, and 850 are arbitrary. In particular,
since 1/q is proportional to the transmission loss,
setting B=—1, we have that the hourly median
transmissicn loss is lognormally distributed if ¢ is.
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Let

p=1/q, P=—@Q, G:(y)=Pr(P>y),
then

Go(y) =Pr(Q< —y)=1—G(—y).

Thus if the graph of G;(y) on the normal probability
paper is a straight line so is the graph of G:(y). On
the other hand, if the graph of G,(y) on this paper is
a convex curve the graph of G,(y) will be concave
and vice versa.

Let z=X¢?, x>0, 8#0. In this paper we propose
the family of gamma distributions specified, for
each o >—1, by the probability density function

x%e~ "

o} (ﬁ) :I‘(a—m,

<z,

for the random variable z. In figures 2, 3, and 4

B,(2)— [ " ity

is plotted on the normal probability paper against
y=108(log ¢—logo qo), where gois the median of the
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3. 100®(x) versus y=108(og q—log qo) for a=0),
where x=\qf and qy=median of (.

distribution of ¢, for selected values of « and 8.
From the shapes of these graphs it isreasonable to
conclude that distributions chosen from this family
woulél cive satisfactory fits to the curves of categories
2 and 3.

3. Estimation of Parameters

In this paper we will confine our attention only
to the case when =1 or —1. We will therefore
assume that either ¢ or p is a gamma variate with
probability density function

ae—)\l

XU(+I
¢($):F(T+1—)1 ,  A>0,a>—1,0<e< . (3.1)
Note the change in notation for ¢(z). Now we have
included X\ explicitly in the expression for ¢(z). In
ficure 1, ¢(z) is plotted on arithmetic scale for
selected values of a and \.

Let ;, . . ., zy be a random sample from ¢(z).
The question of how to obtain such a sample in
practice where, in general, successive observations
are correlated is deferred to section 5. To solve the
mathematical problem of estimation we may proceed
in several ways. The most efficient method, as fully
discussed by Fisher [1922] and recently studied by
Greenwood and Durand [1960], is the method of
maximum likelihood. We will outline this method
briefly. Let A be the arithmetic mean and G the
geometric mean of @, . . ., xy, l.e.,

=N D GNPV 3.2)
The natural logarithm, L, of the likelihood function
(the joint probability density of z;, . . ., 2y con-
sidered as a function of the parameters « and \)
is given by

L(a, N)=21n ¢(x;,)=N[(a+1) In \—In I'(a+1)
+aln G—2A], (&5

which shows that (A, &) are jointly sufficient for
(a, N). Differentiating (3.3) with respect to a and \
and equating the resulting expressions to zero, we
must have « and A as the solutions of the equations

(a+1)/A=A, Y(a+1)—In A\=In G,

where ¢(z) =1"(z)/T'(2) is a tabulated function [Davis
1933]. Taking the logarithm of the first equation
and subtracting the second, we obtain the pair of
equations

A=(a+1)/A4, In (a+1)—¢(at+1)=In (4/G). (3.4)
In table 1 we present an abstract of table 1a from
Greenwood and Durand.

To use this table, write p=a+1, n=In p—y¢(p),
and y=In A—In G. We then see that (3.4) can be
written

=Y
-
)\—A (3.5)
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TABLE 1.

n np n ne n ne n np

.00 .50000

.01 166 . 36 . 55235 .71 .59049 1.06 .62019
.02 331 .37 359 .72 144 1.07 094
.03 495 . 38 482 .73 238 1.08 169
.04 658 .39 605 .74 332 1.09 244
. 05 819 .40 726 .15 425 1.10 318
.06 979 .41 846 .76 517 1.11 392
.07 .51139 .42 965 .17 609 1.12 465
.08 297 .43 . 56084 .78 700 1.13 538
.09 453 .44 201 .19 790 1.14 610
.10 609 . 45 318 . 80 880 1.15 682
L1 763 . 46 433 .81 969 1.16 754
.12 916 .47 548 .82 .60057 1.17 825
.13 .52068 .48 662 .83 145 1.18 896
.14 219 .49 774 . 84 233 1.19 966
.15 368 .50 886 . 85 319 1.20  .63036
.16 516 .51 997 . 86 406 1.21 106
.17 663 .52 . 57107 . 87 491 1.22 175
.18 809 .53 217 .88 576 1.23 244
.19 954 .54 325 . 89 661 1.24 313
.20 .53097 .55 433 .90 745 1. 25 381
.21 239 .56 540 . 91 828 1.26 448
.22 380 .57 646 .92 911 1.27 516
.23 520 .58 751 .93 994 1.28 583
.24 659 ...59 855 .94 .61075 1.29 649
.25 796 .60 959 .95 157 1. 30 716
.26 932 .61 . 58062 . 96 237 1.31 781
.27 .54068 .62 164 .97 318 1. 32 847
.28 202 .63 265 .98 398 1.33 912
.29 335 .64 365 .99 477 1. 34 977
.30 466 .65 465 1. 00 556 1.35 .64041
.31 597 .66 564 1. 01 634 1. 36 106
.32 727 .67 663 1. 02 712 1..37 169
.33 855 .68 760 1. 03 789 1. 38 233
.34 983 .69 857 1. 04 866 1.39- 296
.35 .55109 .70 954 1. 05 943 1. 40 359

