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The rad iat ion fields of a magnetic line source axially oriented on a conducting cylinder 
which is in a plasma environ ment have been analytically determined. The plasma environ
ment is taken to be a seri es of homogeneous cylindrical layers none of which is contiguous 
with the cylin der . It is demonstrated t hat a quite significa nt d istortion of t he field pattern 
is e ffected by t he prese nce of a lossless plasma sheath. Characteristics of t he rad iat ion 
fields are discussed a nd rad iation pattern s, computed in a pla ne t hrough t he axis of the 
cylinder and the line source, a re presen ted. The patterns are found to have large narrow 
amplitude flu ctuatio ns t hat can be attributed to lea ky waves. 

1. Introduction 

The gross effects on radio wave propagation of the plasma sheath which envelopes hyper
sonic vehicles are fairly well understood. It is recognized that when such vehicles travel at 
sufficien t speeds in the upper atmosphere there may b e a blackou t of r adio co mmunicatio n and 
sufficient distortion of r adar signals and pat terns to make radar systems unreliable. 

The most direct approach to increasing communication and radar system reliability when 
the sheath environmen t is present is to increase the propagation frequency well beyond the 
peak plsama frequency in t he shock wave. Tn t his way the sheath is made to appear trans
parent to the waves so that, aside from an increase in the probabili ty of breakdown on tr ansmit, 
the sheath migh t just as well not b e there. The problem is, however, that the plasma frequency 
in some regions of the sheath can go well beyond t he [req uency of operation of present system . 
In regions of the sheath af t of the nose of a vehicle there is a significan t decrease in electron 
densi ty so that, in general, th ere is a point at which an rf system will operate with only modest 
distortion of the propagating signals. It is such a region t hat is of concern in this paper. In 
particular , we shall investigate t he effect of the sheath on propagation when the propagation 
frequency is greater than the plasma freq uency, but when they are both of the same order of 
magnitude. 

The geomet,rical co nfiguration of the hypersonic plasma sheath in term s of the spatial 
variation of both charged and uncharged par ticles has b een subj ected to a great deal of investi
gation over the p ast few years, and while an exact determination of the spatial variation of the 
cdnstitutive parameters of the sheath has not b een made for even the simplest of vehicle con
figurations, a general descrip tion is available for cylindrically symmetrical vehicles with tapered 
nose sections. I n this r epor t the r adiation characteristics of a linear slot antenna flush mounted 
to a circularly cylindrical vehicle will be considered. In the sections 2, 3, and 4 the enveloping 
plasma sheath will be taken to b e a series of consecutive plasma layers contiguous with each 
other but separated from the body of the vehicle. This separation is characteristic of hyper
sonic shock waves at other than stagnation regions. The vehicle, as well as the shock wave 
r egion, will be taken to be infinitely long and the cylinder will b e considered to be infinitely 
conducting. In section 5 an approximation teclmiq ue for determining the field distortion due 
to sheaths which are not necessarily cylinch-ical and composed of homogeneous layers will be 
developed and discussed. It will be shown t hat this technique predicts the significant distor
tions which have been computed for t he single layer case under the assumption of leaky waves 
excited by the source. 

I This work was sponsored by the Electronics Rcsealcb Directorate, Air Force Cambridge Researcb Laboratories, under Contract No. 
AF!9604-8386. 
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2. Formulation of the Radiation Problem 

2.1. Solution for the Field in Cylindrical Regions 

The radiation field of a magnetic line source lying on a ci.rcularly cylindrical conducting 
surface is to be determined. The surface is infinite in extent, but the line source is finite and 
lies parallel to the cylinder axis. Encircling the surface is a series of concentric cylindri.cal 
regions containing homogeneous plasma media with arbitrary electron densities, except for the 
inner and outer regions which have zero electron density. This geometry is depicted in figure 1. 

The technique for obtaining a solution to this cylindrical radiation problem is well known. 
The solution may be found in terms of E and H modes referred to the z direction, which forms 
the cylinder axis. Expressed in terms of potential functions, F and A, satisfying the scalar 
Helmboltz equation the two sets of modes 

(1) 

are defined for each cylindrical region. The total field is then 

(2) 

The propagation and plasma frequency are considered to be in the kilomegacycle region, 
so that the cyclotron frequency, which is entirely due to the earth 's magnetic field in the absence 
of sources of low frequency magnetic field on the vehicle, may be neglected. The constitutive 
parameters in the cylindrical regions are thus isotropic. Further it is assumed that each region 
is characterized completely by an equivalent constant permittivity. 

Solutions for A and F may be given in terms of cylindrical wave functions in the form 
[Wait, 1959aJ. 

A = m~ '" f -"'", dh {a",(h)l-1!;;) ( ...jF-h2p) + A", (h) J m ( ...jF h2p) } e-Hm</>+hzl 

F = m~ '" f -"'", dh {bm (h)l-1!;;) (...jF - h2p) + B", (h)J",(...jF h2p)}e-Hw!>+hz) (3) 

and the fields may be found directly from eq (2). 

