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The radiation fields of a magnetic line source axially oriented on a conducting cylinder
which is in a plasma environment have been analytically determined. The plasma environ-
ment is taken to be a series of homogeneous cylindrical layers none of which is contiguous
with the cylinder. It is demonstrated that a quite significant distortion of the field pattern
is effected by the presence of a lossless plasma sheath. Characteristics of the radiation
fields are discussed and radiation patterns, computed in a plane through the axis of the
cylinder and the line source, are presented. The patterns are found to have large narrow
amplitude fluctuations that can be attributed to leaky waves.

1. Introduction

The gross effects on radio wave propagation of the plasma sheath which envelopes hyper-
sonic vehicles are fairly well understood. It is recognized that when such vehicles travel at
sufficient speeds in the upper atmosphere there may be a blackout of radio communication and
sufficient distortion of radar signals and patterns to make radar systems unreliable.

The most direct approach to increasing communication and radar system reliability when
the sheath environment is present is to increase the propagation frequency well beyond the
peak plsama frequency in the shock wave. In this way the sheath is made to appear trans-
parent to the waves so that, aside from an increase in the probability of breakdown on transmit,
the sheath might just as well not be there. The problem is, however, that the plasma frequency
in some regions of the sheath can go well beyond the frequency of operation of present systems.
In regions of the sheath aft of the nose of a vehicle there is a significant decrease in electron
density so that, in general, there is a point at which an rf system will operate with only modest
distortion of the propagating signals. It is such a region that is of concern in this paper. In
particular, we shall investigate the effect of the sheath on propagation when the propagation
frequency is greater than the plasma frequency, but when they are both of the same order of
magnitude.

The geometrical configuration of the hypersonic plasma sheath in terms of the spatial
variation of both charged and uncharged particles has been subjected to a great deal of investi-
gation over the past few years, and while an exact determination of the spatial variation of the
constitutive parameters of the sheath has not been made for even the simplest of vehicle con-
figurations, a general description is available for cylindrically symmetrical vehicles with tapered
nose sections. In this report the radiation characteristics of a linear slot antenna flush mounted
to a circularly eylindrical vehicle will be considered. In the sections 2, 3, and 4 the enveloping
plasma sheath will be taken to be a series of consecutive plasma layers contiguous with each
other but separated from the body of the vehicle. This separation is characteristic of hyper-
sonic shock waves at other than stagnation regions. The vehicle, as well as the shock wave
region, will be taken to be infinitely long and the cylinder will be considered to be infinitely
conducting. In section 5 an approximation technique for determining the field distortion due
to sheaths which are not necessarily cylindrical and composed of homogeneous layers will be
developed and discussed. It will be shown that this technique predicts the significant distor-
tions which have been computed for the single layer case under the assumption of leaky waves
excited by the source.

1 This work was sponsored by the Electronics Research Directorate, Air Force Cambridge Research Laboratories, under Contract No,
ATF19604-8386.
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2. Formulation of the Radiation Problem

2.1. Solution for the Field in Cylindrical Regions

The radiation field of a magnetic line source lying on a circularly cylindrical conducting
surface is to be determined. The surface is infinite in extent, but the line source is finite and
lies parallel to the cylinder axis. Encircling the surface is a series of concentric cylindrical
regions containing homogeneous plasma media with arbitrary electron densities, except for the
inner and outer regions which have zero electron density. This geometry is depicted in ficure 1.

The technique for obtaining a solution to this cylindrical radiation problem is well known.
The solution may be found in terms of £ and H modes referred to the z direction, which forms
the cylinder axis. Expressed in terms of potential functions, F' and A, satisfying the scalar
Helmholtz equation the two sets of modes

E=—iouVX (Fu) H,=iweVX(Au,) (1)

are defined for each cylindrical region. The total field is then
E—E+.. VxXH, H—H,—.l VXE, 2)
TWe T

The propagation and plasma frequency are considered to be in the kilomegacyecle region,
so that the cyclotron frequency, which is entirely due to the earth’s magnetic field in the absence
of sources ot low frequency magnetic field on the vehicle, may be neglected. The constitutive
parameters in the cylindrical regions are thus isotropic. Further it is assumed that each region
is characterized completely by an equivalent constant permittivity.

Solutions for A and F may be given in terms of eylindrical wave functions in the form
[Wait, 1959a].