Reprinted with the permission of Dr.

From the sample we evaluate y=In A—In @, and
from the table we read or interpolate np. Dividing
the value of no(=yp) by y we thus obtain the maxi-
mum likelihood estimate of p=a-+1, then from the
second equation in (3.5) the estimate of . We

. . A
shall write these estimates as p=a+1, and X\,

. . " A
respectively. The large sample variances of X\ and
A o
a are [Fisher 1922]

A 2

var \&2—
_‘\

var a~— N |:¢ (14a)— —f—

] (3.6)

J. Stuart Hunter,

Editor of "Technometrics'!

where ' (z) =dy(x)/dx. The function ¢'(z) is tab-
ulated in Davis (1935). An abstract of this table is
presented in table 2. If « is also large

var OZNF< 3—i— >

To decide whether ¢ or p=1/q is to be assumed a
gamma var 1ate in a owen situation we calculate the
maximized likelihoods with z=¢ and p. Let I,

A
and L, be the values of L(a, \) corresponding to
rz=q and z=p respectively. If L, >, we decide
that ¢ is a gamma variate; otherwise that p is.
Ordinarily a graphical criterion will suffice. For
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TABLE 2.

x Y (x) ¥ (x) x Y (x) Y (x)
0.1 -10. 42375 101. 43330 1.1 -0.42375 1.43330
0.2 - 5.28904 26.26738 1.2 -0.28904 1.26738
0.3 - 3.50252 12.24536 1.3 -0.16919 1.13425
0.4 - 2.56138 7.27536 1.4 -0.06138 1.02536
0.5 - 1. 96351 4.93480 1.5 0.03649 0.93480
0.6 -1. 54062 -3.63621 1.6 0.12605 0.85843
0.7 -1.22002 2.83405 1.7 0.20855 0.79323
0.8 -0. 96501 2.29947 1.8 0.28499 0.73697
0.9 -0.75493 1. 92254 1.9 0.35618 0.68797
1.0 -0.57722 1. 64493 2.0 0.42278 0.64493

Reproduced with the permission of Principia Press of Trinity University,
San Antonio, Texas, Publishers.

example, we may proceed in the following manner.
Let F*(z) denote the proportion of values of @
exceeding z. Plot F*(x) versus z on a normal prob-
ability paper with values of 2 on the vertical axis
increasing upward and values of F*(z) on the hori-
zontal axis increasing from left to right. If the
graph is concave (convex) toward the axes then ¢(p)
will be considered a gamma variate.

A quick but ineflicient way of estimating « and X\
is to equate the first two moments (or logarithmic
moments, in case the data are recorded in decibels)
to the corresponding moments (or logarithmic
moments) of (3.1).

The theoretical mean and variance of ¢(x) are,
respectively

a<'r1 Ol+]
m= >\- =) *77\;
so that
2
x:% :_’LD’_]. (3.7)

The sample estimates of m and » can then be used in
these equations to estimate N and «. 1f the value of
a is small, say less than 5, this method, as shown by
Fisher (1922), is extremely inefficient; hence almost
always the estimation should be carried out by the
method of maximum likelihood rather than by the
method of moments.

Since power is usually measured in decibels, it is
convenient to make rough estimates of « and X\
directly from such measurements. In particular if
it is assumed that # has a gamma distribution, and
the mean and variance of the random variable

£=10 log 2

are ¢ and o, then we have the relations
o¢=(10 logy &)*¥'(1+a),

£=(10 log &) [¥(1+a) —log. N,

where ¢(z) and ¢/ (x) are defined earlier. 'The proce-
dure for estimating parameters is a simple one:

1. Solve for a from the equation involving o7.

2. Solve for N\, with the known «, from the equa-

tion involving &.
Concerning the efficiency of this estimation proce-
dure, the same general remarks apply here as to the
estimation procedure based on the moments of z.