CONDLCTING 
CVUr-.{)ER 

CYLINDER DETAIL 

PLASMA ZONES 

---'--'-'I--ELECTRON FREE ZONE 

CONDUCTI NG CYLINDER 
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FIGURE 1. Geometl·ical configuration f or cylindTicat 
plasma sheath problem. 



to the radial direction in any r egion is 

E z= m~ '" I _oo", elh {(lc2 - h,z)[a",(h)H ;;, ) ( -Jk2-h2p) + A m(h)Jm(-Jle2- h2p)]} e- iCmHhZ) 

H z= m~ '" I _OO", elh { (F-h2)[ b m (h)H,~) (-JF - h2p) + B", (h) J m(.JP - h2p)]} e-i(mH hz) 

E ",= m~ '" I _oo", elh { iwJ.l ( -./F-h,2)[ bm (h)H,;~) '( ,11c2- h2p)+ B",(h)J :n( -JP - h2p)] 

- ~h [am (h)H,~) (-JF - h2p) + A m (h)J ", ( -J1c2 - h}p)] } e-i(mH hz) 

H",= m~ '" I-"'", dh { - ~: (-JF h,2)[am (h)H~~) '( -JF h2p) + Am(h)J :n( jJC2- h}p)] 

_ ~h [ b m (h)H,~) h/F-h2 p)+Bm (h)J",h/F- I/p) ] } e-iCmHhZ) . (4) 

Equa tions (4) represent the complete solution for the field in any homogeneous region of 
space with charac terisLic propagation constant le. The set of coeffi.cien ts am, A m, bm, and E m 
are determined for each r egion by matching the lour fi eld expressions at each boundary. Since 
t he field are fini te in each r egion the tr ansfornl. oper at,ion may be considered to be a factorable 
operft tor and the matching technique consist s of equa ting the quan tities inside the braces 
ill eq (4) . 

2 .2 . G eneral Formulation for the Multilayer Problem 

T o fftcilita te the wri ting of solu tions the convention adop ted will b e t ha t the cylindrical 
surfaces are at r adii Pi where the cylinder surface is Po ftnd the ou ter plasma r egion is bounded on 
the outside by PN . The regions themselves ftre numbered the s[\,me as their ou ter bound aries 
so th at le j represents the propagation constan t of the j th r egion wherej h as the values 1, 2, . . , 
N + 1 and leo is reserved for the plasma free regions, i. e., 

(5) 

The expansion coeffi.cien ts of the fields are labeled wi th a superscrip t appropriate to t heir 
regions in the form a,\{) ftnd as in [Wait, 1959a] ft new symbol is defined: 

Uj= Jle~-h2 . 

Equating the braces of (4) at the j th boundary y ields the four equabons 

u;[a,~{) H;;,) (u jPj ) + A,;{) J",( UjPj) ] =U;+ l[a~{+ 1) H ;;,) (UJ+ 1Pj) + A~+1) J m ( UJ+ 1Pj)] 

u;[b,;[> H ;;,) (UjPj) + B,~) J ", ( '/l jPj) ]= U;+l[ b~{ +1) H;;,) (UJ+ 1 Pj) + B~+1 ) J m( UJ+ J Pj ) ] 

ile~ [ (j) }'T(2)' ( )+ A (j) J ' ( ) ] mh [ I (J) }C T(2)( )+ B (J) J ( )] - - U j am '- m U jPj 'm '" UjPj - - Om 1 m Uj Pj m m UjPj 
J.l W Pj 

- i k ;+l [ (J +l )}cT(2)' ( )+ A (j +l)J ' ( ) ] - - -- u j+ Jam 1 m Uj+ JPj ", m Uj+ 1Pj 
J.lW 

mh [b (j+J) H (2)( )+ B (H l)J ( ) ] - - m In U j+1Pj m In .U j+IP j . 
Pj 
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An analytic solution to the problem is found by determining the 4 (N + 1) modal coefficients 
a;,{), A ;,{), b;,{), B ;,{) ;j=l, 2, ... , N + 1. Equations (6), when written for the N sUTfaces, repre
sent 4N equations. The necessary additional four equations are obtained from the r adiation 
condition which requires that there be only outgoing waves in the external region and from 
matching the fields to the source at the cylinder surface. Thus, 

(7) 
and, at P= Po 

(8) 

E ¢= m~oo I -"'oo dh{iwMU1[b~)H~) '(U1PO) +B,~)J;n(UI Po)] 
- mh [a~) H,~)(U1PO) +A~)J1n(Ui PO) ]}e- H1n¢+hZ) 

Po 

(9) 

where t he expression on the right side of (9) represents the expansion of the line SOUTce in a 
Fourier integral in z and a Fourier series in cf>. Equation (9) may then be simplified by equating 
only the braces. 

