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Equations for the radia t ion field of an arbi trary distribu tion of source curren ts embedd ed 
in a lossless magneto-ionic medium and radiating at a frequ ency that is high relative to t he 
electron gyrofrequ eney of the medium are der ived using t he QL approximation . The field 
is given directly in terms of the components of radiation vector determined by an integra­
t ion over the source currents. The application of t he equation s to arrays of s imilar sources 
is discussed. 

1. Introduction 

The subj ect of radiation from current sources in anisotropic media ha received a great 
deal of attention in recent years. One reason for some of this activity is the current interest 
in space technology, plasma physics, and the problem of transmitting thr·ough the reentry 
plasma sheath [Bachynski, 1961]. 

Bunkin [1957] has published a formal solution [or the radiation field oJ monochromatic 
current sources in an infinite homogeneous linear gyro electric medium. In an earlier report 
Abraham [1953] attacked the problem of radiation from sources in a magneto-ionic medium 
by a somewhat different method. Since the publication of Bunkin's paper, a large number oJ 
papers related to this subject have appeared, including tho e o[ Chow [1 962], Ford [1961]' 
Kogelnik [1959], Kuehl [1962], and Shore and Meltz [1962] . 

The formal solution to the problem of electromagnetic radiation in gyroelectric media as 
given by Bunkin [1957] is incomplete in so far as it is neces.sary in order to obtain the field 
vectors, :first to solve a transcendental equation [Bunkin, eq 3.13] and, second, to calculate the 
components of a matrix using this solution . While it does not appear to be feasible to obtain 
a general solution to the transcendental equation in question, solutions are possible in certain 
special cases . Bunkin, in the paper referenced, gave some results for the field of a dipole in 
two special directions, parallel to the static magnetic field of the medium and perpendicular to 
it. Kuehl [1962] has obtained solutions in sMeral cases where special forms of the dielectric 
tensor are assumed. In one of these cases the limiting form at high frequency of the dielectric 
tensor of a lossless magneto-ionic medium (cold magnetoplasma) was used. 

The subject of this paper is a case somewhat more general than the one for high frequency 
considered by Kuehl. ·While the same form of the dielectric tensOT is assumed, and the rela­
tive gyrofrequency is likewise taken to be small, the relative plasma frequency is rcstricted 
only by the stipulation that the source frequency exceeds the plasma frequency . Also, terms 
of the fu·st order in the relative gyro frequency are retained in the expression obtained [or the 
electromagnetic field . This expression is given in a form analogo us to that COIl1.l1lonly llsed 
[Schelkunoff, 1939] for the calculation of radiation from Cllrrent sources in isotropic media. 
Both electric and magnetic type sources are considered, and the application of the expression 
to array.s of similar sources is discussed. 

1 Work dOlle in partial fulfillm ent of the req uirements for the Ph. D. degree in Electrical Engineering at tbe University of M aryland . Dr. 
H. Reed acled as th esis advisor. 

, Present add ress: HT Research Institu te, Electromagnetic Compatability Analysis Center, USNME L . Annapolis, Md . 
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2 . Formal Asymptotic Solution 

In this section the formal asymptotic solution for the field due to sources embedded in a 
lossless magneto-ionic medium is given . 

2.1. Maxwell' s Equations 

In a magneto-ionic medium, Maxwell's equations for harmonic fields varymg as exp 
(jwt ) are 

- jwE;E+ \l X H = J 

-\l X E-jwJ.LH= M. 

(la) 

(lb) 

A fictitious magnetic current density M is included [Schelk unoff, 1943] and rationalized mks 
units are used. E , H, and J have their usual significance as the electric intensity, the magnetic 
intensity, and the electric current density respectively. The constants E and J.L are the electric 
permittivity of free space and the magnetic permittivity of free space respectively . The 
relative electric permittivity, ~ , is a tensor. If Cartesilln coordinates x, y, and z are used with 
the z-axis directed along the static magnetic field in the medium, the tensor ~ takes th e form 
[Suhl and Walker, 1954]: 

- jb 

a (2) 

o 

In the case under consideration, the quantities a, b, and c are assumed to be given by the 
usual expressions in the magneto-ionic theory [Ratcliffe, 1959] with the collision frequency 
set equal to zero: 

c= I-X. 

