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In t his pa per the gamm a fa mily of probability dist ribu t ions is st udied in co nn cction 
wit h t he dist ri bution of hourly median received power or transmission loss. By tak in g a 
mixture of R ay leigh di st ri but ions with gamm a distri butions as mixing d ist ribu t ions th e 
long-term distr ibutions of instantaneous sign al power are t heoreticall y deri ved . These 
di st ribu tions arc eva luated in closed fo rm under seve ra l hy potheses . T he qu estio n of 
estim atin g t he parameters is discussed. Graphs a nd tab les arc prepared to facilitate t he 
a ppli cation of t he theory to t he data. 

1. Introduction 

When in co herent scatter is L1le dominant mode of' 
radio wave propagation, as is t he case with VHF a llcl 
UHF troposp heric transmission , t he distribu tion 
functions of' samples of instan taneous or hourly 
median r eceived power show a great deal of vari
ability. Some of' the variab ili ty, asc ribable to sO llle 
obvious physical parameters such as t he diW'nal 
and seasonal vari ation a nd t he angle of transmission, 
may be separated out from tbe data. However , 
due to the sheer complexity of the phys ical mecha
nism involved, most of t he variability in the data 
could only be studied statistically. Since on cer tain 
statisti cal hypotheses the sum or a great many 
random variables is normally distributed, it has 
been assumed t hat tIle short-tenll distr ibution or 
instantaneous received power , z, is Rayleigh distrib
uted. In statistical litera tu re t be Rayleigh distribu
tion is more famili al' under the name of exponen tial 
distribution or X2 distribut ion with 2 deg freedom. 
The Rayleigh distribu tion, however, does give a 
good fit neither to th e long-term d istribution of 
instantaneo us power, z , nor to the distribution of 
short-term (say hOLU'ly ) mean or median power, q, 
of the received signal. In previous work on tbis 
subject it has been tentatively assumed that q is 
lognormally distributed. 

In this paper we consider an alternate family of 
distributions to lognormal, i.e., the two parameter 
gamma family . The argLUnents in favor of choosing 
this particular family are the following. First, 
among the various distributions which could be 
defined on the positive real line (0, 00) the gamma 
family is a natUl'al extension of the R ayleigh distri
bution. Second, the generalized Laguerre poly
nomials associated with the function e- 'xa form fl, 

complete orthogonal basis for t he space of functions 
which ar e in tegrable 0 vel' (0, <Xl) . Bence, choosing 
an appropriate gamma pro bability density function 
will give a zeroth order approximation to the prob
ability density fun ction of any positive random 
variable, such as the power or amplitude of a vector. 

1 Boulder Laboratori.es, Nat ional Bureau of Standards, Boulder, 0010. 

1£ fUl'til er approxima.tions ar e desired , they co uld be 
easily obtained ill terms of parti a l sums of the La
guerre polynomial expansion. Third, if we assum e 
th at x= "Aqf3, "A > O, {3 r!' 0 , is a gam ma variate, we 
obtain a family oC distributions which has great 
fl exibili ty to meet the demands oC the variously 
shaped empirical distribu tions of g. FOUl'th , the 
ass ump tion that q or l /q is a gamm a val'i ttte leads to 
the distribution of Z which can be eva.lu(1,ted in closed 
form, whereas the lognol'lli al assumption for q 
(bence for Ji g aswell) leads to an in tegntl which re
mains intractable. Las tly, of COUl'se, the final 
criterion between several hypotheses is a "goodness 
of fit " test to the actual data. A comparison of the 
gener al shapes of the theoretical distribu tions with 
those oC the empirical distributions suggests that in 
tIl e majority of cases the gamm a fami ly may give a 
better fit to the d~Lta. than the lognormal. However , 
the lognormal family ca nnot be completely ruled 
ou t . Thus, at present, it seems desirable to k eep the 
statistical approach fl exible enough to include both 
these bmilies in the ana lysis of scatter propagation 
data. 

2 . Distribution of Hourly Median Received 
Power 

In NBS Technical Note N umber 43 entitled, "A 
survey of VHF and UHF tropospheric transmission 
loss data and their long-term variabili ty ," l iVilliam
son et al. [1960] present empirical distributions of 
hourly median basic transmission loss for 135 beyond
line-oI-sight radio paths in the United States. 
Transmissio n loss is defmed as the ratio of total 
radiated power to resulting signal power available 
from the receiver. All data rtr e reported in terms of 
basic transmission Loss, defined as the transmission 
loss expected between iso tropic antennas, and ex
pressed in decibeLs. The empir ical distribution func
tion is plotted on the nor mal probability paper as i t 
is tentatively assum ed t hat the homly median 
transmission loss will be log normally distributed. A 
SUl'vey of the gr aphs indica tes, however, that most of 
them ar e not straight lines. Broadly speaking, the 
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FIG UHE 1. q,(x) versus x for selected values of A and a . 

In each case Jnean of x = 1. 

graphs tend to fall in the following three categories: 

Category 1. 
Category 2. 
Category 3. 

Straight lines. 
Convex curves. 
Concave curves. 

Again, generally speaking, it seems that convex 
CUTves are more numerous than straight lines or 
concave curves, although the proportion of the latter 
mentioned cW'ves is significant . A very few ex
ceptional CUTves have inflexion points, and, for the 
present, we will ignore theIn. To give more precise 
meanings to this discussion, we introduce the follow
ing notation: 

q= hourly median received power, 
qo = long-term median of q, 
Q= 10 loglo (q/qo), 

G(y) = Pr(q?:"y), G1(y) = Pr(Q?:..y) . 

N ow if Q is norm.ally distributed so is {3Q+ r , where 
{3 =r£ 0 and 'Yare arbitrary real numbers. This is to 
say that if q is lognormally distributed so is 'Agf' , 
where 'A > O, and {3=r£0 are arbitrary. In particular , 
since l /q is proportional to the transmission loss, 
setting {3 = - 1, we have that the hourly median 
transmission loss is lognormally distributed if q is. 