(3.8)
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3.1. An Example

In the following table we present 902 values of the
hourly median power, expressed in decibels, received
over the NBS path No. 55 from Detroit, Mich., to
Hudson, Ohio: (@ =10 logy, ¢, f=frequency of occur-
rence). The data correspond to the months of May
through October 1950, to the time-period 6 pm to
midnight, and to the frequency of transmission
93.6 Mc/s. The decibel values are rounded to the
nearest integer.

TaBLE A.

Q f Q f Q f Q f
1 0 1153 67 25 15 37 3
2 26 14 38 26 13 38 2
3 5; 15 24 27 7 89, 6
4 8 16 58 28 17 40 2
5 &) 17 33 29 5 41 1
6 22 18 54 30 12 42 3
7 27 i) 38 31 2 43 1
8 36 20 41 32 10 44 1
9 27 21! 25 33 4 45 2
10 46 22 34 34 6 46 0
11 68 23 20 55 5 47 0
12 48 24 21 36 2 48 1

Let I'* () denote the proportion of values of
exceeding . Then
. J .
F*(j40.5)=1=3"f/N, j=1,2,...,48,
k=1

where f;. is the frequency of the value Q=/%. We note
that the argument of /* is to be taken j+4-0.5 rather
than 7, as the integral value 7 of @ in the table is
actually the midpoint of the half-open interval
(7—0.5,740.5). A visual check of the graph of #*(z)
on the normal probability paper indicated that p=1/¢
rather than ¢ should be assumed to be a gamma
variate. A test based on the likelihood ratio seemed
unnecessary. To estimate a and X by the method of
maximum likelihood we calculate the arithmetic
mean, A,, and the geometric mean, @,, of p. These
are
A,=0.07565, G,=0.02118.

Thus n=In 4,—In ¢,=1.2729, and interpolation in
table 1 gives np=0.6354. Finally, p=&+1~0.50, \
=p/A,~6.6. From (3.6), with Xand areplaced by X

A . 0 &
and a, the estimates of the variance of X and & are
calculated to be

Estimate of var igo.()24,
Estimate of var a~0.00012.

For the best fitting lognormal distribution for ¢,
i.e., for the best fitting normal distribution for @, we
calculate the maximum likelihood estimates of the
mean and variance of ) to be

-3 ny 2fQ* =2
g= 167, =3¢ G _1235
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Ficure 5. The empirical distribution function of q, together
with the best fitting gamma distribution for 1/q and the best
fitting lognormal distribution for q, for the data wn section 3.1.

respectively. The graphs of F* (x), and the best fit-
ting gamma and lognormal distributions are given
in figure 5.

To see whether the gamma distribution for p gives
a better fit to the data than the lognormal for ¢, we
calculate the maximized likelihoods in both cases.
The logarithm (on base 10) of the maximized likeli-
hood under the hypothesis of gamma distribution for
p is +703, while that under the lognormal distribu-
tion for ¢ 1s —1398. Thus, in the present situation,
the hypothesis that p is a gamma variate is decidedly
preferred over the other alternative.

4. Long-Term Distribution of
Instantaneous Power

When incoherent scatter is the dominant mode of
radio wave propagation, it has been observed that
over short periods of time the instantaneous received
power, z, is Rayleich distributed. If the mean
power over this period be denoted by ¢, the prob-
ability density function of z is given by

f(Z|Q>:q_]e_2/q) 220, ¢>0. (4.1)
This can also be written, with p=1/q, as
fl(zlp) =pe~ "%, 220; P>O (42)

If it is assumed that ¢ itself has the probability
density function #h(g), the (long-term) probability
density function of z will be given by

f(z):f Feloh@dg.

If now ¢ or p is assumed to have a gamma proba-
bility density function ¢(x) given in (3.1), we have
in the one case
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o= sClos@dg

and in the other

Fi(2)= f " e lpe(p)dp.

We will first consider the case when p is a gamma
variate.

Situation 1.

If p has the probability density function
¢(x), then

XQ+1

fl(Z) :m ﬁ)m e—p()\-i-z)pm+1d77

=(at 1At (A 2) "2,

The tail probability, i.e., the probability that the
power exceeds a given level z,

Fi(z)= f wfl(x)dx=<1+§>"“.

