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It is proposed that some diffraction problems can be conveniently solved by a direct

numerical integration of the Fresnel-Kirchhoff formula.

The required properties of the dif-

fraction screen are represented by a series of numbers which can be either regular and

periodic, or partially random.

The necessary limits and integration intervals are considered,

and the method is found to be convenient for Fresnel diffraction and for irregularities not

too large compared to the wavelength.

Both deep and shallow modulation can be treated.

The accuracy of the computations is verified in a simple case of sinusoidal modulation, and
some new results are derived for random phase screens.

1. Introduction

Diffraction is an important phenomenon of radio
propagation, which is likely to be encountered in the
many instances of irregular propagation media. In
theoretical treatments it is usually assumed that the
wave emerges from the irregular medium with ran-
dom fluctuations of amplitude and/or phase along
the wave front, and that the diffraction problem
concerns just the evolution of this initial modulation
as the wave propagates, no additional modulation
being introduced further on. This leads to the con-
cept of a thin diffraction “screen” where all fluctua-
tions of signal are supposed to be introduced. Given
the properties of the diffraction screen it is then
required to find the properties of the signal over an
observation plane some distance beyond it. The
computed diffraction pattern may subsequently be
compared with experimental data, in order to make
deductions about the character of the irregular
medium.

Even in this simplified form the problem is not
easy. The greatest step towards its solution was the
development of the ‘“‘angular spectrum” theory
[Booker, Ratcliffe, and Shinn, 1950; Ratcliffe, 1956]
which, drawing analogy with the frequency spectrum
of a time-modulated signal, provided a valuable
physical concept of the process and leads to direct
answers in the more simple instances—for example,
when the diffraction screen introduces only “shallow”
modulation and the observation plane 1s far away
from 1t. More difficult are the situations where the
observation plane is relatively close to the sereen—
i.e., Fresnel diffraction—or when the screen intro-
duces “deep”” modulation, which is usually taken to
imply phase fluctuations exceeding one radian or
amplitude fluctuations exceeding one neper. Hewish
[1951], Bowhill [1957, 1961], and Wagner [1962] have
attacked aspects of these problems by the angular
spectrum method. An alternative approach, involv-
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ing direct application of Huygen’s principle through
the Fresnel-Kirchhoff formula, has been taken by
Mercier [1959, 1962].

By dint of mathematical sophistication both
methods have yielded valuable results; yet simplify-
ing assumptions, such as of a Gaussian distribution
of fluctuations, or a small-angle approximation,
have normally had to be invoked. Moreover, it
does not seem to have been possible to obtain any
numerical results for random screens whose phase
modulation exceeds an rms value of /2 radians.
The approach to be offered here, on the other hand,
is almost entirely numerical, being based on a simple
numerical integration of the Fresnel-Kirchhoff for-

mula. The properties of random screens are simu-
lated by the generation of correlated random
numbers.  While the mathematics are now ele-

mentary, a high-speed computer and appropriate
programming skill are required. The merits of an
analytical solution are lost, but it seems that the
following advantages may be gained by the numerical
approach:

1. There is no need to restrict the screen properties
for mathematical convenience. Any form of screen
may be assumed, and the appropriate numerical
solution will be obtained in a form suitable for direct
comparison with experimental data.

2. The Fresnel, or small-angle, approximations
are avoided.

3. Deeply modulated screens do not present any
particular difficulty.

Thus, the lost convenience of an analytical answer
may conceivably be compensated by the ability
to solve a greater range of problems.

The present task is to explore the possibilities of
the numerical method. We shall try to establish
confidence in its accuracy by working out some simple
rases whose answers are known [rom previous work.
We will examine the limits within which the method
looks practicable (these are in effect limits of com-
puting speed) and compute some more difficult in-
stances as examples.