Let 

p = l /q, P = -Q, G2(y) = Pr(P?:..y) , 

then 

Thus if the graph of G1(y) on the normal probability 
paper is a straight line so is the graph of G2(y). On 
the other hand, if the graph of GJ (y) on this paper is 
a convex CUTve the graph of G2(y) will be concave 
and vice versa. 

Let x= }..qf3, }..> O, (3=r£0. In this paper we propose 
the family of gamma distributions specified, for 
each a>-l, by the probability density function 

for the random variable x. In figures 2, 3, and 4 

is plotted on the normal probability paper against 
y = lO{3(loglo q- log)o qo) , where qo is the median of the 
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FIGURE 2_ 100<P(x) versu s y = 10fJ(log q - log q o) /or <> =- 0.5, 
whel'e x = Aq~, and qo = median oj q. 
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FIGURE 3. 100<l>(x) verSliS y = 10fJ(log q - log qo) for <> = 0, 
where X = Aq~ and qo= median oj q. 
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distribution of q, for selected values of a and (3-
From the shapes of these graphs it is reasonable to 
conclude that distributions chosen from this family 
would give satisfactory fits to the curves of categories 
2 and 3_ 

3. Estimation of Parameters 

In this paper we will confine our attention only 
to the case when (3 = 1 or -1. We will therefore 
assume that either q or p is a gamma variate with 
probability density function 

Aa +l 

cf>(x) = f (a + l)xa e- Ax, 

Note the chano'e in notation for cf>(x). Now we have 
included A explicitly in the expression for cf>(X) , In 
figme 1, cf>(x) is plotted on arithmetic scale for 
selected values of a and A. 

Let Xl, ' . . , XN be a random sample from cf>(X) , 
The question of how to obtain such a sample in 
practice where, in general, successive observations 
are correlated is defened to section 5. To solve the 
mathematical problem of estimation we may proceed 
in several ways. The most efficient method, as fully 
discussed by Fisher [1922J and recently studied by 
Greenwood and Durand [1960], is the method of 
maximum likelihood. We will outline this method 
briefly. Let A be the arithmetic mean and G the 
geometric mean of XI, . . " XN, i.e., 

(3 .2) 

The natmal lo~arithm, L, of the likelihood function 
(the joint prObability density of XI, ... , XN con
sidered as a function of the parameters a and A) 
is given by 

L(a, A) = 1: In cf>(x i) = N[(a+ l) In A- ln f(a + l) 
+ a lnG- AA], (3_3) 

which shows that (A, G) are jointly sufficient for 
(a, A). Differentiating (3.3) with respect to a and "A 
and equating the resulting expressions to zero, we 
must have; and X as the solutions of the equations 

(a+1) /A=A, 1/J(a+ l)-ln A= ln G, 

where 1/J(x) = f' (x) / f( x) is a tabulated function [Davis 
1933]. Taking the logarithm of the first equation 
and subtracting the second, we obtain the pair of 
equations 

"A = (a + l) /A, In (a+ 1)-1/J(a+ 1) = ln (A/G). (3.4) 

In table 1 we present an abstract of table la from 
Greenwood and Durand. 

To use this table, write p= a+ l, 1'/ = ln P- 1/J(p) , 
and y = ln A-In G_ We then see that (3.4) can be 

99 99.9 99.99 Wl'i t ten 

FIGURE 4, 100<t>(x) verSliS y = 10fJ(log q - log qo) for <> = 14, 
where X = Aq~ and qo= median of q. 
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T A B LE 1. 

"lP 

· 00 . 50000 
· 01 166 
· 02 331 
· 03 495 
.04 658 
.05 819 

. 06 979 
· 07 . 51139 
.08 297 
.09 453 
. 10 609 

. 11 763 
· 12 916 
. 13 .52068 

· 14 219 
· 15 368 

· 16 516 
. 17 663 
.18 809 
.19 954 
.20 . 53097 

· 21 239 
.22 380 
. 23 520 

· 24 659 
. 25 796 

· 26 932 
.27 . 54068 
. 28 202 
. 29 335 
.30 466 

· 31 597 
.32 727 
.33 855 
.34 983 
· 35 . 55109 

. 36 

. 37 

.38 

.39 
,40 

.41 

. 42 

. 43 

. 44 

. 45 

.46 

.47 

. 48 

.49 

. 50 

. 51 

.52 

.53 

.54 

. 55 

.56 

.57 

. 58 
, .59 
.60 

.61 

. 62 

.63 -

.6.4 

. 65 

. 66 

.67 

.68 

.69 

.70 

"lP 

. 55235 
359 
482 
605 
726 

846 
965 

.56084 
201 
318 

433 
548 
662 
774 
886 

997 
, 57107 

217 
325 
433 

540 
646 
751 
855 
959 

.58062 
164 
265 
365 
465 

564 
663 
760 
857 
954 

.71 .59049 

.72 144 

.73 238 

.74 332 

.75 425 

· 76 517 
.77 609 
.78 700 
. 79 790 
. 80 880 

· 81 969 
. 82 , 60057 
.83 145 
. 84 233 

· 85 319 

.86 406 
· 87 491 
· 88 576 
· 89 661 
· 90 745 

· 91 828 
· 92 911 
.93 994 
.94 .61075 

· 95 157 

.96' 237 

· 97 318 
.98 398 
. 99 477 

1. 00 556 

1.01 634 
1. 02 712 
1. 03 789 
1.04 86& 
1. 05 943 

1. 06 
1. 07 
1. 08 
1. 09 
1.10 

1.11 
1. 12 
1. 13 
1. 14 
1. 15 

1.16 
1.17 
1.18 
1. 19 
1. 20 

1. 21 
1. 22 
1. 2 3 
1. 24 
1. 25 

1. 26 
1. 27 
1. 28 
1. 29 
1. 30 

1. 31 
1. 32 
1. 33 
1. 34 
1. 35 

1. 36 
1.37 
1. 38 
1. 39 -
1. 40 

.6 2019 
094 
169 
244 
318 

392 
465 
538 
610 
682 

754 
825 
896 
966 

.63036 

106 
175 
244 
313 
381 

448 
516 
583 
649 
716 

781 
847 
912 
977 

. 64041 

106 
169 
233 
296 
359 

Reprinted with the permission of Dr . J. Stuart Hunter, Editor of "T e chnometrics". 