For large z/A this behaves like

Fi(2) ~(Mz)=H,

(4.3)

and for small 2/,
Fi(2) =1—(a+1)(2/N) +0[(2/7)?],

where O(x) signifies a quantity of the order of mag-
nitude of . The rth moment of the distribution of
z 1s nonexistent if «<r—1. In particular, if
—1<a<0, no moment (except the zeroth moment
which is always equal to unity) exists. If a+1>7,

r— atr [ rmamigy— QT DN
E(z4N)"=(a+1r ﬁ (nyotde—r 2ELA
Thus, if a>>1, the mean and variance of z are

- (a+ 1))\2.

 o*(a—1) (&2

A
Ez=> var z
(84

Let 0<p<1.

The 1008 percentile, z5, of Fi(z) is
given by

z,g:[<%>ﬁ—l] A (4.5)

In particular, the median

1
Zo‘ 5:[2a+1_1] )\

In figure 6, #,(2) is plotted on the normal probability
p?per against y=10 log,, (z/z05), for selected values
ol a.

Situation 2. 1f g has the probability density func-
tion ¢(x), then
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Ficure 6.

o xa‘f‘l o o ) : /
f(a)~1,—<mﬁ q " exp (—Ng—z/q)dq.

A change of variate ¢= (z/\)!¢? converts this into

SN\)e/2 -
7[(3):1% exp (af—2+/ 2\ cosh 0)do
gl‘i(%:)l) cosh af exp |[(—2+/2\ cosh 6)df.
JO

Using the Bessel function formula

K.(z)= fw cosh af exp (—ax cosh 0)d0,
JO
we have
2\ (2N)
I'(at1)

The tail probability, i.e., the probability that the
power exceeds a given level z,

(4.6)

1(2)= K (2+/2)).

Flo)= f " @)z,

is found by the same methods to be

atl
2(2) 2

N
m Ka+1(2x 4)\)

F(z)= (4.7)

For large z\ this behaves like
F(z)~

and 1is seen to fall off rather slowly when 2\ is of the
order of unity. For small z\, when a is not an
integer,

40 T T T 1 T T T
30

20—

T

> _Io._ —
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[610) [F ——=>
Fraure 7. 100F(z) versus y=10(log z—log 7y.5), %.s=median
of z.
I'(—«) ZN
F(z N te—"—+40(2N
(‘) F( +t)) ( ) . + ( ))

where O(z) signifies a quantity which tends to zero
more rapidly than z when z tends to zero. The
moments of the (lHlnl)ullon of z are easily evaluated
to be, for r=0, 1,2, . .

= f 2"f
J O

In table 3 we give values of F(z) as a function of
the dimensionless variable z=2+/z\ for a=—0.9(0.1)
1.0, x=0(0.1)5.0 and for a=—0.9(0.1)0.0 with
£=0(0.01).1. There may be a roundofl error of one
in the last place. For values of a exceeding 1.0 we
may use the recurrence formula for A, (z):

riT(a+r+1) 1

T(a+l) N i)

(2)dz=

m—H(I) Hln IX,,,(.I') +Km 1('1)

If we denote by F.(z) the tail probability as a func-
tion of z and «a, 1.e.,

Fa(x)=

G-H(x)y

2“1‘( +1)

then the use of the relations between K’s leads to

Foor(z).  (4.9)

a+1<1') F (J‘)+4 ( —|—l)

In figure 7 F(z) is plotted on the normal probability

paper against =10 log, a/,OJ) where z,; is the
median of the distribution of z

5. Discussion

To keep the mathematical reasoning uncluttered
with nonmathematical considerations we have glided
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TABLE 3.