(3a) 

(3b) 

(3c ) 

where X is the square of the relative electron plasma frequency , X = w;/w2, and where Y is 
the relative gyrofrequency, Y = wg/w. 
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FIG U RE 1. Com ponents of radius vector R . FIGU RE 2. Th e components of the vector N. 

708 



2.2. Method of Solution 

The components of ~ are independent of Lh e coordinn,tes in view of the assumed homo­
geneityof the medium, although they do depend on UJ. It is possible to ob tn,in an asymptotic 
solution to (1) by usin g the Fourier t ransform pair 

+ 00 

](N) = Iff f (B) eikN.Rdx dydz (4a) 

+ 00 

j(R) =~ fff f (N )e - ikN .Rdpdq ds 
(27r) 3 • 

(4b) 

in which R is the radius vector with Cartesian components x, y , and z as shown in figure 1, 
in which N is a vector whose Cartesian componen ts are the real param eters p, q, and s as shown 
in figure 2, and in which N· R is the scalar product of these two vectors. The t ransform pair 
(4) is valid for an y positive real value of the constan t k . H ere k is taken equal to UJ }-L e. 

The solution of (1) is accomplished by n,pplying the transform (4a) to both sides of (l a ) 
and of (1b )3 to obtain a set of six algebraic equations in six unknowns 

- .ib 

a 

o 

+s 
o 

- p 

o 

o 

c 

- q 

+p 
o 

o 

+s 
- q 

1 

o 

o 

- s 

o 

+p 
o 

1 

o 

- J x/.jwe 

- J yl.iw€ 

- J ,/.iW€ 

- Mxl.ik 

- Mvl.ik 

- M zl.ilc 
where YJ = ,,/ }-L I e. By using pltrt itioned matrices, eq (5) can be abbreviated as 

A 
where N is dt,fined as 

A 

A] [_] [_ ] N E - J I.iw€ 

I YJH = - MI.ilc 

- s 

o 

+p 

+q] 
- p 

o 

(5) 

(6) 

(7) 

and I is the identity matrix . 
The next step in the solution is to premultiply (6) by the invE;rse of the dimensionless matrix 

(8) 

This inverse can be wriL ten ~LS 

~ (P ' q, s) ] 
D(p, q, s) 

N]_l =l [A(P' q, s) 
" t. A 
I G(p , q, s) 

(9) 

3 'l' b e usual proced ure of first eli miuating tile vector J-l from tile pai r of equations docs not Simplify the algebraic computations. 
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where the matrix on the right-hand side of (9) is the adjoint of the matrix (8) and ~ is the 

" determinant of the matrix (8).4 The form of A has been given elsewhere [Bunkin , 1957, eq 

"" " 5.3; Kogelnik, 1959, eq 21]. B, C, and D can be obtained by matrix multiplication [Marini, 

" " "" " " "" " " 1963]: B = -AN, C=+NA, and D=NB+~I. 
The transform (4b) is then applied, giving formal integral expressions for E and H. The 

latter integrals can be evaluated by the method of residues and the method of steepest descent 
to give the radiation field. The procedure for this evaluation has been discussed elsewhere 
[Bunkin, 1957; Lighthill, 1960; Chow, 1962; Shore and Meltz, 1962] and will not be repeated 
here. The final expressions for the radiation field are given in the next section . 