2.3. Asymptotic Evaluation of the Radiated Field 

To find the radiated field it is necessary to carry out the integration and summation indi
cated in (4) when.j = N + 1. The usual technique is to change the cylindrical field coordinates 
p, ¢ , and z to t he spherical coordinates R, (), ¢ (see fig. 1) and to evaluate the integral asymp
totically for large R. Thus under the substitutions 

p= R sin () 

z= R cos () 

the ¢ component of the electric field is 

E ¢= m~ oo I -"'oo dh { iWMUN+lb;:+l) H~;) ' (UN+l R sin 0) 

mh a(N+l) H (2) (u R sin ()} e- i (1nq,+hR cosO). (10) 
R sin 0 1n '" N+l 

For finite m and large value of the argument 1lN+IR sin (), the Hankel function is approximately 
[Wait, 1959b] 

(11) 

and its derivative is 

(12) 

Substitution of (11) and (12) into (10) yields 
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which is an integration on the real axis of the h-plane. The radiation field is the sum of terms 
of order I i R. Terms of this order are readily determined from (13) by evaluation of the integral 
by the method of stationary phase which yields as solution for the integral [Copson, 1946] 

the quantities 

(14) 

where the upper solution is obtained if Xo is not a stationary point and the lower solution holds 
when Xo is a stationary point. Examination of (13) clearly indicates that the term for which 
a,',;" +I) is a factor yields no radiation fields while the b,;~+I) factor yields a radiation field only 
at the stationary points of the phase term 

which are at 
(11, cos 8+ UN+l sin 8) = (h cos 8+ 7c~-h2 sin 8) 

h = 7co cos 8. 

From (16) , (15), and (13), then, the radiation field is given by 

(15) 

(16) 

(17) 

Equation (17) represenLs the r/> component of the radiated field. A similar expression 
holds for the 8 component of the field so that once the coefficients b,',;"+ l) and a;~+ l ) are deter
mined the field may be computed numerically. Additionally, it has been shown that the inte
gration over 11, yields no radiated fleld except at the stationary points. It should be pointed out, 
however, that the h integration passes through branch points at U j= O along the real 11, axis 
(fig. 2). A plasma sheath differs from a dielectric sheath in that for a plasma the branch 
points are within tbe region - 7co< Re h< 7co, which is the region of integration from which the 
radiation field is obtained. To remove difficulties tbat arise because of the presence of the 
branch points along tbe integration patb, a small loss term may be added to propagation con
stants in the layers, thereby removing the branch points from the real axis. The branch lines 
may then be drawn so as not to cross the real axis and the Fourier transform remains valid. 
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FIGURE 2 Integration path in the h-plane. 
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3. General Characteristics of the Far Field With Several Plasma Layers 

The general solution for the radiation field when several plasma layers are present is 
difficul t to reduce to a useful form because of the size of the expressions and the tedious work 
required to obtain them. As indicated in section 1, the solution for the field when a single 
noncontiguous layer is present requires the reduction of 12 linear equations, and this number 
increases by 4 for every additional layer. Clearly, then, the field expressions are not amenable 
to an extensive quantitative analysis without resort to numerical solu tions obtained with the 
computer. Nevertheless, some qualitative and semiqu anti tative information may be gathered 
about the field pattern without an actual solu tion of the equations. 

3 .1. Polarization of the Field 

The expressions for the radiated field are 

E q,= "'~ oo I _oooo dh [iwJ.Lyob;::+l) H,~)I (Yo p) ]e -i(mHh') 

H ", = £ [ 00 dh [-ik~yoa~;:+ l )H;;')'(Yop ) ]e-i(m"'+hZ ) 
'In=- co , -co /-LW 

(18) 

where E", and H", represent the electric and magnetic field vectors respectively of t he orthogonal 
components of the radiated field . It will be shown in the following section that 

a,;~ + l)IP;l(uop) is odd in m and 

b~+l)HS2j (uop) is even in m, 

and since the derivatives of the Hankel functions have the same behavior in m as the Hankel 
functions th emselves, eq (18) can be written in the form 

E ", = £/2m [ 00 dh[iwl1-unb ~v+ l ) H ;;,)' (1I op)]e -ih,[ e-im<i>+ eim"'] 
o . - 00 

H ,,= i:, ~2!!! f 00 dh [ - ik~ uoa.~V+ l ) H;;)' (YOp)] e-ihZ[e- imd>_ eimq,] 
o . - 00 J.LW 

(19) 

where 

(20) 

The field expressions in (19) indicate that the radiated field is in general elliptically polar
ized with E q, given by the upper expression in eq (19) and E", given by 

Ee= /11-0 H ", -y EO 

(21) 

where H q, is the lower expression in (19). In the planes cp = O and Cp = 7r, the Ee component is 
seen to be zero and the field is plane polarized. Elsewhere, both components of the field are 
present so that the plasma sheath is seen to introduce a transverse electric field component that 
is not present without the sheath. The order of magnitude of this transverse field, which 
determines the extent of the ellipticity of the radiated field, is difficult to ascertain without 
actual numerical computations, but it is expected that the degree of ellip ticity will be small. 