F rom the sample we evaluate y = ln A - In G, and 
from the table we read or interpolate TIp . Dividing 
t he value of TlP ( = y p) by y we thus obtain the maxi
m urn likelihood es tim_a te of p = a + 1, then from t be 
second equation III (3.5) tbe estimate of 'A. We 
sball write these estimates as p =~+ 1, and ~, 

A 

r espectively. The large sample variances of 'A and 
~ ar e [Fisher 1922] 

A >..2 
var 'A ~2N 

A 1 [./J( + ) 1+ 1 J-1 var a~- 'I' 1 a - - - , 
N a 2a2 

(3.6) 

where 1/;' (x) = df (x) /dx. The function f' (x) is tab
ulated in D avis (1 935) . An abstract of tbis table is 
presented in table 2. If a is also large 

A 6 ( 1) vara~N a 3+sa . 

T o decide whether q or p = l /q is to be assum ed a 
gamma variate in a given situation we calculate the 
maximized likelihoods with x= q and p . Let L1 

A A 
and L2 be t he values of L(a, 'A) corr esponding to 
x= q and x= p r espectively . If L 1> L 2 we decide 
that q is a gamma variate; otherwise that pIS. 

Ordinarily a graphical cri terion will suffice. For 
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TABLE 2. 

" (x) ,, ' (x) " (x) ~ ' (x) 

0 . 1 -10 .42375 101.4 3330 1.1 - 0. "42375 1. 43330 

0.2. - 5 . 28904 26.26738 1.2 - 0.2890 4 1. 26738 
0.3 - 3.50252 12.245 36 1.3 - 0.16919 1.13425 
0.4 - 2.56138 7.275 36 1.4 -0.06138 1. 02536 
0.5 - 1. 96351 4.93480 1.5 0 . 03649 0.93480 

0.6 - 1. 54062 ' 3 . 63621 1.·6 0.12605 0.85843 
0.7 - 1. 22002 2.83405 1.7 0.20855 0 . 79323 
0.8 -0.96501 2.29947 1.8 0.28499 0.73697 
0.9 -0 . 75493 1. 92254 1.9 0.35618 0.68797 
1.0 -0 .57722 1. 64493 2.0 0 . 42278 0.64493 

Reproduced with the permission of Principia Press of Trinity University, 
San Antonio . Texas, Publishers. 

example, we may proceed in the following manner. 
Let F*(x) denote the proportion of values of Q 
exceeding x. Plot F*(x) versus x on a normal prob
ability paper with values of x on the vertical axis 
increasing upward and values of F*(x) on the hori
zontal axis increasing from left to right . If the 
graph is concave (convex) toward the axes then q(p) 
will be considered a gamma variate. 

A quick but inefficient way of estimating a and A 
is to equate the first two moments (or logarithmic 
moments, in case the data are recorded in decibels) 
to the corresponding moments (or logarithmic 
moments) of (3.1). 

The theoretical mean and variance of ¢(x) are, 
respectively 

I so that 

a + l a + l 
m=-i\ - ' v= y 

i\= m, a= 1n 2
_ J• 

V V 
(3. 7) 

The sample estimates of m and v can then be used in 
these equations to estimate A and a. If the value of 
a is small, say less than 5, this method , as shown by 
Fisher (1922), is extremely inefficient; hence almost 
always the estimation should be carried out by the 
method of maximmn likelihood rather than by the 
method of moments. 

Since power is usually measured in decibels, it is 
convenient to make rough estimates of a and A 
directly from such measurements. In particular if 
it is assumed that x has a gamma distribution, and 
the mean and variance of the random variable 

~= 1O loglo x 

are (and uL then we have the relations 

u ~ = (10 loglo e)21/-' (1 + a), 

-~= (10 loglo e)[", (l + a)-loge A], (3 .8) 

where ", (x) and 1/-' (x) are defin ed earlier. The proce
dure for estimating parameters is a simple one: 

1. Solve for a from the 'equation involving ur 
2. Solve for A, with the known a, from the equa-

tion involving ~. 
Concerning the efficiency of this estimation proce
dure, the same general remarks apply here as to the 
estimation procedure based on the moments of x. 

757 

3 .1. An Example 

In the following table we present 902 values of the 
hourly median power, expressed in decibels, received 
over the NBS path No . 55 from Detroit, Mich. , to 
Hudson, Ohio : (Q = 10 loglo q, j=frequency of occur
renee). The data correspond to the months of May 
through October 1950, to the time-period 6 pm to 
midnight, and to the frequency of transmission 
93.6 Mc/s. The decibel values are rounded to the 
nearest integer. 