2. Formulation

The starting point is the Fresnel-Kirchhoft diffrac-
tion formula ® [Born and Woll, 1959], which says that
the field at 2 due to a source S is

exp Jk(r-s)

_Lf exp j
2N Ja rs

dA is an element of a surface A enclosing R or
S (or an infinite plane between them),

7 and s are the distances of I and S from dA,

X, and X, are the angles between the normal
to dA and the directions to R and S|

(= (cos X,—cos x,)dA (1)

where

and

k:%r ; for wavelength \.

If the source is at infinity,
U=—2‘~)\ f e ) 2)

In the present work, A will be a plane distant A
from R, as in figure 1, and the simplifying assumption
will be made that nleouldrltles exist in the z-direc-
tion only, being 1nﬁn11;ely elongated in the z-direction.
Diffraction in the z-direction does not then concern
us, and the formulation can be reduced to two
dimensions by applying to the z-direction the usual
Fresnel approximations:

SOURCE

dA=dxdz

Fiaure 1. Geomelry of the model.

3 Although not rigorous, the Fresnel-Kirchhoff formula is quite the most tracta-
ble mpn%wnofPhxmna]ﬁmumL The usual objection that it neglects
boundary effects at an opaque screen will not apply here because no discontinui-
ties will be involve d, and curvature of the constant-phase front will always be
greater than a wave l(ngth The derivation of (1) from the more basic Helmholtz-
Kirchhoff equation assumes r, s, >>\/2m.
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r=q (1—1—%) in the exponent,

r=qin the denominator,
and
~X.

Whence, for the model in figure 2,

v \/ﬁ\ [‘+°°

In contrast to previous analytical solutions, no
approximation has been made in the z-direction
where the irregularities are.

It is now supposed that the constant-phase front
of a wave which originated at infinity has been
delayed during propagatlon to the plane A by

exp ;716(1 (1—{—(;05 X) Ja )

.vv

amounts Ah(x), as in figure 2. Thus, assuming
Ah<h,
¥\/ f+°" exp 7k(\/h2+;r2+Ah00%X) 1--cos X)a’
Ni=-a Vg 2
(4)

Replacing this by a summation, and expressing
distances in terms of the wavelength, gives

+X7y,
. é - LI exp 2mj |HSe+aH/Se]  (5)
v
where
- Y h - - 22\}
AX= AH N o= X and Se==Sec X—<1+P>-

The limits are now 4+ X, instead of - . For the
other case of practical interest, where both S and
R are distant A from the screen, similar reasoning
oives

| ax e 27rj[2ﬂse+§[ o
\2imh =, Serl (&

In general it will be convenient to express the field
as an amplitude and a phase term:

U=M exp (jo). ()

Our general procedure will be as follows. The
modulation function Ah(z) is generated, and the

X —

7 SN (\IFFRACTION PLANE, A,

Ah\QCONSTANT PHASE FRONT

OBSERVING PLANE, A'

Fiaure 2. Phase irregularities.



field U7 is determined from (5) or (6). The modula-
tion function is then translated along the z-direction
in steps of Az’/, the corresponding U(z’) being
evaluated at each step. Thus the diffracted field
along the observing plane will be derived, given an
assumed initial modulation at plane A. In the
present work only sinusoidal or random screens
will be used, and the diffracted fields will be derived
from (5), corresponding to the source at infinity.

3. Preliminary Tests: Unperturbed Wave
Front

Before (5) can be used in computing diffraction
problems, it is necessary to find the smallest summa-
tion limit, X7, and the largest increment, AX, that
can be used without undue error. They in turn
(2X.+1)

AX
and so indicate the feasibility of obtaining solutions
with a given computer. For this reason initial com-
putations were made assuming the wavefront to be
unperturbed—i.e., AH/=0-—in which case the result
should be M=1, ¢=0.