x a= -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0
0. 01 0. 6107 0.8477 0.9398 0.9758 0. 9900 0.9958 0.9981 0. 9991 09995 O, 99
002 085529 0.7991 0.9089 0.9580 0. 9802 0.9904 (), SF9sil 0.9974 Y9085 0. 9991
0.03 5152 0.7639 0.8839 0. 9421 0.9704 0.9845 0, SEEIG) 0.9952 0.9971 0. 9981
0. 04 0.4866 0.7352 0.8622 0.9272 0. 9608 0.9783 0.9876 0.9926 0.9953 0. 9969
0. 05 0.4633 0.7107 0.8427 0.9133 0. 9512 0.9719 0.9833 0. 9896 0.9933 0289955
0. 06 0. 4435 0.6890 0.8247 0.8999 0. 9418 0.9653 0.9787 0. 9865 0. 9910 0.9938
0. 07 0. 4262 0.6695 0.8081 0. 8871 0.9324 0.9586 0.9739 0.9830 0.9885 0. 9920
0. 08 0.4109 0.6516 0.7924 0.8747 0.9231 0.9518, 0.9690 0.9794 0.9859 0. 9899
0.09 0.3970 0.6351 0.7775 0.8627 0. 9139 0.9449 0.9638 0.9756 0.9830 0.9877
0.1 0.3844 0.6198 0.7634 0. 8511 0. 9048 0.9380 0.9586 0. 9716 '0.9799 0. 9854
0.2 052959 05035 0.6482 0.7488 0. 8187 0.8675 0. 9016 0.925% 0.9429 0. 9552
0.3 0.2407 0.4234 O.5§09 0.6639 0.7408 0.7983 0.8414 0.8737 0.8982 0. 9168
0.4 0.2009 0.3621 0.4901 0. 5910 0.6703 0.7325 0.7813 0. 8196 0.8498 0. 8737
0.5 0.1702 053127 0.4307 0.5275 0. 6065 0.6708 (), Tl 0. 7655 0.8000 0. 8282
0.6 0.1457 0.2720 0. 3801 0.4717 0. 5488 0.6134 0.6675 0. 7126 0.7502 0. 7817
0.7 0.1256 (N23i(.8 0. 3365 0.4224 0.4966 0.5603 0.6149 0. 6615 0. 7013 0.7352
0.8 0.1089 0.2086 0.2985 0.3786 0.4493 0.5114 0.5656 0.6128 0.6538 0. 6894
0.9 0.0948 0.1836 0.2654 Do 3397 0. 4066 0.4664 0. 5195 0.5666 0.6082 0. 6449
1.0 0.0829 0.1620 0.2363 0.3050 0. 3679 0.4251 0.4767 0. 5231 0.5647 0. 6019
1.1 0.0726 0.1433 0. 2106 0.2740 0.3329 0.3872 0.4370 0. 4823 052135 0. 5607
1.2 0.0638 0.1269 0.1880 0.2462 0. 3012 0.3526 0.4002 0. 4442 0.4846 0, 52115
1.3 0. 0562 0.1125 0.1679 0.2214 02725 0.3209 0.3663 0. 4086 0.4480 0. 4843
1.4 0. 0496 0.0999 0.1501 0.1992 0. 2466 0.2920 0. 3350 053756 0.4137 0. 4492
i, 5 0.0438 0.0889 0.1343 0.1792 ), sl 0.2656 0. 3063 0. 3450 0. 3816 0. 4161
1.6 0.0387 0.0791 0.1202 0.1613 0. 2019 0.2415 0.2798 0. 3166 @), ST 0. 3850
1.7 0.0343 0.0705 0.1077 0.1452 0.1827 0.2196 N25155! 0. 2904 0, 3239 0, 3559
1.8 0.0304 0.0628 0.0965 0.1308 0.1653 0.1996 0. 2333 0. 2661 0.2980 0. 3287
1.9 0.0270 0.0560 0.0865 0.1178 0. 1496 0.1814 0. 2128 0. 2438 0.2740 0. 3034

TABLE 3a.