2.3. Formal Solution for the Radiation Field 

In Cartesian coordinates the complete formal solution for the radiation field is 

(lOa) 

(lOb) 

where 

± cos e I no .• sin ao .• 
47r cos aO.e sin e cos2 (ao. e -e)[(n~: e -no.e) cos (ao.e-e) -2n~.e sin (ao. e-e)] 

. 1 I ~ (11) 
l (c-a) 2nL sin4 ao. e-4b2c(nL sin2 ao. e- c)] 

and where 
" " Ao.e=A[Po.e , qO.e , so.e] 

" " Bo. e= B[po. e, qo. e, So. e] 

" " Co.e= C[Po. e, qO.e , SO.e] 

" " Do. e=D[po. e, qo .• , so. e]' 

(12a) 

(12b) 

(12c) 

(12d) 

In eq (11 ) the lengths no(ao ) and n e(ae) of the vectors No (R ) and N e(R ) are obtained from the 
formula for the index of refraction 5 

nL(a) 
2ac+ (a2- b2- ac) sin2 a ± ,,/(a2- b2- ac)2 sin4 a + 4b2c2 cos2 a 

2(a sin2 a + C cos2 a) . 
(13) 

In eq (12) the Cartesian components Po, qo, So and Pe, qe, Se of the vectors N o(R ) and N e(R ) are 
obtained from th eir spherical components 

Po. e = no. e (ao. e) sin ao. e cos (30. e 

qo. e = no. e (ao. e) sin ao. e sin {30. e 

r oo e = no. e (a o. e) sin ao. e 

So. e=no. e( ao. e) cos ao. e' 

(14a) 

(14b) 

(14c) 

(14d) 

'" A _ _ 

• C> is also equal to the determin ant of the matrix .+N' which premultiplies E when the usual proced ure of first eliminating the vector H from 
eq (1) before applying t h e t ransform (4a) is followed . 

• In eqs (11) and (13) the subscript 0 correspond s to th e upper sign while the e correspond s to the lower one. The abbreviations 0 and e (for 
" ord inary" and Ifextraord innr'jr") can be llsed here since the onl y case under consideration is the one wh ere the quanti ties u, b, and c are given by 
eq (3) and a frequency higher than the plasma frequency is used [Ratcliffe, 1959, sec. 7.3]. 
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Vo. e and Wo .• are radiation vectors 

+'" 
V o• e= J J J eikNo.e(a) ·R ' J (R' )elx' ely' elz ' (15) 

+'" 
TtVo• e= J J J eikNo .• (a) ·1l'M(R')elx' ely' elz' (16) 

calculated by a direct integration over the current sources. 
The solution given in eqs (10- 16 ) above depends entirely on the yalue assigned to the 

azimuthal angles f30 and f3 ., and to the polar angles ao and a. . Tb ese are determined from 
the saddle point evaluation, wbich gives 

f3o. e=CP 
and 

n' (ao .• ) /n(ao. e) = tan (ao .• - 8). 

(1 7) 

(18) 

Equation (18) is the transcendental equation mentioned in the introduction upon which 
the entire solution depends. Kuehl [1962, eq (13)] has given explicitly the form taken by t his 
equation when no. e(a ) given in (13) is substituted into it. If this form is specialized to the 
case of a lossless magneto-ionic mediwll by using the values given in eq (3) for the q uan tities 6 

a, b, and c, the eq (18) takes the form 7 

tan (ao. e-8) 

In (19) above the abbreviations 

=F XY2 sin ao .• cos ao .• 
(19) 

(20) 

(21) 

ba\-e beell used. The quantity m may bo interpreted as the length of the vectors No .• if the 
static magnetic field in the magneto-ionic medium is set equal to zero . 

H the values gi ITen ill eq (3) are used in (J 3), then the Appleton-Hartree formula for the 
index o( refraction in a lossless magneto-ionic medium results: 

n5.e(a) = 1- X /[I - P sin 2 aj2m2±v(a)]. (22) 

3. Appr~ximate Solution 

In this section the method of approximation used to obtain a solution to eq (19 ) will be 
indicated, and the resulting equations for the electromagnetic field will be gi Iren. 