T ABLE A. 
Q Q Q Q 

I 0 13 67 25 I S 37 
2 26 14 38 26 13 33 2 

I S 24 27 7 39 6 
4 8 16 58 28 17 40 2 

9 17 33 29 5 41 
2 2 18 5 4 30 12 42 

7 27 19 38 3 1 9 4 3 
8 36 20 41 32 10 44 

9 27 21 25 33 4 4 5 2 
10 46 22 3 4 3 4 6 46 0 
II 68 23 20 35 5 47 
12 48 24 21 36 2 4 8 

Let F* (x) denote the proportion of values of Q 
exceeding x. Then 

j 

F*(j+0.5) = 1-'L,jk/N, j = l, 2, . .. , 48, 
k= l 

wherejk is the frequency of the value Q= lc. vVe note 
that the argument of F* is to be takenj + 0.5 rather 
than j, as the integral value j of Q in the table is 
actually the midpoint of the haH-open intenral 
(j - 0.5,j+ 0.5 ). A visual check of the graph of F*(x ) 
on the normal probability paper indicated that p = l /q 
rather than q should be assumed to be a gamma 
variate . A test based on the likelihood ratio seemed 
unnecessary. To estimate a and A by the method of 
maximum likelihood we calcula te the arithmetic 
mean, AI)' and the geometric mean, Gp , of p . These 
are 

Thus 1) = ln Ap- ln Gp = 1.2729, and interpolation in 
table 1 gives 1)p= 0.6354. Finally, p =~+ 1~0.50, }.. 

= p/Ap~ 6.6. From (3.6), with A and a replaced by ~ 
and ~, the estimates of the variance of ~ and ~ are 
calculated to be 

Estimate of val' ~~ 0 . 024, 
Estimate of val' ~~0 . 00012. 

For the best fitting lognormal distribution for q, 
i.e., for the best fitting normal distribution for Q, we 
calculate the maximum likelihood estimates of the 
mean and variance of Q to be 
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FIGURE 5. The empirical distribution function of q , together 
with the best jitting gamma distribution for l / q and the best 
jitting lognormal distribution for q , f or the data in section 3.1. 

respectively. The graphs of F* (x), and the best fit
ting gamma and lognormal distributions are given 
in figure 5. 

To see whether the gamma distribution for p gives 
a better fit to the data than the lognormal for q, we 
calculate the maximized likelihoods in both cases. 
The logarithm (on base 10) of the maximized likeli
hood under the hypothesis of gamma distribution for 
p is + 703 , while that under the lognormal distribu
tion for q is - 1398. Thus, in the present situation, 
the hypothesis that p is a gamma variate is decidedly 
preferred over the other alternative. 

4 . Long-Term Distribution of 
Instantaneous Power 

When incoherent scatter is the dominant mode of 
radio wave prop.agation, it has been observed that 
over short periods of time the instantaneous received 
power, z, is Rayleigh distributed. If the mean 
power over this period be denoted by q, the prob
ability density function of z is given by 

(4.1) 

This can also be written, with p = l /q, as 

(4.2) 

If it is assumed that q itself has the probability 
density function h(q), the (long-term) probability 
density function of z will be given by 

j(z) = i '" .I(zl q)h(q)dq. 

If now q or p is assumed to have a gamma proba
bility density function ¢ (x) given in (3.1), we have 
in the one case 

f (z) = i '" 1(zl q)¢ (q)dq 

and in the other 

.I,(z) = i '" .I,(z lp)¢(p)dp. 

We will firs t consider the case when p is a gamma 
variate. 

Situation 1. If p has the probability density function 
¢(x), then 

M z) 

The tail probability, i.e., the probability that the 
power exceeds a given level z, 

For large z/t.. this behaves like 

and for small z/t.., 

FI (z) = 1 - (a+ 1) (z/ t.. ) + o [( z/t.. )2], 

where O(x) signifies a quantity of the order of mag
nitude of x. The rth moment of the distribution of 
z is nonexistent if a::=;r-l. In particular, if 
- l < a::=;O, no moment (except the zeroth moment 
which is always equal to unity) exists . If a+ l > r, 

Thus, if a> 1, the mean and variance of z are 

x (a + l)X2 

Ez= -' val' z 2( I)' a a a-
(4.4) 

Let 0 < /1 < 1. 
given by 

The 100/1 percentile, z~, of }l'J (z) is 

(4.5) 

In particular, the median 

In figure 6, F,(z) is plotted on the normal probability 
paper against y = 10 logJO (z/zo.s), for selected values 
of a. 

Situation 2. If q has the probability density func
tion ¢ (x), then 
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FIG U RE 6. lOOF1 (z) versus y = lO (log z- logzo.5) , zo.5 = median 
oj z. 

. ;\,,+1 r= 
l(Z)= r (a + l )J o q,,- I exp (- Aq - z/q)dq. 

A change of varia te q= (z/A)teO con verts this in to 

A(ZA),, /2f OO 

f ez) f(a + l) -00 exp (aO- 2-/25 cosh O)dO 

2A (ZA),, /2 r oo 
f (a+ l) J o coshaOexpIC - 2--/zX" cos h O)dO. 

Using the Bessel function formula 

K,, (x) = 100 coshaOcxp (-x cos h O)clO, 

we have 
2A (ZA),, /2 ~ 

f(z) = f (a + l) K ,,(2-Y ZA). (4.6) 

The tail probability, i.e., the probability tbat the 
power exceeds a given level z, 

F(z)= f oo f(x)dx, 

is found by the same methods to be 

(4.7) 

For large ZA this behaves like 

r 2,,+1' 
F (z )", "'\ -rr (ZA)- 4- e -2.[ij.. 

f (a+ l ) " 

and is seen to fall off rather slowly when ZA is of the 
order of lwity. For small ZA, when a is not an 
integer, 
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IOOF--

FIGURE 7. lOO F(z) vel·SltS y = lO (log z - log zo .,), zo., = median 
of z. 

where O(x) signifies a quantity which tends to zero 
more rapidly tban x when x tends to zero. The 
momen ts of the distribution of Z are easily evaluated 
to be, for r= O, 1, 2, ... , 

[
00 r T!f(a + r + l) 1 

!l r= z j (z) dz f ( + 1) }Y. 
• 0 a , 

(4.8) 

In table 3 we give values of F( z) as a function of 
the dimensionless vari able x = 2 -v'ZA for a = - 0.9 (0.1) 
LO , x = 0(0.1 )5 .0 and for a= - 0.9 (0.1)0.0 with 
x= O(O.Ol).L There may be a roundoff error of one 
in the last place. For values of a exceeding 1.0 we 
may use the recurrence formula fo1' K ",(x): 

2m 
Km+1(x)=- K ",(x) + K n- I(X) . 

x 

If we denote by F,,(x) the tail probability as a func
tion of x and a, i.e., 

then the use of the relations between K's leads to 

(4.9) 

In figure 7 F( z) is plotted on the normal probability 
paper against Y= 10 log 10 (Z/ZO.5), where ZO.5 is the 
median of the distribution of z. 