©

A= 355 [ dh () D (FT0) + AT (VF— )} o=ino 100
F= 35 [ b 0HS (V=04 BT (NF—Tep) et ®)

and the fields may be found directly from eq (2). The form for the field components transverse
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to the radial direction in any region is

E= 33 | ah {0 —mlan W HD (VE=Tp) + An()Tu(NE—I2p) |} 6=t 120

He3> [ dh(e—mba 0 HD (VE—T20) 4 B (h) Tl NF—T0)]} oo+
o G e —
Ey= 2] ‘”"L"'wmkb/ﬁ)[lm(>If,f>'<\k’ 20) + B ()] (VB —h?p)]

0 fan WD (VETop) + Al T (VETEp)] Jomnsi00

Hy— > f ) (m{ _%(\kz B2 [ (h) HD' (V= 12p) 4 A (h) J oo\ l*—h2p) |

m h

Ibm(i)U,‘Z)( E—h2p) + Bu(h) Jn(VE*—1?p)] et ™m0, (4)

Equations (4) represent the complete solution for the field in any homogeneous region of
space with characteristic propagation constant k. The set of coefficients a,, A4,, b,, and B,
are determined for each region by matching the four field expressions at each boundary. Since
the fields are finite in each region the transform operation may be considered to be a factorable
operator and the matching technique consists of equating the quantities inside the braces
in eq (4).

2.2. General Formulation for the Multilayer Problem

To facilitate the writing of solutions the convention adopted will be that the eylindrical
surfaces are at radii p; where the cylinder surface is p, and the outer plasma region is bounded on
the outside by py. The regions themselves are numbered the same as their outer boundaries

so that £, represents the propagation constant of the jth region where 7 has the values 1,2, . . .|
N-+1 and kg is reserved for the plasma free regions, i.e.,
A"1:A"N+1:k0- ({.))

The expansion coefficients of the fields are labeled with a superseript appropriate to their
regions in the form ¢ and as in [Wait, 1959a] a new symbol is defined:

w;=/l2—h.
Equating the braces of (4) at the jth boundary yields the four equations
wilagd H (wp;) + A T n(w;0,) 1=%5 @l P HD (y4105) + A0 T (U 4105) ]
Wb Hyp (u05) + Byl T (1;0,) 1= 05105V HY (g 00) + Byl VS (U4105) ]
iw#u][bﬁ,f)H}f)/(Ujpj)+BIJ)J¥,L(7IJPJ)]—M [ H3Y (u;0;) + A T m(us05)]
=dwpt; by TVHY (Usy1ps) + By Y T (U 4105) ]

mh . )
—7 fod *UHY (ﬂj+1pj)+/1,(,f D T (Usg1p5)]
J

k3 mh

—% ufad Hy " (wyp,)+ Azl Jm(",pj)]——Ibf,{)U,‘n’)(7ljpj)+B§,{)Jm(Ujpj)]

k] o
MJJI Uylad TV HD (Uy11p5) +AGTV T (U 4105)]
mh G+ @ G+D)
- 0; [bm Im (uj-{'lp])’{-Bm Jm(u]'*i-lp]')]' (6)
J
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An analytic solution to the problem is found by determining the 4(V+1) modal coefficients
ad, AY b,‘n“, B ;5=1,2,..., N+1. Equations (6), when written for the N surfaces, repre-
sent 4N equatlons. The necessary additional four equations are obtained from the radiation
condition which requires that there be only outgoing waves in the external region and from
matching the fields to the source at the cylinder surface. Thus,

A;;’:'+1):B(72’+1):0 (7)
and, at p=p,
Em 3 | dhula Hotup) + AP Tute)) e~ 74 =0 ®)
m=—oo —®

B~ > flh{%wuul[b“)H@”(uuo)+B“)J (u1p0) ]

MmM=—® J —c0
mh — .
— L fagp HE ap) + A T i) e 74142
0

@

— Z dh Im(h) —i(me+h2) (9)

m=—owm —

where the expression on the right side of (9) represents the expansion of the line source in a
Fourier integral in z and a Fourier series in ¢. Equation (9) may then be simplified by equating
only the braces.

2.3. Asymptotic Evaluation of the Rodiated Field

To find the radiated field it is necessary to carry out the integration and summation indi-
cated in (4) when j=N-+1. The usual technique is to change the cylindrical field coordinates
p, ¢, and z to the spherical coordinates R, 6, ¢ (see fig. 1) and to evaluate the integral asymp-
totically for large /. Thus under the substitutions

p=1NR sin 0

z=R cos 6

the ¢ component of the electric field is

Ed): 2 dh/ {'LCOMUN_;_lb(N_}-I)H,(:)/(uV+1IL sin 0)
m=—o

__mh
R sin 6

7(nI\'-i-l)I_I(Z) (uN+1P S]n 0) } —i(m¢+hR cosh), (10)