X -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0
2190 0.0240 0.0500 0.0776 0.1061 0.1353 0.1648 0.1942 0.2232 0.2518 0. 2797
2R 0.0213 0.0447 0.0696 0.0957 ON112725) 0.1497 0.1770 0.2043 0.2313 02578
202 0. 0190 0.0399 0.0625 0. 0862 0.1108 0.1360 0.1614 0.1869 052123 0.2374
o & 0. 0169 0.0357 0.0561 0.0777 0.1003 0.1235 0.1471 0.1709 0.1948 0. 2185
2.4 0. 0151 0.0320 0.0504 0. 0701 0. 0907 0.1121 0.1340 0.1562 0.1786 0. 2009
25 0. 0134 0.0286 0.0453 0. 0632 0. 0821 0.1018 (), 2127201 0.1428 0.1637 0.1847
2.6 0. 0120 0.0256 0.0407 0.0570 0.0743 0.0924 0.1112 0.1304 0.1500 0.1697
2l 0. 0107 0.0229 0. 0366 0. 0514 0.0672 0.0839 0.1012 0.1191 0.1374 0.1559
Z & 0. 0095 0.0205 0.0329 0.0463 0.0608 0.0761 0.0922 0.1088 0.1258 0.1431
2.9 0. 0085 0.0184 00295 0. 0418 0. 0550 0. 0691 0.0839 0.0993 0.1151 0.1313
3.0 0. 0076 0. 0165 0.0266 0.0377 0.0498 0. 0627 0.0763 0.0906 0.1053 0.1205
Sl 0.0068 0.0148 0.0239 0. 0340 0. 0450 0. 0569 0.0695 0.0826 0.0963 0.1105
3.2 0. 0061 0.0133 0.0215 0.0307 0.0408 0. 0516 0.0632 0.0754 0. 0881 0.1013
&y 3 0. 0054 0. 0119 0. 0194 0.0277 0.0369 0. 0468 0.0575 0.0687 0. 0805 0. 0928
3.4 0. 0049 0. 0107 0. 0174 0. 0250 0.0334 0. 0425 0.0523 0.0627 0.0736 0. 0850
3 5 0. 0044 0.0096 (o), Ol 0.0226 0.0302 0. 0385 0.0475 0.0571 0.0672 0.0778
3,6 0.0039 0.0086 0. 0141 0.0204 0.0273 0. 0350 0.0432 0. 0521 0. 0614 0.0713
3.7 0. 0035 0.0077 0.0127 0. 0184 0.0247 0. 0317 0.0393 0.0474 0.0561 0. 0652
2 0.0031 0. 0069 0.0114 0. 0166 0.0224 0.0288 0.0357 0.0432 0. 0512 0. 0597
3.9 0.0028 0.0062 0.0103 0. 0150 0.0202 0. 0261 0.0325 0.0394 0. 0468 0. 0546
4.0 0. 0025 0.0056 0.0093 0. 0135 0.0183 0.0237 0.0295 0.0359 0.0427 0. 0499
4,1 0.0023 0.0050 0.0084 0. 0122 0. 0166 0.0214 0.0268 0.0327 0.0389 0.0457
4,2 0. 0020 0. 0045 0.0075 0. 0110 0. 0150 0. 0195 0.0244 0.0297 0.0355 0. 0417
4,3 0. 0018 0. 0041 0.0068 0. 0099 0. 0136 0. 0176 0.0221 0.0271 0.0324 0. 0381
4,4 0. 0016 0.0037 0.0061 0. 0090 0. 0123 0. 0160 0.0201 0.0246 0.0296 0. 0349
4.5 0. 0015 0.0033 0.0055 0. 0081 0. 0111 0. 0145 0.0183 0.0224 0.0270 0. 0319
4.6 0. 0013 0.0030 0.0050 0.0073 0. 0101 0-0131 0. 0166 0.0204 0. 0246 0. 0291
4.7 0. 0012 0.0027 0.0045 0. 0066 0.0091 0, 0119 0. 0151 0.0186 0.0224 0. 0266
4.8 0. 0011 0.0024 0.0040 0. 0060 0. 0082 0. 0108 0.0137 0.0169 0.0204 0.0243
4.9 0. 0009 0.0022 0.0036 0. 0054 0, 0074 0.0098 0. 0124 0. 0154 0. 0186 0.0222
5, @ 0. 0009 0. 0019 0.0033 0. 0049 0.0067 0.0089 0. 0113 0.0140 0. 0170 0. 0202
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TABLE 3b.