5. Discussion 

To keep the mathematical reasoning uncluttered 
with nonmathematical considerations we have glided 
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x 

0.01 
O. 02 
O. 03 
0.04 
0.05 
O. 06 
0.07 
0.08 
0.09 
O. 1 
O. 2 
O. 3 
0.4 
O. 5 
O. 6 
O. 7 
O. 8 
0.9 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 

Q = - O. 9 
Q. 6107 
0.5529 
O. 5152 
0.4866 
0.4633 
0.4435 
0.4262 
0.4109 
0.3970 
0.384'4 
0 . 2959 
0.2407 
0.2009 
0.1702 
0.1457 
0.1256 
0.1089 
0.0948 
0.0829 
0.0726 
0.0638 
0.0562 
0.0496 
O. 0438 
0.0387 
0.0343 
0.0304 
0.0270 

x a -0.9 

2. 0 O. 0240 
2.1 0.0213 
2. 2 0.0190 
2. 3 o. 0169 
2. 4 O. 0151 
2. 5 0.0134, 
2.6 0.0120 
2. 7 O. 0107 
2.8 0.0095 
2 . 9 0.0085 
3. 0 0.0076 
3.1 O. 0068 
3.2 0.0061 
3. 3 O. 0054 
3.4 0.0049 
3. 5 O. 0044 
3.6 0.0039 
3. 7 O. 0035 
3.8 0.0031 
3. 9 O. 0028 
4.0 0.0025 
4.1 O. 0023 
4 . 2 O. 0020 
4. 3 O. 0018 
4.4 O. 0016 
4. 5 O. 0015 
4. 6 O. 0013 
4. 7 O. 0012 
4. 8 O. 0011 
4. 9 o. 0009 
5 .0 0.0009 

-0. ·8 
0.8477 
0.7991 
0.7639 
0.7352 
0.7107 
0.6890 
0.6695 
0.6516 
0.6351 
0.6198 
0. 5035 
0.4234 
0.3621 
0.3127 
0.2720 
0.2378 
0.2086 
0.1836 
0.1620 
0.1433 
0.1269 
0.1125 
0.0999 
0.0889 
0.0791 
0.0705 
0.0628 
0.0560 

-0. 8 

0.0500 
0. 0447 
0,. 0399 
O. 0357 
0.0320 
0.0286 
0. 0256 
0.0229 
0.0205 
0. 0184 
0. 0165 
0. 0148 
0.0133 
0.0119 
O. 0107 
0.0096 
0.0086 
0.0077 
0.0069 
0. 0062 
0. 0056 
0.0050 
0.0045 
0.0041 
0.0037 
0.0033 
0.0030 
0.0027 
O. 0024 
0.0022 
0.0019 

-0.7 
0.9398 
0.9089 
0.8839 
0.8622 
0.8427 
0.8247 
0.8081 
0.7924 
0.7775 
0 . 7634 
0.6482 
0 .5 909 
0 . 4901 
0 . 4307 
0.3801 
0.3365 
0.2985 
0.2654 
0.2363 
O. 2106 
0.1880 
O. 1679 
O. 1501 
0.1343 
0.1202 
0.1077 
0.0965 
0.0865 

-0 . 7 

0. 0776 
0.0696 
0.0625 
O. 0561 
0.0504 
0.0453 
0.0407 
0.0366 
0.0329 
0.0295 
0. 0266 
0.0239 
0.0215 
0.0194 
0.0174 
0.0157 
O. 0141 
0.0127 
0.0114 
0.0103 
0.0093 
0.0084 
0.0075 
0.0068 
0.0061 
0.0055 
0.0050 
0.0045 
0.0040 
0.0036 
0.0033 

·0.6 
0.9758 
0.9580 
O~ 9421 
O. 9272 
O. 9133 
0.8999 
0.8871 
0.8747 
0.8627 
0.8511 
0.7488 
0.6639 
0.5910 
0.5275 
0.4717 
0.4224 
0.3786 
0.3397 
O. 3050 
0.2740 
0 . 2462 
0.2214 
0. 1992 
0. 1792 
0.1613 
O. 1452 
0.1308 
0 .117 8 

-0.6 

O. 1061 
O. '0957 
O. 0862 
O. 0777 
O. 0701 
0.0632 
O. 0570 
0.0514 
0.0463 
O. 0418 
0.0377 
0.0340 
O. 0307 
0.0277 
O. 0250 
0.0226 
0.0204 
O. 0184 
0.0166 
O. 0150 
O. 0135 
0.0122 
O. 0110 
o. 0099 
o. 0090 
O. 0081 
0.0073 
O. 0066 
O. 00 60 
0.0054 
0.0049 

TABLE 3. 

-0.5 
O. 9900 
0.9802 
O. 9704 
0.9608 
O. 9512 
O. 9418 
O. 9324 
O. 9231 
o. 9139 
O. 9048 
0.8187 
O. 7408 
0.6703 
O. 60'65 
O. 5488 
0. 4966 
0.4493 
0.4066 
0.3679 
O. 3329 
O. 3012 
0.2725 
0.2466 
O. 2231 
o. 2019 
0.1827 
0.1653 
0.1496 

T ABLE 3a. 