The progressive summation of (5) may be regarded
as the construction of a spiral. When X is large
relative to /7 the terms become small and equal to

AX . .
VX Provided AX
revolution of the spiral is completed every time X

specify how many terms, » must be taken,

in magnitude. is small, one

terms, and the

. . . 1
increases by unity, i.e., every ix

. . 1 . .
spiral has radius —- Thus, if (5) is summed to

47y X
+ X, where X, is large relative to [/, there is a
residual error with magnitude
1

= pr—
2ry X,

with respect to the sum to infinity. In the more
general case when X is not necessarily large com-
pared to H and the individual terms are of magnitude

AX  (1+Se)
2\\\;3 Sedz

the residual error may be obtained from figure 3

s >

P b2 : X o
which gives <—:\/g as a function of 0 [his  was
A=

that e=2.6 percent if

and shows, for instance,

}I—W() and H=5.

instance it would be necessary to include

computed for

In this

o1
Ay terms.
Fewer terms would be needed in the summation of
(6) to the same accuracy because the individual
terms, again at large X, fall off in magnitude as
1/X5/2 rather than l/Xl/2

The procedure adopted for computation with (5)
is to evaluate the series up to some X for which e is
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Ficure 3. e\//i;{% in terms of Xrp/H.

suitably small (usually 2 to 39,) and then to add on a
computed error term of appropriate amplitude and
phase. Test (01nputdtlom with 77 between 2% and
20, taking e=2.5 percent, gave remaining errors of
less than 0.2 percent after the addition of the error
term.

In the course of the foregoing tests it was found
that the increment, AX] hd(l no significant effect on
the results p10\1(10(1 A1\< [t seems that a rela-
tively large interval will sufh( e for an unmodulated
wavefront. Howey er, this may not hold for modu-
lated waves, where it will obv iously be necessary to
delineate the perturbations in sufficient detail, «Llld
the question of increment will be considered again
later.

4. Sinusoidal Screens
4.1. Shallow Modulation

Diffraction by a sinusoidal phase screen can readily
be evaluated by the angular spectrum method
[Hewish, 1951; Ratcliffe, 1956] when the modulation
is Sh&HOW‘le when the fluctuations are small
relative to 1 radian—and only first-order side-
waves need to be taken into account. It is there-
fore a suitable test of the numerical method. The
modulation is of the general form

A, cos 27;“(

VE=

This calculation has been carried out by both the
angular-spectrum and the numerical methods for
a modulation depth (AH;) of 0.01 wavelength and
for different values of the period (), the distance
from diffraction to observation plane (H ) being taken
as 5 wavelengths. As is well known, the diffraction
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pattern is also sinusoidal, with the same period as
the irregularities, but the actual magnitudes of the

phase and amplitude fluctuations (¢ and Z\b depend

on both 2 and H. & and M are shown as a function
of P, for H=5, in figure 4. The two methods, in
fact, give virtually the same result, differences being
no greater than 0.001. X;/H=9 was used for the
numerical method, and the same results were ob-
tained for AX=1¥%, ¥¢ and %, The “total fluctua-
tion,” which is V21 4% is independent of 7 when
P is large compared to one wavelength, and figure
4 illustrates how the fluctuation alternates between
amplitude and phase, being mainly in the phase
for periods somewhat greater than the first Fresnel
zone (P>+H).

The close agreement between the two methods in
the case of a shallow sinusoidal phase screen shows
that the numerical method is capable of good
accuracy in a simple instance. We shall now
evaluate some more complex examples, for which
analytical results are less readily available.

4.2. Deep Modulation

As long as the fluctuations in the screen are small
compared with 1 radian (AH,<<1/2) the form of
the diffraction pattern is independent of the initial

fluctuation depth, and the values of A and v are
simply proportional to it. When the initial modula-
tion approaches 1 radian in depth these simple
truths fail and then the modulation can no longer
be considered ‘“shallow.” The results of a series
of computations for AH,=0.1 are plotted, suitably
scaled, on figure 4, and a considerable deviation
from the form of the shallow modulation can be
seen. In terms of the angular-spectrum concept,
these changes with increasing depth of modulation
are due to contributions from side-waves of higher
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Fi1cure 4. Shallow sinusoidal phase screen.
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order that introduce higher spacial harmonics into
the diffraction pattern. Examples with AH, near
or exceeding 0.1—a phase fluctuation of «/5 radian—
plainly cannot be treated as shallow modulations.