For finite m and large value of the argument uy,,R sin 6, the Hankel function is approximately
[Wait, 1959b)]

~t [uy 1R sin 9-2250 ] (11)

{( )(uV+1R sin 0) \/ E
™

S T
U4 I sin 0

and its derivative is

H2 (uy 1R sin 0)=H2 ; (uy 1 R sin ) — H? (uy1R sin 6)

N+JL sin 6

~—1 \/ 2——. o=t [uvpim sin g2 o] (12)
TUN+11{ sin 6

Substitution of (11) and (12) into (10) yields

@ @® h
- dh { wpty b — M oven
4 g Y MUN 10, I{ sing ™

2 1[uN+,R sin 6—-”ﬂ r] } —i(m¢+hR cos §)
>< { \/WUN+113 Sin 0 ‘ (13)
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which is an integration on the real axis of the A-plane. The radiation field is the sum of terms
of order 1/R. Terms of this order are readily determined from (13) by evaluation of the integral
by the method of stationary phase which yields as solution for the integral [Copson, 1946]

rgte )
Jl= e @y (z, R)dx
. 10—6

the quantities
0 <7l;> ‘p(xO; ]l))
4

2r i[Ro @) +5] 1 .
L\/*lw'(m Vo, B)e +0 (3 ) ¥l B)

7 (14)

where the upper solution is obtained if ; is not a stationary point and the lower solution holds
when 1z, is a stationary point. Examination of (13) clearly indicates that the term for which
aNt is a factor yields no radiation fields while the o)X factor yields a radiation field only
at the stationary points of the phase term

(h cos 0y, sin 0)=(h cos 04 ki—h? sin 6) (15)
which are at
h=1, cos 0. (16)

From (16), (15), and (13), then, the radiation field is given by

—ikR @

R U b (1) G~) - (17)

h=kg cos 0

E,—2iwp

Equation (17) represents the ¢ component of the radiated field. A similar expression
holds for the 8 component of the field so that once the coefficients ¥ and a¥*? are deter-
mined the field may be computed numerically. Additionally, it has been shown that the inte-
gration over A yields no radiated field except at the stationary points. It should be pointed out,
however, that the A integration passes through branch points at u;=0 along the real A axis
(fig. 2). A plasma sheath differs from a dielectric sheath in that for a plasma the branch
points are within the region —ky<Re h<k,, which is the region of integration from which the
radiation field is obtained. To remove difficulties that arise because of the presence of the
branch points along the integration path, a small loss term may be added to propagation con-
stants in the layers, thereby removing the branch points from the real axis. The branch lines
may then be drawn so as not to cross the real axis and the Fourier transform remains valid.
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3. General Characteristics of the Far Field With Several Plasma Layers

The general solution for the radiation field when several plasma layers are present is
difficult to reduce to a useful form because of the size of the expressions and the tedious work
required to obtain them. As indicated in section 1, the solution for the field when a single
noncontiguous layer is present requires the reduction of 12 linear equations, and this number
increases by 4 for every additional layer. Clearly, then, the field expressions are not amenable
to an extensive quantitative analysis without resort to numerical solutions obtained with the
computer. Nevertheless, some qualitative and semiquantitative information may be gathered
about the field pattern without an actual solution of the equations.

3.1. Polarization of the Field

The expressions for the radiated field are

E¢:_ Z (Ih [iw#uob(l\'b 1)[{7(,;-’) ’(,710p)]p—i(7wz¢+hz7

Mm=— .

H,— ) rlh

m=—cw J —

U(,(L,‘,f” DE @ (Uop)] —i(mé-+h2) (18)

where Iy and H represent the electric and nmgneti(r field vectors respectively of the orthogonal
components of the radiated field. Tt will be shown in the following section that

alN Y H P (ugp) is odd in m and
NV H Q) (ugp) is even in m,
and since the derivatives of the Hankel functions have the same behavior in m as the Hankel

functions themselves, eq (18) can be written in the form

(4 + ) _ _
By=33 | dbliounb  H' (nyp) e e~ 4-¢'n

= ’/” f /h,: S H (w):l ¢~ g=ime — gim?] (19)
() o
where
(1m=0
bn= (20)
2 m >0.

The field expressions in (19) indicate that the radiated field is in general elliptically polar-
ized with /), given by the upper expression in eq (19) and £, given by

]foff Eﬂ*[]¢ (21)
€

where H, is the lower expression in (19). In the planes ¢=0 and ¢=m, the Ey component is
seen to be zero and the field is plane polarized. Elsewhere, both components of the field are
present so that the plasma sheath is seen to introduce a transverse electric field component that
is not present without the sheath. The order of magnitude of this transverse field, which
determines the extent of the ellipticity of the radiated field, is difficult to ascertain without
actual numerical computations, but it is expected that the degree of ellipticity will be small.