3 .1. Method of Approximation 

As mentioned previously, only the case where the wave frequency is high relative to the 
gyromagnetic frequency of the medium will be treated. Specifically it will be assumed Lhn,t 
Y is small enough to permit the simplification of (19 ) to be carried out by expanding nJl q 1l,1il­

tities in powers of Yand dropping high order terms. 
In the case of an isotropic medium with Y equal to zero , the right-hand side of (10) vanishes 

and ao. e can assume only the sin gle value 8, which is the correct result . In the case under 

6 '1'11c algebra is simplified if usc is fi rst made of the relation a2-b2-ac=a-c that exists between the quantities a, !J, and c defined in (3), 
1 A factor w,/w appears to be missing from the corresponding eq uation given by Kuehl [1952, eq (46)]. 
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consideration, consequently, it is assumed that the angles ao. e deviate only slightly from the 
limiting value 0 and that the deviation ao .• -0, has an order of magnitude no larger than that 
of Y. In view of the expansion 

(23) 

eq (19) can be approximated by 

~Ty2 . 
a - O=F L l. sIn ao .• cos ao . 

0 •• - 2m2v(ao.e)[1-Y2 sin2 ao .• /2m2±v(ao .• )] 
(24) 

It remains to approximate sin ao. " cos ao. " and v(ao. e) . The first two are approximated 
by writing ao. e as ao. e= O+ (ao. e- O) and using appropriate trigonometric expansions. 

Some care must be exercised, however, when the quantity v(a) defined in (21) is approxi­
mated. For most values of a , the approximation 

v(a)~ Ylcos a l (25) 

can be made, since the first term under the radical contains Y to the fourth power. If a is 
very close to 7r /2, nevertheless, then the approximate value of (21) becomes 

Equations (25) and (26) correspond to the QL and QT approximations respect.ively of the 
magneto-ionic theory [Ratcliffe, 1959, ch. 8]. In view of the assumption that Yis small , the QL 
approximation will hold over most of the region surrounding the sources. The QT approxi­
mation is valid only over a small angular region in which rays from the sources are approxi­
mately perpendicular to the static magnetic field. For this reason only the treatment of the 
QL case is included in this paper, although the QT case also can be handled in the same way 
[Marini, 1963]. 

3.2. Components of No.e (R) 

The resulting approximate solution to (19) for the polar angle of No. e(R ) in terms of the 
polar angle of R is 

ao.e= O=F XYsin 0 cos O/2m2 lcos 01. (27) 

An additional term can easily be obtained in the expression (27) for ao. e but the accuracy given 
is sufficient for present purposes. 

Using (27) above in (22 ), the length of No,e(R) is found to be given by 

[ XY XP ] 
nL=m2 1± ~2 Icos 01- 2m 2 (1 + cos2 0) 

from which 

{ KY XP [ (X) ]} no.e=m 1± ~m2 l cos 01- 4m 4 m 2+ 1-2 cos2 0 . 

The azimuthal angle of No, .(R ) is, as previously mentioned, 

f3 0. e= CP· 

Equations (27), (29 ), and (30) above give approximate values for the 
components of No(ll ) and N e(ll) in terms of the spherical polar components of R. 
components are found from (14). 
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3.3. The Radiation Field 

The approximate equations for the radiaLion field can now be obtained by substituting 
the approximate values of the componen t of No .• (R ) found in the preceding section into eqs 
(10), (ll ), (12 ), (15), and (16). The compon ents of the field vectors will be in Cartesian 
coordinates. 

" "" " It is evident that the matrices A o .• , Bo .• , ('0. e, and Do .• are the Cartesian components of the 
tensors that relate the componen ts of the radiation vectors to those of t he field vectors. The 
use of Cartesian coordinates was dictated principally by the fact that the components of ~ can 
be made to assume the simple form (2) in tbat system of coordinates . Kuehl [1961] has shown, 
however, that the equations for the electromagnetic field are more compact if coordina te sys­
tems based on the planes of constant phase of the radiated wa ves are used. In the case under 
consideration, with 0'0, .-0 small, almost equal simplification is obtained by using spherical 
polar coordinates, and this will be done in what follows. 