3.2. Proof of the Even and Odd Nature of the Modal Coefficients 

In order to symbolically depict the 4 (N + 1) equations needed to determine the modal 
coefficients, figure 3 is generated, which may be thought of as a representation of the matrix 
that multiplies the line matrix of unknown coefficients to yield the source function P m(h). 
The shaded areas in the illustration are the nonzero sections of the matrL,(, although particular 
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MODAL COEFF ICI ENTS 
(I) (I) (5) (5) 

Om (I) Am til (2) (3) (4) (51bm (5) 8 m 
bm 8m~~ ~Om Am 

'0 
, Pm (h) 

FIGURE 3. Symbolical repre~entation of 4(N + 1) 
linear boundary matching equations for N =4. 

a (4 ) b(4) A(4) B(4) 

............ ::: ..... I---__ ~m~ ____ .-________ -, _ _____ ___,----------I m m m 

::::::::: :::::::::: ::: ••• •• ........•.•... . . . ••... . ......• . . .. .. . . 0 
2 

- u 4 J m (u4 P3) 0 
:::::::::::::::::::::: .............. ... ... .. I---------i--------f------+-------j 
~~i~~~~~ ~ ~~\~ ~~ ~ ~ ~~~ ~~ 2 
~~~~ ~~~ ~~~~~~ ~~ ~~ ~: ::' 
H:::::n:::::::::::j--------+--------+-------+-----~ 

o 2 (2) 
- u4 Hm (u4 P3) 0 -u4 J m (u4 P3) 

............... ...... •••• •........... . 

:::::: ::::::::::::::: •.•• •... .....••..... 

(2) , 
- i wf'u4 Hm (u4 P3 ) 

mh P3 J m (u4 P3 ) 

:::: P3::::::::::: :I----------j---------+ -::---
·k2 ......... ....... ..... 

::::: ::::::::::: : ... ......... .......... ..... ... .. ......... .. 
.. 
:: ::::::::: ::: ::::::: .. .. .... ... ...... 

·k 2 ( 2)' 
1 4 u H (u p ) _ 4 m 4 3 
flW 

o 

mh H(2)(u p) 
P3 m 4 3 

0 

2 (2) 
u4 Hm (u4 P4 ) 

i wf'U4H~)' (u4 P4 ) 

.mh H(2) (u p ) 
P4 m 4 4 

1 4 
flW u 4 J m '( u4 P3 ) 

2 u4 J m (u4 P4 ) 

0 

_mh J m(u4 P4 ) 
P4 

·k2 
1 4 __ u4 J';'(u4 P4) 
flW 

- i "'f'u 4 J ~ (u4 P3) 

----~---.--

mh P
3 

J m (u4 P3 ) 

0 

2 
u 4 J m (u 4 P4 ) 

i "'f'u4 J';' (u 4 P4 ) 

mh 
-~ J m (u4 P4) 

FIGU R E 4. Detail of a typical 4-column from figure 3 showing the multi pliers of the modal coejJicients for l·egion 4 
at the boundaries P3 and p,. 

coefficien ts within th e sh aded section are zero as is indicated in figure 4 which is a detail of the 
sh aded region of a typical 4-column of figure 3. 

It ma~- be seen hom figures 3 and 4 that the m dependent terms required to compute 
a (:;.+ 1) and b (~:+l) are th e B essel and Hankel functions and their first derivatives and the 
quantity m itself. The function P m(h) is independent of m for the lin e source. In v iew of this 
th e no tation below is used 

696-013- 63- - 10 

a (;;,+ l)=](m, H"" J m ) 

b(;;,+ l )=g(m, Hm, Jm). 
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First it will be shown that 

then that 

f(m, I-L "" J -m) = (- 1) -'''j(m, H"" I n,) 

gem, EL m, J _ m) = ( _l)-mg(m, H m, J m) 

J( -m, H m, J m) = -J(m, H m, J m) 

g( -m, H m, J m) = g(m, H "" J m) 

(23) 

(24) 
and finally that 

a (~+l )I-I";,'(uop) is odd in m 

b (~+l)H(:;,)(~{,op) is even in m. 

Consider the equations depicted in figure 3. A solution may be found for a(~+ l ) and 
b (~+l) by taking the quotient of the appropriate determinants. Every term in the determinant 
in the denominator will contain either a cylinder function or a zero . The determinant in the 
numerator will be missing a column containing cylinder functions since the forcing function will 
replace the appropriate column. The Bessel and Hankel functions and their derivatives behave 
as [Sommerfeld, 1949] 

so that 

H !'!}n(x) = (-l)"'I-r/,/(x) 

J -m(x)=( _ l)mJ m(x) 

a('::;;'!) -j( -m, H -m' J -m) =f( -m,( - l) "'H"" (-1 )mJ m) 

b(!!.;;'!)= g( -m, H _,n, J -m) = g( -m,( - l)mH m,( _l)mJ m). 

(25) 

(26) 

N ow, a number common to a column of a determinant may be factored from the determinant 
without changing the value of the determinant. If all the H~2k(x) and J _m(x) in the expressions 
for a (!!.;;' l ) and b(!!.;;'l) are r eplaced by the equivalent terms given in eq (25) and then the factors 
(- 1)'" are canceled from corresponding columns in the determinants in the numerator and 
denominator, the result will be that all such (- l) m terms will cancel but one, left over in the 
denominator. Hence, 

f(m, H _m, J -m) = (-1) -"'j(m, H "" J",) 

gem, H _"" J - m) = (-l)-"'g(m, H "" J m) . (27) 

MODAL COEFFICIENTS 

\ 1(1) (I) (21 (31 (41 (5~j.(51 
bmj Bm~~~QmAm 

(51 (51 
bm 8 m 

.~x I 
m' X lmx 

XOX O'X o lx 

o ~ j~ XO 

~x m-X mX :m x mX 
r-- T 

x mlxm x mx 

~ XO 
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FIGURE 5. Symbolical representation of o4(N + 1) 
linear boundary matching equations for N = 4 with 
zeros , tTl, and non-ill coefficients placed in evidence. 



N ow, to find the b eh avior of a (~+ l) a nd b (:~+ l ) wi t h m itself, once again consider figure 3. 
If that figure is reconstructed so that zero coefficients, coeffi cien ts containing m, and coeffi cients 
not containing m are placed in evidence, th e symbolic r epreaentation or figure 5 is ob tained for 
the bounclary m atching equations . Clearly the 4 (N + 1) equations can be r educed by elimi
nating one v ariable at a step star ting with a (,;) on th e left side of figure 3. E xamination of the 
continued applic fL tion of this process reveals that coeffic ients that ar e even multiples of mare 