3.2. Proof of the Even and Odd Nature of the Modal Coefficients

In order to symbolically depict the 4 (N+1) equations needed to determine the modal
coefficients, figure 3 is generated, which may be thought of as a representation of the matrix
that multiplies the line matrix of unknown coefficients to yield the source function P, (k).
The shaded areas in the illustration are the nonzero sections of the matrix, although particular
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MODAL COEFFICIENTS
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Fraure 4. Detail of a typical j-column from figure 3 showing the multipliers of the modal coeflicients for region 4
at the boundaries ps and py.

coefficients within the shaded section are zero as is indicated in figure 4 which is a detail of the

shaded region of a typical 4-column of figure 3.

It may be seen from figures 3 and 4 that the m dependent terms required to compute
a® D and b+ are the Bessel and Hankel functions and their first derivatives and the
quantity m itself. The function P,,(h) is independent of m for the line source. In view of this
the notation below is used

a(ﬁ‘,,’,*”:f(m, Hmy Jon)
Sy 160 ) (22)

696-013— 63— 10 723




First it will be shown that

f(m, H_p, J_p) =(—1)""f(m, Hp, Jm)

.(/(7n7H—7n; J_ m):(_l)ﬁmg(my f]m: Jm) (23)
then that
J=m, Hy, J ) =—f(m, Hy, J )

.(f(_m’r [Im) Jm):g(”ly H”L;Jm) (24)
and finally that
a N HE (ugp) is odd in m

bV (ugp) 1s even in m.

Consider the equations depicted in figure 3. A solution may be found for ¢*» and
b+ by taking the quotient of the appropriate determinants. Every term in the determinant
in the denominator will contain either a cylinder function or a zero. The determinant in the
numerator will be missing a column containing cylinder functions since the forcing function will
replace the appropriate column. The Bessel and Hankel functions and their derivatives behave
as [Sommerfeld, 1949]

H(@)=(—1)"HE ()
so that
a([v_';;ll):f(_m, H—m:J—m> :f(_my('—' 1)mHm; <—' 1 )m m)
b =g(—m, H_m,J ) =g(—m,(—1)"Hp,(—1)™J ). (26)
Now, a number common to a column of a determinant may be factored from the determinant
without changing the value of the determinant.  If all the /), (z) and J_,,(z) in the expressions
for a@ iV and b, are replaced by the equivalent terms given in eq (25) and then the factors
(—1)™ are canceled from corresponding columns in the determinants in the numerator and
denominator, the result will be that all such (—1)" terms will cancel but one, left over in the
denominator. Hence,
f(m; H—my J—m) = ('— 1) ~”Ij(7n'y Hm; Jm)
glm, H_, J_p) = (—1)""g(m, H,, J ). 27)
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Now, to find the behavior of @™ and o@D with m itself, once again consider figure 3.
If that figure is reconstructed so that zero coeflicients, coeflicients containing m, and coeflicients
not containing m are placed in evidence, the symbolic representation of figure 5 is obtained for
the boundary matching equations. Clearly the 4 (N+1) equations can be reduced by elimi-
nating one variable at a step starting with ¢}’ on the left side of figure 3. Examination of the
continued application of this process reveals that coefficients that are even multiples of m are
always added to even multiples of m and vice versa and, furthermore, that the forcing function
will always have factors that are of the same even or odd nature as the factors which multiply
b9 and BY. 1If the process of reducing one variable at a time is continued until the solution
for 64 is found, it is clear that dQ*Y has the same even or odd character as P,,(h), which
is even in m, and a®* has an odd behavior in m. Thus

A/‘("n’y II,,,, e m,) = —_/(77?/, Hm; Jm)

.‘/(_'7'7 ][my ']m>:.(/<m/a II,,,, Jm) (28)
or

f(—/n, [[_,,,'Y J—,u):_—./‘(lrzv Z[—ma J—m)

.’/(_”['y ]I—Hly ']—m):.(/(”[’v [I—mv ']7//z)o (29)

On taking eqs (27) and (29) together, it is found that
/.(*m, ][,,,,, 0]7,,,>: - (_ 1)~r;{/’(,71, l]m; Jrrz>
g(—m, H_,,, J_n)=(—1)""g(m, H,,, Jn)- (30)

If the expressions in eq (30) are multiplied by F12 (u4p), which has the m behavior indicated
in eq (25), the desired result is found:

a P H S, (uop) = —a SV HP (uop)
b H S (ugp) =b GV HY (op). (31)