One more simplification can be made. Th e absolute value sign that appears in (27 ) and 
(28) can be removed . This necessitates a change in nota tion , however , since the identi ty of 
the ordinary and extraordinary wa ve is swi tched in going from the upper half to the lower 
balf space. 

, Vith these changes, with the vector electric in tensity wriLten in spherical polar co or-
dinates as 

E(RlJ;:] 
lE~ 

(31) 

and with a like notation used for the magnetic in tensity , the radiation vectors, and the current 
densities, the equations for t he field vectors are 

" "" " wh ere Al,z, B J . 2 , CI,Z, and Dj ,2 are given by 

± lo sin 0; r o· 
AI,2= ± h s~n 0; 

jh sin 0; 

- 1 ± h(cos O-sin 2 ojX cos 0) ; 

+ j + jh cos 8; 

r O· 

B],2 = m - jh ~in 8; 

± h sin 8; 

jhsin 0; 

+ j; 

1 + h sin Z 8 j X cos 8 ; 

jhsin 8; 

± j; 

- jh sin 8 ] 

± j - jll, cos 8 

- 1 ± h(cos O+ sin2 8jX cos 8) 

± h sin 8 ] 

- 1 + h sin 2 .e j X cos 0 

+J 

r O· 

C1.2=m - jll, s'in 8; 

±h sin 8; - 1 + h sin 2 ojX cos 0; 

± h sin 0 ] 

l + h sin2 8:X cos 0 

±J 
and 

r o· 
DJ,2= m 2 =F h s~n8; 

- jib sin 0; 

+ lo sin e; 

- ] + h(cos 8- sin 2 8jX cos 0) ; 

+ ,i- jh cos 0; 
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,ill, sin 0 ] 
±j+,ih cos 8 

- 1+ h(cos 8+ sin2 O/X cos 8) 

(33) 

(34) 

(35) 

(3fi) 



with h defined as 
(37) 

In the equations above, the upper sign is always associated with index 1 and the lower sign 
with the index 2. Here, however, the terms associated with the former index represent the 
ordinary wave when 8< 90°, but represent the extraordinary wave when 0> 90° . 

The exponents in (32) above are 

-.jkNI • z(R )·R=-jkpm(1 ± h cos 8) (38) 

and the spherical polar components of the radiation vectors are calculated from those of the 
source currents through 

and 

with the exponent given by 

jlcN1,2(R)· R' =jkp'm[sin 8' sin 8 cos ('P'-'P)+cos 8' cos O± h cos 8'] 

=jkp'm cos -.f; ± jkmhz ', 

where -.f; is the angle between Rand R'. 

(39a) 

(39b) 

(40) 

Equations (32) through (40) constitute the desired approxinlate solution to the problem of 
calculating the radiation field of given source currents fixed in a lossless magneto-ionic medium 
and radiating at a frequency above the plasma frequency and well above the gyrofrequency. 

4 . Application of the Solution to Radiation From Arrays 

The first order QL solution (32) holds over most of the region surrounding the source 
currents when the assumed conditions are met. It is interesting to consider the significance 
of this solution as it applies to the radiation from an array of similar sources. For brevity, 
only electric type sources are discussed. 

The current density in an array of n sources located at R I , R2, R" can be written as 

(41) 

where J s(R) represents the current density of one of the sources, and the complex constants 
ii are feeding coefficients that describe the relative amplitudes and phases between the sources. 
Substituting into (39), the radiation vectors for such an array are 

VI ,2(R) = "2::Jiejkpim COSY,i±jk1llIlzi· f f f J s (R')ejkp'm COSy,±jkmhz' p' 2 sin 8' dp' d8' dcp'. (42) 