always added to even multiples of m and vice versa and, furthermore, that the for cing function 
will always have factors th at are of th e sam e even or odd nature as t he factor which multiply 
b ;~ a nd B,;!) . If t he process of r educing one varia ble at a time is cont inued un til th e solution 
for b (:~+ l ) is found, i t is clear that b (;~+ l ) h as the same even or odd characLer as P m(h), which 
is even. in m, and a(:;;+l) has an odd behavior in m. rrllus 

or 

.f( -m, Elm, J ",) = - f(m , H In , J ",) 

g( - m, II"" J m) = g(m, I-J."" J In ) 

J( - m, H-m, J - m) = -f(m, I-J._"" J - m) 

g( - m , II- m' J - m) = g(m, EL"" J - m). 

On taking eqs (27) and (29) together, i t is found tilat 

f(- m, IL "" J - rn) =- (- l) -",](m, H"" J ",) 

g( - m, H-m, J _",) = (_ l) -mg(m, JIm, J m). 

(2 ) 

(29) 

(3 0) 

If the express iolls in eq (3 0) are mul tiplied by I1\~,) (Hop), which has the m beh avior indicated 
in eq (25), the d es ired r esul t is found : 

(31) 

3.3. Critical Angles of the Field 

Th e I' fLdiation field in the direction 8 was shown to be con tributed by the in tegration along 
the infini tesimal por t ion of the r eal h axis about th e point 

h= lco cos e. (32) 

Additionally, i t was shown that singulari ties at the points 

(33) 

could be removed from the r eal h axis with the addition of a sm all loss term to t he propagation 
constants in the layer s. The con tribution to th e radia tion field of th ese singular poin ts tak e 
place in the directions 

(34) 

which are exactly the cri tical angles defined in ray optics at which t otal reflection occurs. For 
angles of ray incidence beyond the critical angle r ay optics predicts no transmission. An 
exac t solution to the refl ection problem of a plane wave inciden t at greater th an the cri tical 
angle on an infini te plane plasma slab of fini te thickness, however , indicates th at power is 
coupled through the slab. The amount of power coupled decr eases with increasing angle of 
incidence b eyond the cri tical angle and drops off at a fas ter rate as the electron densi ty and 
the thickness of th e slab ar e incr efLsed. 

For th e cylinder problem the solution m ay b e found explicitly for regions defined by 
angles within a nd beyond th e cri tical angles of th e v arious layer s. Wi thin the firs t critical 
angles, the field considered as a function of e depends on the b ehavior of th e v arious Hankel 
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and Bessel fnnctions of real argnment. When the critical angle is reached, in an imaginary 
traversal of the ¢ = O plane through angles in (J starting at 90°, the arguments of some of the 
Hankel and Bessel functions become imaginary. Interpolating from the behavior of plane 
waves propagating through slabs, the radiated fields are non-zero at the cri tical angles and 
decre ase outside the zone defined by these critical angles. In section 4 some computed radiation 
field configurations are shown, but these computations 'were limited to the region within the 
first critical angles because of the added computational difficulties involved in going beyond 
this Doint. Thus an actual determination of the fields in the region beyond the first critical 
angle for the parameter values considered must a'wait further computations. To aid in visual
izing the above comments, some typical critical angles are shown in figure 6. 

CYLINDER 

/"" ZONE OF SMALt. 
/"'" RAD IATION 

/' 

CRIT ICAL ANGLE S 

( 9 >90- ) 

FIG U HE 6. Critical angles of the field for a th"ee
layer plasma. 

0, 

0, z 
~ = d 

FIG U HE 7. Cylinder encil'cled by a single plasma 
layer . 

4. Exact Solution for the Single Plasma Layer Problem 

In this section the radiation pattern of an axial magnetic line source on a conducting 
cylinder is considered when a single homogeneous plasma layer which is not contiguous with 
the cylinder is present. This geometr ical configuration is of importance because of its obvious 
relation to the problem of propagation through the bounchry layer region of the hypersonic 
shock wave. 

From the discussion in section 2 the solution of this problem involves t he solution of 12 
linear equations, or actually of 10 nontrivial equations if A <;! and B ?d are excluded in advance. 
The solution for b<;! (h) was found, but dne to its length only the computed results are presented. 

The expression for the radiation field as given in (17) may be factored into two parts in 
the form 

E",= Eg f V( z)eikoZCoso dz 
Apertnre 

(35) 

where EZ is the field of a point source on the cylinder and the other factor includes the element 
and array factors. A proper terminology for Eg is thus "cylinder factor. " This cylinder factor 
was programed for computation on the IBM 7090 for the case of a single plasma layer present 
and for the plasmaless case.2 The program was established with the electron density and 
cylinder and pl asma radii on separate data cards so that these parameters could be changed 
readily. (See fig. 7.) 

As stated above, the solu tion for b<;! is quite lengthy and complicated, as is the machine 
program used to compute the field . In order to develop an independent check on both, a set 
of solutions for the plasma case was taken for decreasing values of electron density and, indeed, 