x a= 0,1 (0), 7 0.3 0.4 0, 5 0.6 0.7 0.8 0.9 1.0
0.1 0.9890 (0), Srhs) 089932 0. 9944 (0, Tr)e3) 0.9960 0. 9965 0.9969 0.9973 029975
0.2 0.9642 0.9708 0.9758 0.9796 0. 9825 0.9848 0. 9866 0.9880 0.9893 0.9902
0.3 0. 9311, 0.9421 0.9508 0.9576 0. 9631 0.9675 0. 9711 0.9740 0.9765 0. 9786
0.4 0.8928 0.9080 0.9203 0.9303 0.9384 0. 9452 0.9508 0. 9555 089595 0. 9629
0.5 0. 8513 0.8702 0. 8859 0.8989 0. 9098 0. 9189 0.9267 0.9333 0. 9389 0.9438
0.6 0.8081 0.8302 0. 8489 0. 8647 0. 8781 0. 8896 0.8994 0.9079 0. 9152 0. 9217
0.7 0.7642 0.7889 0. 8102 0.8284 0. 8442 0.8578 0. 8697 0.8800 0. 8891 0.8970
0.8 0.7203 0,7472 0,7706 0. 7910 0. 8088 0. 8244 0. 8381 0.8502 0. 8609 0.8703
0.9 0.6772 0.7057 0,7308 0. 7529 0. 7125 0,7898 0.8052 0. 8189 0. 8311 0.8420
1.0 0, 6351 0.6647 0. 6911 0. 7147 0.7358 0. 7546 0.7714 0.7866 0.8002 0. 8124
1.1 0.5944 0.6247 0. 6521 0.6768 0.6990 0. 7191 0,7372 0.7536 0.7685 0. 7819
1.2 0.5553 0,.5860 0. 6140 0.6395 0. 6626 0,6837 0.7029 0.7204 0.7363 0.7508
1 3 0.5178 0.5487 0.5770 0.6030 0.6268 0.6487 0.6687 0.6871 0.7039 0.7194
1.4 0.4822 0.5129 0. 5413 0.5676 0. 5918 0. 6142 0.6349 0.6540 0.6717 0.6880
1 5 0.4484 0.4787 0.5070 0.5333 0.5578 0. 5806 0,.6018 0. 6214 0.6397 0. 6566
1.6 0. 4165 0.4462 0.4742 0.5004 0. 5249 0. 5479 0.5694 0.5894 0.6081 0.6256
1,7 0. 3865 0.4155 0. 4429 0.4688 0.4932 0. 5162 0.5378 0. 5581 0,5772 0. 5951
1.8 0. 3582 0.3864 0. 4132 0.4387 0. 4628 0.4857 0.5073 0.5277 0.5470 0. 5651
1, %) 0. 3317 0. 3589 0. 3850 0.5000 0. 4337 0.4564 0.4779 0.4983 0. 5176 0. 5359
2.0 0.3069 0.3331 0. 3584 0. 3827 0. 4060 0.4283 0. 4496 0.4698 0.4892 0.5075
Py L 0. 2837 0.3089 0.3333 0.3569 0. 3796 0. 4015 0. 4224 0, 4425 0. 4617 0.4800
2.2 0.2620 0.2862 0, 3097 0.3325 0. 3546 0.3759 0. 3965 0. 4162 0.4352 0.4534
Z2oa 0. 2419 0.2649 0.2875 0.3095 0. 3309 0. 3516 0.3717 0. 3911 0.4098 0.4278
2.4 027231 0.2451 0. 2666 0.2878 0. 3084 0. 3286 0. 3481 0.3671 0. 3854 0.4032
2295 0.2057 0.2265 0.2471 0.2674 0.2873 0. 3068 0. 3257 0. 3442 0. 3622 0.3796
206 0,1895 0.2093 0.2289 0.2483 0. 2674 0, 2861 0. 3045 0. 3225 0. 3400 0. 3570
2.7 0.1745 0,1932 0. 2119 0,.2304 0. 2487 0.2667 0.2844 0.3018 0. 3188 0. 3354
2.8 0.1607 0.1783 0.1960 0. 2136 (o), 2ehl] 0.2484 N2655 0.2822 0.2987 0. 3149
2.9 0.1478 0.1644 0.1812 0.1979 0. 2146 0, 2312 0.2476 0.2637 0.2797 0.2954
23, (0) 0.1359 0. 1516 0.1674 0,1833 0.1991 0. 2150 0.2307 0.2463 0. 2616 0.2768
3.1 0.1249 0.1397 0.1546 0.1696 0.1847 0.1998 0. 2148 0.2298 0. 2446 0. 2592
02 0.1148 0.1286 0, 1427 0,.1569 0.1712 0.1856 0.1999 0. 2142 0.2284 0, 2425

TABLE 3c.