The existence of the two radiation vectors VI and V 2 above indicates that the patterns of 
the two characteristic waves emitted by the array might, in general, just as well be treated 
separately. However, when the array is so limited in size or is so oriented that the term 
(kmhz) produces negligible change in phase over the array and its sources, then the radiation 
vectors VI and V 2 are equal , and the electric intensity (32a) can be written as 

with 

(44) 
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The eq (44) for the radiation vector V above is identical with the formula that would give the 
r adiation vector of the array it it were immersed in an isotropic m edium having an index of 
refraction equal to m. It is equal to the product of the complex space factor of the array 
[Schelkunoff, 1943, sec. 9.3J t imes the radiation vector of the source. From this it follows that 
a principle of pattern multipli cation [Kraus, 1950] can be stated for the array considered above 
as follows: 

In a lossless magneto-ionic medium at frequencies above the plasma frequency and well 
above the gyrofrequency, the total field pattern of an array composed of similar sources and 
over which a ph ase change of magnitude (kmh) radians per unit length in the z direction can 
be neglected is equal to the product of the pattern of an array of point sources calculated by 
neglecting the effect of the static magnetic field and the pattern of an individual source in the 
anisotropic medium. The electric intensity from which the latter pattern is calculated is given 
by (43) using the radiation vector of an individual source in place of V. This electric intensity 
differs from that existing in an isotropic medium both because of th e factors cos (kpmh cos 8) 
and sin (kpmh cos 0) appearing in (43 ) and because of the presence of terms containing the 

1\ 1\ 

factor h in the m atrices Al and A2 in (43) . If the latter terms are small enough to be neglected , 
then the onJy effect of the anisotropy of the medium on the radiation field of the source and 
consequently of the entire array is the Faraday rotation due to the cosine and sine factors. 

In dealing with arrays in which the phase shift due to the terms (lcmhz' ) in (40) is not 
negligible, the two radiation vectors VI and V2 are distinct. Consequently, the radiation 
patterns of the associated characteristic waves canno t be combined as was done above. How­
ever, a principle of pattern multiplication can still be stated for each characteristic wave. 
Since the term (lcmhz' ) is independent of the direction of R, the phase shift due to this term can 
be associated wi th that of the feeding coefficients of the array making the following statement 
possible: 

Each chamcteristic wave emitted by an array of sources immersed in a lossless magneto­
ionic medium and radiating at a frequency above the plasma frequency and well above the 
gyrofrequency has a pattern equal to the product of the pattern of the characteristic wave 
emi tted by an individual source times a space factor of the array. The latter can be calculated 
by ass uming the alTay to be immersed in the plasma with no static magnetic field present, 
provided that tbo feeding coefficients of the array are changed by a compensating phase shift 
of ± lcmh radiftns per uni t length in the z direction. 

5. Conclusions 

The electromagnetic field radiated by either an electric or ft magnetic type source embedded 
in a lossless magneto-ionic medium has been given directly in terms of the components of two 
radiation vectors. One of the vectors gives t he field due to the ordinary wave while the other 
gives the field due to the extraordinftry wave. The components of the radiation vectors ar e 
obtained by an integration over the source. 

The approximations used to derive the solution restrict the application of the latter to 
cases where the source frequency is above the plasma frequency and is high compared t o the 
gyrornagnetic frequency of the medium. Also the relative geometrical placement between the 
source and the field point must be such that the QL approximation is valid. The Appleton­
H artree equations for a lossless magneto-ionic medium are used. 

An examinat ion of the solution shows that the principal effect of the anisotropy of the 
medium on the Tftdiation field of a SOUTce of limited extent is a Faraday rotation of the field 
thftt would exist if t he medium were made isotropic by setting its static magnetic fi eld equal 
to zero. There is in addition, however, some first order distortion of the pattern of the source 
proportion al to the strength of the static magnetic field. The space factor of the pattern of 
an array of similar sources is affected only by the incremental Faraday rotation between the 
elements of the array. 'Vhen the extent of t he array is such that this incremental rotation is 
negligible, the space factor of the army is identical with that obtained by treating the medium 
as isotropic. When the rotation is not n egligible a distinct array space factor is obtained for 
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each of the characteristic waves. These space factors can also be calculated, however, from 
the formulas for the pattern of the array in an isotropic medium by making compensating 
changes in the phases of the feeding coefficients of the array elements. 
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