3.3. Critical Angles of the Field

The radiation field in the direction 6 was shown to be contributed by the integration along
the infinitesimal portion of the real & axis about the point

h=1, cos 6. (32)
Additionally, it was shown that singularities at the points
h=Fk, (33)

could be removed from the real & axis with the addition of a small loss term to the propagation
constants in the layers. The contribution to the radiation field of these singular points take
place in the directions

cos 0=+ kj/ko (34)

which are exactly the critical angles defined in ray optics at which total reflection occurs.  For
angles of ray incidence beyond the critical angle ray optics predicts no transmission. An
exact solution to the reflection problem of a plane wave incident at greater than the critical
angle on an infinite plane plasma slab of finite thickness, however, indicates that power is
coupled through the slab. The amount of power coupled decreases with increasing angle of
incidence beyond the critical angle and drops off at a faster rate as the electron density and
the thickness of the slab are increased.

For the cylinder problem the solution may be found explicitly for regions defined by
angles within and beyond the critical angles of the various layers. Within the first critical
angles, the field considered as a function of 6 depends on the behavior of the various Hankel
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and Bessel functions of real argument. When the critical angle is reached, in an imaginary
traversal of the ¢=0 plane through angles in 6 starting at 90°, the arguments of some of the
Hankel and Bessel functions become imaginary. Interpolating from the behavior of plane
waves propagating through slabs, the radiated fields are non-zero at the critical angles and
decrease outside the zone defined by these critical angles. In section 4 some computed radiation
field configurations are shown, but these computations were limited to the region within the
first critical angles because of the added computational difficulties involved in going beyond
this voint. Thus an actual determination of the fields in the region beyond the first critical
angle for the parameter values considered must await further computations. To aid in visual-
izing the above comments, some typical eritical angles are shown in figure 6.

-
_~~ W ZONE OF SMALL
. e RADIATION
CYLINDER
—— 1
03
2 ERCLLZY ‘d
oy
'y =%
°x o
2z 9
2 CRITICAL ANGLES
(8 >90°)
Ficure 6. Critical angles of the field for a three- Ficure 7. Cylinder encircled by a single plasma
layer plasma. layer.

4. Exact Solution for the Single Plasma Layer Problem

In this section the radiation pattern of an axial magnetic line source on a conducting
cylinder is considered when a single homogeneous plasma layer which is not contiguous with
the cylinder is present. This geometrical configuration is of importance because of its obvious
relation to the problem of propagation through the boundary layer region of the hypersonic
shock wave.

From the discussion in section 2 the solution of this problem involves the solution of 12
linear equations, or actually of 10 nontrivial equations if A% and B$) are excluded in advance.
The solution for 6% (h) was found, but due to its length only the computed results are presented.

The expression for the radiation field as given in (17) may be factored into two parts in
the form

BBy [ Vienomds (35)

JJ Aperture

where /2] is the field of a point source on the cylinder and the other factor includes the element
and array factors. A proper terminology for /9 is thus “cylinder factor.” This cylinder factor
was programed for computation on the IBM 7090 for the case of a single plasma layer present
and for the plasmaless case.? The program was established with the electron density and
cylinder and plasma radii on separate data cards so that these parameters could be changed
readily. (See fig. 7.)

As stated above, the solution for 6% is quite lengthy and complicated, as is the machine

program used to compute the field. In order to develop an independent check on both, a set
of solutions for the plasma case was taken for decreasing values of electron density and, indeed,

2 The field with o plasma present js given by [Wait, 1959¢].
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the field was found to converge to the plasmaless case. The minimum value of electron density
taken was that corresponding to a relative permittivity of 0.99. The convergence properties
of the series were also examined through separate print outs and found to be quite good. The
field generally converged to five figure accuracy in about 14 terms where the outer plasma
radius, yielding the largest cylinder function arguments, was kept constant at

Computations were made in the plane of the line source and the axis of the cylinder, and
results are presented in figures S8a through 8g. To insure computational accuracy, fairly
modest values for the radii were chosen. The cylinder radius was kept constant at

27

po="""

ko
; . . 3.5m 47
the outer plasma radius as above, and the inner plasma radius was taken at e and o
0 0

a difference of a quarter free space wavelength. The electron densities correspond to

(&

—=0.40, 0.80, 0.90, 0.95, and 0.99.
€0

The chief characteristic of the figures is the extremely sharp variations in field magnitude
at certain angles. In order not to miss the sharp fluctuations, the field was computed at %°

. € , 3
intervals for the —=0.4 and 0.8 cases, and even here the mesh was often not fine enough. In
€) )

2 R

figure Sc <ér0.8, pl;il;;';lrr 0=42.5 °> the field rises to a peak 25 db above the free space field
in a beam only %° wide. This beam and other beams were checked at },° intervals, but in
most cases a simple graphical interpolation was used to complete the curve between %° in-
tervals. The presence of these sharp beams implies the existence of leaky waves that travel
down the cylindrical, lossless, infinite structure and produce highly directive beams which add
to the other fields. The nature of the radiation field of leaky waves traveling along such a
structure and the effect which might be expected if the plasma were lossy and of finite length
are discussed in the next section.