- O. 5 

0. 13 53 
O. 1225 
0.1108 
0.1003 
O. 0907 
O. 0821 
0.0743 
0.0672 
O. 0608 
O. 0550 
0.0498 
0. 0450 
0.0408 
0.0369 
0.0334 
0.0302 
0.0273 
0.0247 
0.0224 
0.0202 
0.0183 
O. 0166 
0.0150 
O. 0136 
0.0123 
o.om 
O. 0101 
o. 0091 
O. 0082 
0.0074 
0.0067 
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-0.4 
0 . 9958 
'0.9904 
0.9845 
0.9783 
0.9719 
0.9653 
0.9586 
0:9518 . 
0.9449 
0.9380 
0.8675 
0.7983 
0.7325 
0.6708 
0.6134 
0. 5603 
0.5114 
0.4664 
0.4251 
0.3872 
0. 3526 
0.3209 
0.2920 
0.2656 
0. 2415 
0.2196 
0.1996 
0.1814 

-0.4 

0.1648 
0.1497 
O. 1360 
0. 1235 
0.1121 
0.1018 
0.0924 
0.0839 
O. 0761 
O. 0691 
O. 0627 
o. 0569 
O. 0516 
O. 0468 
O. 0425 
O. 0385 
O. 0350 
O. 0317 
O. 0288 
O. 0261 
0.0237 
0.0214 
O. 0195 
0.0176 
0.0160 
0.0145 
0.· 0131 
o. 0119 
O. 0108 
0.0098 
0.0089 

-0. 3 
O. 9981 
O. 9951 
O. 9915 
0.9876 
O. 9833 
0.9787 
0 .97 39 
0.9690 
0 . 9638 
0.9586 
O. 9016 
0.8414 
0.7813 
0. 7231 
0.6675 
0.6149 
0.5656 
O. 5195 
0.4767 
0.43 70 
0.4002 
0.3663 
0.3350 

O. 3063 
0. 2798 
0.2555 
0.2333 
0.2128 

- 0.3 

0 . 1942 
0.1770 
0.1614 
0.1471 
0. 1340 
0.1221 
0.1ll2 
0.1012 
0.0922 
0.0839 
0.0763 
0.0695 
0.0632 
0.0575 
0.0523 
0.0475 
0.0432 
O. 0393 
0.0357 
0.0325 
0.0295 
0.0268 
0.0244 
0.0221 
0.0201 
0.0183 
O. 0166 
O. 0151 
0.0137 
0.0124 
O. 0113 

-0 .2 
O. 9991 
0.9974 
O. 9952 
0.9926 
O. 9896 
O. 9865 
O. 9830 
O. 9794 
O. 9756 
O. 9716 
O. 9257 
0. 8737 
O. 8196 
O. 7655 
O. 7126 
0.6615 
O. 612 8 
O. 5666 
O. 5231 
0.4823 
0.4442 
0.4086 
O. 3756 
O. 3450 
O. 3166 
0.2904 
O. 2661 
O. 2438 

-0. 2 

O. 2232 
0.2043 
0 . 1869 
0.1709 
0.1562 
0.1428 
0. 1304 
0. 1191 
0. 1088 
0.0993 
0.0906 
0. 0826 
0.0754 
O. 0687 
0.0627 
0.0571 
0.0521 
0.0474 
0.0432 
0.0394 
o. 0359 
0.0327 
0.0297 
0.0271 
0.0246 
0.0224 
0.0204 
0.0186 
0. 0169 
0.0154 
0.0140 

- 0. 1 
O. 9995 
0.9985 
0.9971 
0.9953 
O. 9933 
O. 9910 
O. 9885 
0.9859 
0.9830 

' 0.9799 
0.9429 
0.8982 
0 . 8498 
0 .8 000 
0.7502 
0. 7013 
0.6538 
0.6082 
0.5647 
0.5235 
0.4846 
0.4480 
0.4137 
O. 3816 
0.3517 
0.3239 
0.2980 
0.2740 

- O. 1 

O. 2518 
0.2313 
O. 2123 
0.1948 
0.1786 
0.1637 
0.1500 
0. 1374 
0.1258 
0.1151 
0.1053 
0.0963 
0.0881 
O. 0805 
O. 0736 
0.0672 
O. 0614 
0.0561 
O. 0512 
0.0468 
O. 0427 
o. 0389 
0.0355 
0.0324 
0.0296 
0.0270 
0.0246 
0.0224 
0.0204 
O. 0186 
O. 0170 

0.0 
O. 9997 
O. 9991 
O. 9981 
O. 9969 
O. 9955 
O. 9938 
o. 9920 
o. 9899 
O. 9877 
O. 9854 
O. 9552 
O. 9168 
O. 8737 
O. 8282 
O. 7817 
0.7352 
0.6894 
0.6449 
0.6019 
O. 5607 
O. 5215 
0.4843 
0.4492 
O. 4161 
O. 3850 
O. 3559 
O. 3287 
O. 3034 

0.0 

O. 2797 
0.2578 
O. 2374 
O. 218 5 
0.2009 
0.1847 
O. 1697 
0.1559 
0.1431 
0.1313 
O. 120 5 
0.1105 
0.1013 
O. 0928 
O. 0850 
0.0778 
O. 0713 
O. 0652 
O. 0597 
O. 0546 
0 . 0499 
O. 04 57 
0.0417 
O. 0381 
0.0349 
o. 0319 
O. 0291 
0. 0266 
0.0243 
O. 0222 
0.0202 



x a 0.1 
0.1 0.9890 
0 . 2 0.9642 
0.3 0.9311 . 
0 . 4 0 . 8928 
0 . 5 0 . 8513 
0 . 6 0.8081 
0.7 0.7642 
0 . 8 0.7203 
0.9 0 . 6772 
1. 0 '0 . 6351 
1. 1 0.5944 
1.2 0.55 53 
1. 3 O. 5178 
1. 4 0.4822 
1.5 0 . 4484 
1. 6 0.4165 
1.7 0.3865 
1. 8 0.3582 
1. 9 O. 3317 
2.0 0.3069 
2 . 1 0.2837 
2.2 0.2620 
2.3 0.2419 
2.4 0.2231 
2.5 0.2057 
2 . 6 0 . 1895 
2.7 0.1745 
2.8 0.1607 
2.9 0.1478 
3.0 0 . 1359 
3. 1 0 . 1249 
3 .2 0 . 1148 

x a = 0.1 

3. 3 
3.4 
3. 5 
3.6 
3. 7 
3.8 
3. 9 
4.0 
4 .1 
4 . 2 
4. 3 
4.4 
4 . 5 
4.6 
4. 7 
4 . 8 
4. 9 
5.0 