2 The fi eld with 0 plasma present is given by [Wait, 19590) . 
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the field was found to converge to the plasmaless case. The minimum value of electron density 
taken was that corresponding to a relative permittivity of 0.99. The convergence properties 
of the series were also examined through separate print outs and found to be quite good. The 
field generally converged to five figure accmacy in about 14 terms where the outer plasma 
radius, yielding the largest cylinder function argmnents, was kept constant at 

Computations were made in the plane of the line source and the axis of the cylinder , and 
results are presented in figmes Sa through Sg. To insme computational fLccm acy, ffLirly 
modest values for the radii wer e chosen. The cylinder radius was k ept constant at 

27r 
Po=-- ' 

ko 

the outcr plasm a radius as abovc, and the inn er plasma radius was taken at 3k~n:. alld 

a differ ence of a quarter free space wavelength. The elec tron densities correspond to 

E 
-=0.40, O.SO , 0.90, 0.95, and 0.99. 
EO 

The chief chamcteristic of the figures is t he extrem ely sharp variations in field magnitude 
at certain angles. In order not to miss the shm'p fluctuations, the field was computed at XO 
intervals for the -=- = 0.4 and O.S cases, and even here the m esh was orten not fine enough . In 

EO 

figme Sc (~ = 0 .8, Pl = 3;57r, 0= 42.5 0 ) the field rises to a peak 25 db above the fr ee space field 
EO ICo 

in a beam only W wide. This beam and other beams were check ed at ~{OO intervals, but in 
most CfLses a simple graphical interpolation was used to complete the curve between ~~o in
tervals. The presence of these sharp beams implies the existence of leaky waves that travel 
do·wn the cylindrical, lossless, infini te s tructure and produce highly direcLive b eftms which add 
to the other fields. The nature of the r adiati(m field of leitky waves traveling along such a 
structm e and the effect which might be expected if the plasma were lossy and of fini te length 
are discussed in the n ext sec Lion. 

A second cham cterist ic of the patterns is that the field variations take place ftl"OU nd an 
average which is itpproximately the plasmaless field. The total power mdiated in the r egion 
between the cri t ical angles appears to be fLbout th e same whether th e plasma is present or not 
and the field near bro adside remains fairly constant for the electron densi ties considered h ere. 
A low-power antenna with a n arrow broadside pat tern might be exp ected to oper ate fa irly well 
in such an environment, but wide and/or scanned beams would be severely distorted . 

5. An Approximation Technique for Quasi-Cylindrical Problems 

It was pointed out in the introduction that the aspect of the plasma sheath problem which 
is of practical interest for m apping itnd r elated applications is the one in which the coupling 
between the rf energy and th e sh eath is fairly light; that is, the case in whi ch the m aximum 
relative permittivity in the s heath does not differ by very much from unity. This aspect of 
the problem suggests that the general class of approximation t echniques developed from 
integral equaLion solut ions for the field ar e itpplicable. 

In the followin g p aragraphs an exact integral expression will be developed for the field 
and the feasib ility of itpproximittin g the solution to problems related to the cylindrical plasma 
sheath problem will b e examined. 
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5.1. Development of the Approximate Field Expression 

M axwell 's equation in isotropic media, in which E is a continuous function of space, are 

(b) 

\7. EE = O (c) 

\7 . H = O. (d) 

The curl of (36a) is taken and curl H substi tu ted from (36b). This results in 

(36) 

\7X \7X E = w2}lEE (37) 
When the vector iden tities 

and 
(38) 

are employed, (38) reduces to 

(39) 

where 
(40) 

N ow a scalar Green 's function is defined; i t satisfies the scalar Helmholtz equation with a 
point source inhomogeneity, i .e., 

(\72+ k~) G(r , r ' ) = o(r- r' ) (41) 

where r and r ' are coordinate vec tors. To obtain an integral expression (39) is multiplied by 
G, and (41) by E. These are then subtrac ted , in tegrated over space, and th'e coordinate 
variables are reversed to ob tain 

(42) 

The first term in (42) may be further reduced to a surface in tegral by applying the scalar 
Green 's theorem. Addi tionally, if a Green 's function is selected so that i t vanish es on the 
cylinder surface, eq (42) becomes 

(43) 

Equation (43) is an integr al equa.tion for the electric field whieh has li ttle u tility when 
an exact solution for the field is required . Even for the case in which € = EO throughout the 
region external to the conducting cylinder , i. e., when the second and third terms in (43) are 
zero , a direct solut ion canno t r eadily be found because the surface integr al in (43) must be 
tak en over the radial component of the field on the cylinder as well as the source field in the 
aper ture. Nevertheless, a good approximation to the radiated field may be found by taking 
the surface in tegral over the aper ture alone [Silver , 1949J . This approximation is especially 
true in r egions near broadside. 

For the inhomogeneous case the effect of the plasm a on the r adiation field wi thin the 