A second characteristic of the patterns is that the field variations take place around an
average which is approximately the plasmaless field. The total power radiated in the region
between the critical angles appears to be about the same whether the plasma is present or not
and the field near broadside remains fairly constant for the electron densities considered here.
A low-power antenna with a narrow broadside pattern might be expected to operate fairly well
in such an environment, but wide and/or scanned beams would be severely distorted.

5. An Approximation Technique for Quasi-Cylindrical Problems

It was pointed out in the introduction that the aspect of the plasma sheath problem which
is of practical interest for mapping and related applications is the one in which the coupling
between the rf energy and the sheath is fairly light; that is, the case in which the maximum
relative permittivity in the sheath does not differ by very much from unity. This aspect of
the problem suggests that the general class of approximation techniques developed from
integral equation solutions for the field are applicable.

In the following paragraphs an exact integral expression will be developed for the field
and the feasibility of approximating the solution to problems related to the cylindrical plasma
sheath problem will be examined.
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5.1. Development of the Approximate Field Expression
Maxwell’s equations in isotropic media, in which e is a continuous function of space, are
VX E=—jouH (a) V.eE=0 (c)
VA H=jwek (b) V-H=0. (d) (36)
The curl of (36a) is taken and curl H substituted from (36b). This results in

VX VX E=w’ueE (37)
When the vector identities
VX VX E=V(V.E)—VE

and
V.eE=eV.E+(Ve) - E (38)
are employed, (38) reduces to
(V+E)E=— V1 (Ve E) (39)
where
=t rier (40)

Now a scalar Green’s function is defined; it satisfies the scalar Helmholtz equation with a
b
point source inhomogeneity, i.e.,

(V4-k3)G(r,r")=6(r—r’) (41)

where r and r’ are coordinate vectors. To obtain an integral expression (39) is multiplied by
@, and (41) by E. These are then subtracted, integrated over space, and the coordinate
variables are reversed to obtain

Er)= f (EV2G—QV’E)dv’ — f GV%(Ve CE)dv’ + f (k2 —k2) GEdv'. (42)

The first term in (42) may be further reduced to a surface integral by applying the scalar
Green’s theorem. Additionally, if a Green’s function is selected so that it vanishes on the
cylinder surface, eq (42) becomes

E(r)= [ E(VG - ds)+ f (k2—k?) G Edo’ — f GV% (Ve-E)dv’. (43)

Equation (43) is an integral equation for the electric field which has little utility when
an exact solution for the field is required. KEven for the case in which e=¢, throughout the
region external to the conducting cylinder, i.e., when the second and third terms in (43) are
zero, a direct solution cannot readily be found because the surface integral in (43) must be
taken over the radial component of the field on the cylinder as well as the source field in the
aperture. Nevertheless, a good approximation to the radiated field may be found by taking
the surface integral over the aperture alone [Silver, 1949]. This approximation is especially
true in regions near broadside.

For the inhomogeneous case the effect of the plasma on the radiation field within the
critical angles is a perturbation on the fields when no plasma is present. Further, the first
term in (43) represents the plasmaless field. The error in this assumption is once again neglect
of the radial field at the eylinder, which is altered by the presence of the plasma. The second
and third terms in (43) thus are taken to represent the field perturbation due to the plasma
and, in fact, the third term will be neglected; it is essentially an integration over the localized
charge density in the plasma. That is, the third term is considered a less significant term than
the second which represents an integration over the currents in the plasma.
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The above comments are represented by (44) and (45)

Etotal = Eno plasma + EDlanma (44)
Epiasma = S (k§— k) GEdv’ (45)

5.2. Integration Over the Plasma

The scalar Green’s function defined by (41) and the condition that G=0 at the cylinder is
[Wait, 1959¢]