X a= 0.1 (0), 7 0.3 0.4 @, 3 0.6 07 0.8 0.9 1.0
&) 0,1054 0.1184 0. 1316 0.1450 0.1586 0.1722 0.1859 0.1996 0. 2132. 0.2268
3.4 0.0968 0.1089 0.1214 0.1340 0.1468 0.1598 0.1728 0.1856 0.1989 0. 2119
3.5 0.0888 0.1002 0. 1119 0.1238 0.1359 0,1481 0.1605 0.1730 0.1854 0.1979
3.6 0. 0815 0. 0921 0.1031 0.1143 0.1257 0.1373 0.1490 0.1608 0.1727 0,1847
3.7 0.0748 0.0847 0. 0949 0,.1054 0.1162 0.1272 0.1383 0. 1495 0.1608 0,1722
3.8 0, 0686 0.0778 0.0874 0.0973 0.1074 900 i I e 0.1282 0.1389 0.1497 0.1605
3.9 0. 0628 0,.0715 0, 0804 0.0897 0. 0992 0.1089 0.1189 0.1290 0.1392 0.1495
4,0 0. 0576 0.0656 0.0740 0. 0826 0. 0916 0.1008 0.1101 0.1197 0.1294 0.1392
4.1 0. 0528 0.0602 0. 0680 0.0761 0, 0845 0.0931 0.1020 0, 1110 0.1202 0.1295
4,2 0.0483 ON0558 0.0625 0.0701 0.0780 0. 0861 0.0944 0.1029 0. 1116 0.1205
4,3 0. 0443 0, 0507 0,0575 0. 0646 0, 0719 0.0795 0.0874 0, 0954 0.1036 0.1120
4,4 0. 0405 0. 0465 0.0528 0. 0594 0.0663 0.0734 0.0808 0, 0884 0, 0961 0,1041
4.5 -0,0371 0. 0426 0, 0485 0. 0547 0, 0611 0.0678 0.0747 0. 0818 0.0892 0. 0966
4,6 0. 0339 0.0391 0. 0445 0.0503 0, 0563 0. 0625 0.0690 0,0757 0.0826 0. 0897
4.7 0. 0310 0.0358 0.0409 0. 0462 0. 0518 0.0577 0.0638 0,.0701 0.0766 0. 0833
4,8 0. 0284 0.0328 0, 03175 0. 0425 0.0477 0. 0532 0. 0589 0. 0648 0.0709 0.0772
4,9 0. 0260 0. 0301 0. 0344 0,.0391 0. 0439 0. 0490 0, 0544 0.0599 0.0657 0. 0716
5.0 0, 0237 0,0275 0, 0316 0.0359 0. 0404 0. 0452 0.0502 0. 0554 0.0608 0. 0664
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over a few points which need to be discussed more
fully.

First, it may be mentioned that the observations
on z come as a time series. In this paper we have
assumed that the (univariate) distribution function
of z, hence of ¢, is time-invariant. For estimating the
long-term distribution this assumption may be quite
valid. However, if one wishes to study other charac-
teristics of the data on z, such as the presence of
diurnal and seasonal cycles, it would be necessary
to use the methodology of time series analysis. This
was not attempted in this paper.

Second, assuming that the distributions of z and
of ¢ are time-invariant, that the short-term distri-
bution of z is Rayleigh with mean ¢, and that the
distribution of ¢ or 1/q is either lognormal or gamma,
the question still remains: prior to a contemplated
experiment how can we say which distribution will
apply? To answer this question we require con-
siderably more understanding of the physies of scat-
ter propagation, a detailed knowledge of important
physical variables over a transmission path, and an
elaborate investigation of various statistical hypoth-
eses. Thus, at the present state of the art, this
question cannot be answered. However, after the
data are collected, a decision can be made based on
either the likelihood 1atio criterion or on some other
“ooodness-of-fit” test such as x* or Kolmogorov’s
tests.

Third, to insure independence between observa-
tions as required in section 3 for estimating a and A
it is necessary to take values of ¢ sufficiently widely
separated. This again may require a preliminary
investigation of the autocorrelation function of ¢.
In practice, it will not be difficult to decide how far
apart these values are to be taken. We note that,
if the values of ¢ constitute a random sample so will
the values of p.

Fourth, we have not discussed the problem of
estimating « and N\ as the parameters of F(z) or
Fi(z). We have implicitly assumed that N\ and «
will be estimated as the parameters of the gamma
distribution from a sample of values of ¢. In prin-
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ciple, it is preferable to apply the method of maxi-
mum likelihood to the distribution of z itself if the
object is to obtain a distribution of z (rather than
that of ¢). However, in this case, the solution of
likelihood equations seemed to be laborious, hence
we have accepted the estimating procedure as
outlined in section 3.

Lastly, a more flexible approach to the entire
problem is to assume that z=»\¢f, A >0, B0, is a
camma variate. This was briefly mentioned at the
end of section 2. In this case, we will have three
parameters, A, 8, and «, instead of two. The main
difficulty, again, is in the estimation procedure.
We hope to investigate this generalized model in
the future.

We thank Mrs. Mary C. Croarkin, of the NBS
Statistical Engineering Laboratory, for evaluating
the function F'(z), utilizing the 7090 computer of the
NBS Computation Laboratory; Mr. P. L. Rice for
providing the data of section 3.1; Dr. J. S. Hunter,
editor of ‘“Technometrics” for the permission to
reproduce table 1; and the Principia Press of Trinity
University, San Antonio, Tex., for the permission
to reproduce table 2.
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