critical angles is a per turbation on the fields when no plasm a is presen t. Further, the first 
term in (43) represents the plasmaless fi eld. The error in this assump tion is once again neglect 
of the r adial fi eld at the cylinder , which is altered by the presence of the plasm a. The second 
and third terms in (43) thus are taken to represen t the field perturbation due to th e plasma 
and, in fact, th e third term will be neglected; it is essentially an in tegration over the localized 
ch arge density in the plasma. That is, the third term is considered a less significant term than 
the second which represents an integration over the curren ts in the plasma. 
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The above comments are represented by (44) and (45) 

E IOlnl "" Eno Vl asrna + E VlaRm a 

EVl a sma"" f(k~-k2)GEdv' 

5.2. Integration Over the Plasma 

(44) 

(45) 

The scalar Green's function defined by (41) and the condi tion that G= O at the cylinder is 
[Wait, 1959c] 

G= i. £ f '" dhl-Im(uop) [Jm(UoP' ) -l-I;~) (UoP' ) J~~uoPo) ] e-t [m(",-,V )+h(z-z'JI (46) 
871" m =- ", -'" Hm (l1o Po ) 

where the primed coordinates refer to the space containing the plasma and the unprimed co
ordinates refer to the field space. To find any particular far field component the function 
(k~-P) G is multiplied by the components of E in the plasma parallel to the far field vector. 
For example, to find the ¢ component of electric field radiated by the plasma 

E "'pIasma =f (k~-P)GE (r ') . e",dv' 
plasma 

(47) 

where e", is the unit vector parallel to the far field vector. Of special interest is the plane ¢ = O. 
In this plane, (47) and hence the field radiated by the cmrents in the plasma reduces to 

E ", I =f (k~-P)G[cos ¢'E",,+sin ¢'Ep, Jdv'. 
p asma 

plasma 
(48) 

Now, the term inside the square brackets in (48) may, in general, be expanded in a Fomier 
series in ¢' and a Fourier integral in z' to yield 

(49) 

where nand l are the transform variables. This form for the field is of comse the same form as 
was employed previously for the exact solution to the cylinder problem. Substitution of (49) 
and (46) into (48) results in 

E "'plasma = f -"'", dz' i~ p'dp' .r" d¢' mt;,. ro nt;,.", f -"'", dh f -"'", dl 

.{ (k~-P)e-i [ -m",'+"(z-Z')IHi~)(uop) [JlIl(UOP')-H1\~) (UOP' ) ~;~~~:;~)J an(l , p' )e-t (n""+I Z'J } . (50) 

A cylindrically symmetrical plasma sheath has been assumed so that the integration on ¢' 
may be carried out diTectly to yield 

In a similar m anner the integration on z' may be carried out, but here there is the possibility 
that (k~-P) varies with z' . In that event the z' integration yields the Fomier transform of 
(k~- lc2) in the transform variable (h - l) . The integration over l will then yield the convolution 
of the transform of (k~-P) with am(l, p' ), which is denoted by (3",(h, p' ) . Then (51) reduces to 
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E", [ = 27r f a> p'dp' -£ f a> dh 
pagma 

Po m=- co -oo 

{ {3 (h ' ) -ihZ TT(2) ( ) [J ( ') } -T (2) ( ') J ",(uo po) J} 
. rn, P e U rn Uo P m Uo P - 'L in UOP I-I';;.) (UOPO) . (52) 

The integration on h m ay be carried out for large P as in (17) to yield 

e- ikll f a> '" 
E ", [ .. rn. = -47r -1'~ p' clp' L: 

p 1, Po m=- co 

(53) 

5.3. Characteristics of the Radiation Fields of the Plasma Currents 

Application of (53) to the approximate solution of the type of cylindrical and quasi
cylindrical problems of concern here is by no means simple. The prime source of difficulty 
lies in the extl'emely limited class of functions i3m(h, p' ) [Sonine, 188 0] which, when a factor in 
the integrand 

'{3 (h ') [ J ( ' ) l:-I (2) ( ') J m(uoPo) ] P 'II! , P '" UoP - '" UoP l:'T (2 ) ( )' 
Lm UoPo 

yield an integral which is a known tabulated function. Indeed, the cyl inder functions which 
are solutions to the exact boundary value problem when taken as factors of (3", (h, p' ) do not all 
y ield known functions for the p' integration in (53). Considerable investigation of the P' 

integration has been m ade. The net result of this investigation is t hat the integration over 
p' yields a slowly varying function in 8 that repl'e ents a mall addition to the fl'ee space field. 
It was expected that this small perturbation would be t he extent of the pattern degradation 
within the critical angles, but the fields computed for the sinO'le layer case indicate more sig
nificant pertmbations on the field configmation than can be attributed to the terms which 
result from the p' integration. In gener al, the p' integrat ion will yield more significan t per'tm 
bations as the thickness of the sheath increases. This fact may be gather ed intuitively by 
considering the equivalen t antenna aper tme size represented by the sheath thickness and an 
image curren t sheath in the cylinder . 

The pertul'bations which are evident in figm'e 8 are attribu table to the presence of leaky 
waves that propagate along the cylinder and sheath and give rise to h ighly directive radiation 
patterns. A leaky wave excited at z' =z" and traveling outwaI'd along the cylinder with 
propagation constan t V j and attenuation constant "( j in the form 

will radiate a directive field with the beam pointing direction given by 

v 