7 ’ Jm UoP —i[m(¢p—o’ 2—2z
*swm__w f AW, (uop) | T (utop”) —HE (up”) H;%S(JOSZ) e=itne=gN+hGE=1  (4)

where the primed coordinates refer to the space containing the plasma and the unprimed co-
ordinates refer to the field space. To find any particular far field component the function
(k3—Fk*) @G is multiplied by the components of E in the plasma parallel to the far field vector.
For example, to find the ¢ component of electric field radiated by the plasma

E, (ks—k)GE[X’) - eydv’ (47)

plasmn
plasma

where e, is the unit vector parallel to the far field vector. Of special interest is the plane ¢=0.
In this plane, (47) and hence the field radiated by the currents in the plasma reduces to

B~ f (—k)Glcos ¢/ Ey +sin ¢'E, 1do’. (48)
plasma

Now, the term inside the square brackets in (48) may, in general, be expanded in a Fourier
series in ¢’ and a Fourier integral in 2’ to yield

[cos ¢ Ey+sin ¢’ Ep]=33 [ dle(l, p7)e-ier 41 (49)

where n and [ are the transform variables. This form for the field is of course the same form as
was employed previously for the exact solution to the cylinder problem. Substitution of (49)
and (46) into (48) results in

*© +) 27 © © © o
Ed’plasma:f (Z‘Z,f p,([p, f dd” Z Z ([h f (ll
e Po Jo m=—o N=—o J —= olf =

{ (kg_kﬂ)e—i[—m¢’+h(z~s’)]H§3)(uop) [Jm(u'()p/)——] ,(nz)wop,) é:,;)(u(lp()) n(ly pl>e—i(ﬂ¢'+72') 1 (50)
m (u[)p ) J

A cylindrically symmetrical plasma sheath has been assumed so that the integration on ¢*
may be carried out directly to yield

phm‘brf (Lf p'd, (lh[ dl

-{<k3—k2)«-'“~—~>H,sf><u0p [Fuie) = ') 775000 Jantt, e e 1)
m 00,

In a similar manner the integration on z’ may be carried out, but here there is the possibility
that (k3—k?) varies with z’. In that event the 2z’ integration yields the Fourier transform of
(k5—F?) in the transform variable (h—1[). The integration over / will then yield the convolution
of the transform of (k—#k?) with (I, p’), which is denoted by 3, (h, p’). Then (51) reduces to
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m=—w J —

E%msm:wa p’dp’ Z dh
P

{m(h, )6~ () [ Tnon') 13 (0p') FEs T (5

m (Uopo

The integration on A may be carried out for large p as in (17) to yield

B 4 e B I”O ot i} rB (h /)(,imn/z.l:J (ugp”) —HP (uyp’) M(uopO)]
¢plasma W= 1‘/ £4C2 m\lt; )€ mitoP " v H(2> (UOPO) h=kg cosﬂ

J Py m=—co

(53)

5.3. Characteristics of the Radiation Fields of the Plasma Currents

Application of (53) to the approximate solution of the type of cylindrical and quasi-
cylindrical problems of concern here is by no means simple. The prime source of difficulty
lies in the extremely limited class of functions 3,,(k, p’) [Sonine, 1880] which, when a factor in
the integrand

2 J m(u()p()
’ ’ AT (2) ’ Av
P BIU(]I’J P ) [Jm(u(lp ) Ilm (uop ) II,(,fJ (uop“ ]

yield an integral which is a known tabulated function. Indeed, the cylinder functions which
are solutions to the exact boundary value problem when taken as factors of 3,,(h, p’) do not all
yield known functions for the p’ integration in (53). Considerable investigation of the p’
integration has been made. The net result of this investigation is that the integration over
p’ yields a slowly varying function in 6 that represents a small addition to the free space field.
It was expected that this small perturbation would be the extent of the pattern degradation
within the eritical angles, but the fields computed for the single layer case indicate more sig-
nificant perturbations on the field conficuration than can be attributed to the terms which
result from the p” integration. In general, the p’ integration will yield more significant pertur-
bations as the thickness of the sheath increases. This fact may be gathered intuitively by
considering the equivalent antenna aperture size represented by the sheath thickness and an
image current sheath in the cylinder.