0.1054 
0.0968 
0.0888 
0 . 0815 
O. 0748 
0.0686 
0.0628 
0.0576 
O. 0528 
0 . 0483 
O. 0443 
0.0405 

• O. 0 371 
0 . 0339 
O. 0310 
0 . 0284 
0 . 0260 
0 . 0237 

0.2 
0.9915 
0.9708 
0.9421 
0.9080 
0.8702 
0.8302 
0.7889 
0.7472 
0.7057 
0.6647 
0.6247 
0 . 5860 
0.5487 
0. 512 9 
0.4787 
0 . 4462 
0.415 5 
0.3864 
0.358 9 
O. 3331 
0 . 3089 
0.2862 
0 . 2649 
0.2451 
0.226 5 
0 . 2093 
0.1932 
0.1783 
0.1644 
0. 1516 
0.1397 
0 .1286 

O. 2 

0.1184 
0.1089 
0 . 1002 
0.0921 
0.0847 
0.0778 
0.071 5 
0 . 0656 
0 . 0602 
0.0553 
0 . 0507 
0 . 046 5 
0.0426 
O. 0391 
0 . 0358 
0.0328 
O. 0301 
O. 0275 

0.3 
0.9932 
0. 9758 
0.9508 
0.9203 
0 . 8859 
0. 8489 
0 . 8102 
O. 7706 
0.7 308 
O. 6911 
0.6521 
0.6140 
0.5770 
O. 5413 
0 . 5070 
0 .4742 
0.4429 
0 . 4132 
O. 3850 
O. 3584 
0.3333 
O. 3097 
0.2875 
0 . 2666 
0.2471 
0.2289 
0.2119 
0.1960 
0.1812 
0.1674 
0.1546 
0.1427 

O. 3 

0.1316 
0.1214 
0.1ll9 
0. 1031 
0 . 0949 
0.0874 
0. 0804 
0.0740 
0.0680 
0.0625 
0 . 0575 
0.0528 
0.0485 
0.0445 
0.0409 
0.0375 
0.0344 
O. 0316 

0 . 4 
0.9944 
0.9796 
0.9576 
0.9303 
0.8989 
0.8647 
0.8284 
0.7910 
0.7529 
O. 7147 
0. 6768 
0 . 6395 
0.6030 
0.5676 
0.5333 
0 . 5004 
0.4688 
0.4387 
0.5000 
O. 3827 
0.3569 
O. 3325 
0.3095 
0.2878 
0.2674 
0.2483 
0.2304 
O. 2136 
0.1979 
0 .1833 
0.1696 
0 . 1569 

0 . 4 

0.1450 
0.1340 
0 .12 38 
O. ll43 
0.1054 
0.0973 
0.0897 
O. 0826 
0 . 0761 
O. 0701 
O. 0646 
0.0594 
0 . 0547 
0 . 0503 
0. 0462 
0.0425 
O. 0391 
0.0359 

TABLE 3b. 

O. 5 
O. 9953 
0.982 5 
O. 9631 
O. 9384 
O. 9098 
0.8781 
0.8442 
O. 8088 
0.7725 
O. 7358 
0.6990 
0.6626 
0.6268 
O. 5918 
0.5578 
o. 5249 
0.4932 
0.4628 
0 . 4337 
0 . 4060 
O. 3796 
O. 3546 
O. 3309 
0.3084 
0.2873 
O. 2674 
O. 2487 
O. 23ll 
O. 2146 
O. 1991 
0 .1847 
0.1712 

T ABLE 3c. 

0 . 5 

0.1586 
0 .1468 
O. 1359 
0. 12 57 
O. ll62 
0. 1074 
0.0992 
O. 0916 
0. 0845 
0. 0780 
0.0719 
0.0663 
O. 06ll 
0.0563 
O. 0518 
0.0477 
0 . 0439 
0.0404 
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0.6 
0.9960 
0.9848 
0.9675 
O. 9452 
o. 9189 
0.8896 
0.8578 
0.8244 
0.7898 
0.7546 
0. 7191 
0.6837 
0 . 6487 
0.6142 
O. 5806 
0 . 5479 
0 . 5162 
0.4857 
0.4564 
0.4283 
0.4015 
0.3759 
O. 3516 
O. 3286 
O. 3068 
0.2861 
0.2667 
0.2484 
O. 2312 
O. 2150 
0.1998 
0.1856 

0.6 

0.1722 
0 .1 598 
0. 1481 
0 . 1373 
0. 1272 
O. ll77 
0.1089 
0 . 1008 
O. 0931 
O. 0861 
0 . 0795 
0 . 0734 
0.0678 
0.0625 
O. 0577 
0.0532 
0.0490 
0.0452 

O. 7 
0.9965 
0.9866 
O. 9711 
0 . 9508 
0 . 9267 
O. 8994 
O. 8697 
O. 8381 
0.8052 
0.7714 
0.7372 
O. 7029 
0.6687 
0.6349 
0.6018 
0.5694 
0 . 53 78 
0.5073 
0 . 4779 
0.4496 
0.4224 
O. 3965 
0.3717 
O. 3481 
0 . 3257 
O. 3045 
0.2844 
O. 2655 
0.2476 
0.2307 
O. 2148 
0.1999 