cos 8=±ko 

(54) 

(55) 

and with the beam width determined by r: as will be indicated in the following paragraph. 

To compute the field radiated by the leaky wav s, consider the beta function for such 
waves when the sheath is uniform in t he z' direction 

(56) 

where the radial dependence of the function 
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for the leaky waves is included in the functionfm(p' ) and the index j is subscripted to the m 
J 

to indicate the various leaky waves in each mode. On substituting (56) into (53) there results 

The integral within the second braces is generally a slowly varying function of e as was dis
cussed above. The integration over z" which is implicit in the second bracket in (57) and 
yields the field pattern of a linear array may negate the above staternent, but only the cylinder 
factor, which is the field due to a point SOUTce, is considered here. 

The fu'st bracket in (57) yields the rapidly varying dependence of the field on e. The 
first term reaches peak magnitude at 

(58) 
and the second term at 

(59) 

which are at symmetrical points about broadside. It will be recalled that the field in (57) is 
to be linearly added to the free space field in this approximation so that the real and imaginary 
parts of the rapidly varying functions in (57) are of interest. Figure 9 is a sketch of the 
real and imacrinary parts of 

- 1 

near 

e= cos- 1 1:2. 
ko 

(60) 

Examination of figure 8 will indicate that the pertUTbations on the free space field can be 
accounted for by the complex addition of functions of the type shown in figUTe 9 to the free 
space field . 

The magnitude of the leaky waves may be approximated with reasonable accUTacy from 
figUTes 8a through 8g by considering that the peak or null of each sharp field pertUTbation is 
the beam pointing direction of the field radiated by the jth leaky wave. The propagation 
constants, Vi> and the attenuation constants, "til can also be apPToximated using the peaks 
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{ 
I 

and, in addition, the widths of the perturbations. The analytical determination of Vj and "(j 

necessitates the solu tion of an extremely complicated trfLnscendental equation which involves 
the cylinder functions . This latter method hfLs not been carried out, but it is suggested that 
the approximations represent a usefulmeLhod by which these eigcnvfLlues can be obtfLined. 

Without fLn anfLlytical expression for the propagation and attenuation constant of the 
leaky waves, predictions of the effect on the radiation pattern of non-zero losses in the plasma 
and a finite length of plasma are difficult. One might expect, however, that non-zero losses 
in the plasma would CfLuse an increase in the attcnuation factors 'Y j which (57) indicates would 
mean a brofLdening and lowering of the perturbations on the hce spacc ficld. Similarly, 
limiting the sheath to finite length would alter the /3", (h, p' ) function in a form cquivalcnt to 
the decrease in aperture size in the z direction and introduce a sourcc field at the disconti
nuities. Both of these factors would tend to smooth out the field perturbation. The field 
pattern in the presence of a hypersonic plasma sheath would thus not be expected to have the 
sharp perturbations of this simplified model. 

6 . Conclusions 

It has been demonstrated Lhat quite a significant distortion of the field pattern is effected 
by the presence of a lossless plasma sheath. The chief characteristics of this distortion are: 

1. The presence of critical angles in the field which reduces the power radiated in certain 
directions so that a blackout zone is introduced in which the fi eld probably is extremely small. 

2. Thc presence of narrow but large peaks and valleys in the field between the critical 
angles which m·e aLtributable to the generation of leaky waves that travel along the cylinchical 
structure. 

3. The generation of a transverse field that changes the plane polarized radifLtion field 
when no plasma is present to an elliptically polarized field in every direction except the planes 
¢ = O and ¢ = 7r. 

4. The presence of slowly varying perLurbations on the field which are on the order of 
several db due to the non-leaky wave fi elds in the plasma. 

The effect of these distortions on the total field pattern depends on the aperture distribu
t ion. In (35) this dependency is made evident: the total field is indicated to be the product 
of the element, array, and cylinder Jactors. Only the cylinder factor is shown in the curves. 
For array factors which yield narrow, broadside beams with very low sidelobes, the distortion 
under the parameter values discussed in this paper will be representcd by increase or dccrease 
of only several db in pattern gain of the antenna. ,Vhen the beam is scanned beyond a few 
degrees, however, or when the array factor is a broad beam, a great deal of distortion occurs 
for even modest electron densitites in the sheath. 

The au thor is indebted to Dr. A. T. Villeneuve for his many contributions to this paper. 
The author also wishes to express his appreciation to Dr. W. H. Kummer for sugges ting the 
problem and Jor a continued interest in and encollTagment of the work. 
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