The perturbations which are evident in figure 8 are attributable to the presence of leaky
waves that propagate along the cylinder and sheath and give rise to highly directive radiation
patterns. A leaky wave excited at z’=2z"" and traveling outward along the cylinder with
propagation constant »; and attenuation constant v, in the form

[cos ¢’ By +sin ¢’ B, |=f(p)e! itttz =21 54
é 2

will radiate a directive field with the beam pointing direction given by

cos = ;};

35

ko

and with the beam width determined by 22 as will be indicated in the following paragra oh,
o) k() = (=)
To compute the field radiated by the leaky waves, consider the beta function for such
waves when the sheath is uniform in the 2’ direction

Im,(P")

‘)7|'

(56)

Bm(’b, p/)”’z *1‘(
i

ER Ry R -
where the radial dependence of the function

[cos ¢" [y —+-sin ¢” [, ]
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for the leaky waves is included in the function f,, (p") and the index j is subscripted to the m
to indicate the various leaky waves in each mode. On substituting (56) into (53) there results

oIk 1 1
B ppama™= 2 R %{_7j+i(h+vj)+_7j+i(h_—yj> isioc
{7 0 oy (073675 [ T f10067)— HD () o) - (67)
{L . pap Jm; (P m;\UoP m (%op”) <>>(u0p0) h=kq cos 6

The integral within the second braces is generally a slowly varying function of 6 as was dis-
cussed above. The integration over z’/ which is implicit in the second bracket in (57) and
yields the field pattern of a linear array may negate the above statement, but only the cylinder
factor, which is the field due to a point source, is considered here.

The first bracket in (57) yields the rapidly varying dependence of the field on 6. The
first term reaches peak magnitude at

h=Fk, cos §=—v; (58)
and the second term at
h:ko coSs 0:1’]' (59)

which are at symmetrical points about broadside. It will be recalled that the field in (57) is
to be linearly added to the free space field in this approximation so that the real and imaginary
parts of the rapidly varying functions in (57) are of interest. Figure 9 is a sketch of the
real and imacinary parts of
=]l
[—v;+2(h—r))]

near

§=cos~! 21 (60)

ko

Examination of figure 8 will indicate that the perturbations on the free space field can be
accounted for by the complex addition of functions of the type shown in figure 9 to the free
space field.

The magnitude of the leaky waves may be approximated with reasonable accuracy from
figures Sa through S8g by considering that the peak or null of each sharp field perturbation is
the beam pointing direction of the field radiated by the jth leaky wave. The propagation
constants, »;, and the attenuation constants, v,, can also be approximated using the peaks

Ficure 9. Sketch of the real and tmaginary part of
a field radiated by leaky waves for small angles near
h:Vj.
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and, in addition, the widths of the perturbations. The analytical determination of »; and v;
necessitates the solution of an extremely complicated transcendental equation which involves
the cylinder functions. This latter method has not been carried out, but it is suggested that
the approximations represent a useful method by which these eigenvalues can be obtained.

Without an analytical expression for the propagation and attenuation constant of the
leaky waves, predictions of the effect on the radiation pattern of non-zero losses in the plasma
and a finite length of plasma are difficult. One might expect, however, that non-zero losses
in the plasma would cause an increase in the attenuation factors v, which (57) indicates would
mean a broadening and lowering of the perturbations on the free space field. Similarly,
limiting the sheath to finite length would alter the 3,,(h, p’) function in a form equivalent to
the decrease in aperture size in the z direction and introduce a source field at the disconti-
nuities. Both of these factors would tend to smooth out the field perturbations. The field
pattern in the presence of a hypersonic plasma sheath would thus not be expected to have the
sharp perturbations of this simplified model.

6. Conclusions

It has been demonstrated that quite a significant distortion of the field pattern is effected
by the presence of a lossless plasma sheath. The chief characteristics of this distortion are:

1. The presence of critical angles in the field which reduces the power radiated in certain
directions so that a blackout zone is introduced in which the field probably is extremely small.

2. The presence of narrow but large peaks and valleys in the field between the critical
angles which are attributable to the generation of leaky waves that travel along the cylindrical
structure.

3. The generation of a transverse field that changes the plane polarized radiation field
when no plasma is present to an elliptically polarized field in every direction except the planes
¢»=0 and ¢=r.

4. The presence of slowly varying perturbations on the field which are on the order of
several db due to the non-leaky wave fields in the plasma.

The effect of these distortions on the total field pattern depends on the aperture distribu-
tion. In (35) this dependency is made evident: the total field is indicated to be the product
of the element, array, and cylinder factors. Only the cylinder factor is shown in the curves.
For array factors which yield narrow, broadside beams with very low sidelobes, the distortion
under the parameter values discussed in this paper will be represented by increase or decrease
of only several db in pattern gain of the antenna. When the beam is scanned beyond a few
degrees, however, or when the array factor is a broad beam, a great deal of distortion occurs
for even modest electron densitites in the sheath.

The author is indebted to Dr. A. T. Villeneuve for his many contributions to this paper.
The author also wishes to express his appreciation to Dr. W. H. Kummer for suggesting the
problem and for a continued interest in and encouragment of the work.
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