0.7 

0.1859 
0.1728 
0.1605 
0.1490 
0. 1383 
0.1282 
0.1189 
O. llOl 
0.1020 
0.0944 
O. 0874 
0 . 0808 
0 . 0747 
0.0690 
0.0638 
0.0589 
0 . 0544 
0.0502 

0.8 
O. 9969 
0 . 9880 
0.9740 
0 . 9555 
0.9333 
0 . 9079 
0.8800 
0.8502 
0.8189 
0.7866 
0.7536 
O. 7204 
0.6871 
0 . 6540 
0 . 6214 
0.5894 
0.5581 
0.5277 
0.4983 
0.4698 
0. 442 5 
0.4162 
O. 3911 
0 . 3671 
0 . 3442 
0.322 5 
O. 3018 
0.2822 
0.2637 
0.2 463 
0.2298 
0.2142 

0.8 

0.1996 
0.1856 
0.1730 
0.1608 
0.1495 
0.1389 
0. 1290 
0.1197 
O. 1110 
0.1029 
0.0954 
0.0884 
O. 0818 
0.0757 
O. 0701 
0.0648 
o. 0599 
0.0554 

0 . 9 
0.9973 
0.9893 
0.9765 
0.9595 
0.9389 
0.9152 
0.8891 
0 . 8609 
O. 83ll 
0 . 8002 
O. 7685 
0.7363 
0.7039 
0 . 6717 
0.6397 
O. 6081 
0.5772 
0 . 5470 
O. 5176 
0.4892 
0 . 4617 
0.4352 
0 . 4098 
O. 3854 
0 . 3622 
0 . 3400 
O. 3188 
0.2987 
0 . 2797 
0.2616 
0.2446 
0 . 2284 

o. 9 

0 . 2132 . 
0.1989 
0.1854 
0.1727 
0.1608 
0.1497 
0.1392 
0.1294 
0.1202 
0.1116 
0.1036 
0.0961 
0.0892 
0.0826 
0.0 766 
0. 0709 
0.0657 
0.0608 

1.0 
0.9975 
O. 9902 
0 . 9786 
0.9629 
0.9438 
0.9217 
0.8970 
0.8703 
0 . 8420 
O. 8124 
0 . 7819 
0. 7508 
O. 7194 
0.6880 
0.6566 
0.6256 
O. 5951 
0 . 5651 
0 . 5359 
0.5075 
0 .. 4800 
0.4534 
0 . 4278 
0 . 4032 
O. 3796 
0 . 35 70 
O. 3354 
o. 3149 
0.2954 
O. 2768 
0 . 2592 
O. 242 5 

1.0 

O. 2268 
o. 2119 
0 .1979 
0.1847 
0 . 1722 
0.1605 
0.1495 
0 . 1392 
0 . 1295 
0.1205 
O. ll20 
0.1041 
O. 0966 
O. 0897 
0.0833 
O. 0772 
O. 0716 
0.0664 



over a few points which need to be discussed more 
fully. 

First, it may be mentioned that the observations 
on z come as a time series. In this paper we have 
assumed that the (univariate) distribution function 
of z, hence of q, is time-invariant. For estimating the 
long-term distribution this assumption may be quite 
valid. However, if one wishes to study other charac
t eristics of the data on z, such as the presence of 
dimnal and seasonal cycles, it would be necessary 
to use the methodology of time series analysis . This 
was not attempted in this paper. 

Second, assuming that the distributions of z and 
of q are time-invariant , that the short-term distri
bution of z is Rayleigh with mean q, and that the 
distribution of q or l /q is either lognormal or gamma, 
the question still remains: prior to a contemplated 
experiment how can we say which distribution will 
apply? To answer this question we require con
siderably more understanding of the physics of scat
ter propagation, a detailed knowledge of important 
physical variables over a transmission path, and an 
elaborate investigation of various statistical hypoth
eses. Thus, at the present state of the art, this 
question cannot be answered. However, after the 
data are collected, a decision can be made based on 
either the likelihood l a tio criterion or on some other 
"goodness-of-fit" test such as x2 or Kolmogorov's 
tests. 

Third, to insme independence between observa
tions as required in section 3 for estimating ex and A 
it is necessary to take values of q sufficiently widely 
separated. This again may require a preliminary 
investigation of the autocorrelation function of q. 
In practice , it will not be difficult to decide how far 
apart these values are to be taken. We note that, 
if the values of q constitute a random sample so will 
the values of p. 

Fomth, we have not discussed the problem of 
estimating ex and A as the parameters of F (z) or 
F1(z ). We have implicitly assumed that A and ex 
will be estimated as the parameters of the gamma 
distribution from a sample of values of q. In prin-
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ciple, it is preferable to apply the method of maxi
mum likelihood to the distribution of z itself if the 
object is to obtain a distribution of z (rather than 
that of q). However, in this case, the solution of 
likelihood equations seemed to be laborious, hence 
we have accepted the estimating procedure as 
outlined in section 3. 

Lastly, a more flexible approach to the entire 
problem is to assume that X= Aqf3, A> O, {37""0 , is a 
gamma variate. This was briefly mentioned at the 
end of section 2. In this case, we will ha\Te three 
parameters, A, (3, and ex, instead of two. The main 
difficulty, again, is in the estimation procedme. 
We hope to investigate this generalized model in 
the future. 

We thank Mrs. Mary C. Croarkin, of the NBS 
Statistical Engineering Laboratory, for evaluating 
the function F(z), utilizing the 7090 computer of the 
NBS Computation Laboratory; Mr. P . L. Rice for 
providing the data of section 3.1 ; Dr. J. S. Hunter, 
fditor of "Technometrics" for the permission to 
reproduce table 1; and the Principia Press of Trinity 
University, San Antonio, Tex., for the permission 
to reproduce table 2. 
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