In the angular-spectrum method, problems invok-
ing deep modulation require the addition of several
side-waves whose amplitudes are specified by a
Bessel function. The number of required terms
increases rapidly with increasing modulation depth.
By this technique Hewish [1951] computed diffrac-
tion patterns from initial phase modulations of up
to 8 radians. In the present numerical method
deeply modulated screens can be treated as easily
as shallow ones, apart from the need to verify that
the summation interval (AX) is adequately small.
Figures 5 and 6 show the diffraction patterns com-
puted for the conditions H=5, P=3%, and H=20,
P=2, with initial modulation depths (AH;) up to
four wavelengths (25 radians). These show plainly
the distortion of the sinusoidal form by increased
modulation depth, with periodicities down to half
a wavelength m evidence. In general the overall
amplitude fluctuation of the diffracted signal does
not change greatly beyond AH,=0.1; whereas the
overall phase fluctuation (which has been plotted
as a fraction of the input modulation ¢,=27AH,)
tends to increase at least as far as AH,=1.0. The
curves are similar in general appearance to those
given by Hewish [1951], but a detailed comparison
is not possible because he does not state his value
of P.

4.3. Summation Interval for Deep Modulation

The foregoing computations were made with a
summation interval AX=1X4s To investigate the
adequacy of this interval, some computations were
repeated using other intervals, in the range from
%2 to unity. Figure 7 shows the patterns obtained
in the case H=20, P=2, AHy=0.1. The results
are identical from intervals ¢ to %, and even interval
% incurs very little error in spite of the fact that it
barely specifies the waveform adequately. Compu-
tations for H=5, P=3%, AH,=1, the most severe
case of figure 5, using AX=14,, 4, % and %, differed
from each other by less than 0.0024 in either ampli-
tude or phase; relative to a total fluctuation of 1.3
in amplitude and of 5.8 in phase this is a negligible
error. An even more severe case in figure 6, /=20,
P=2, AH,=4, was computed using several intervals
between %, and %. Here the results for %, and Y
agree, yet those for ¥, and % were utterly different,
as figure 8 shows. It is curious that the error should
increase so drastically for intervals which are only
slightly too large. Figure 9 clearly illustrates the
rapid deterioration at two particular points of the
pattern: intervals less than }; are accurate, Xs
shows a small error, and intervals larger than }{;
cause unacceptably large errors.

The sharpness of the transition between satis-
factory and unsatisfactory intervals has one useful
aspect. It is possible to test an interval by simply
repeating the computation with the interval doubled.
It the two results agree it is highly probable that
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FiGure 5. Deeply modulated sinusoidal phase screens: P=3%.
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Ficure 6. Deeply modulated sinusoidal phase screens: P=2.,
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both intervals are satisfactory. According to these
tests the interval can be so large that the phase
fluctuation in the diffraction screen is permitted to
change by several radians between sample points.
l‘hls and the need to specify the shape of the
modulation in sufficient detail, are the criteria to
be kept in mind when deciding what summation
interval should be used in a particular instance.

4 4. Discussion

The numerical method appears to be accurate in
computing diffraction from both shallow and deep
sinusoidal phase screens. It is estimated that on
an IBM 7090 computer the (al(ul‘ltion for H=
using a summation interval of }{s would take 0. 21
min; so even deep- modulﬁllon problems can be

696-013—63

evaluated quickly and cheaply. The diffraction
screens which arise in nature may not normally be
sinusoidal in form; nevertheless, as an approximation
it is sometimes convenient to consider them so, and
the methods outlined so far may be useful in this way.

5. Random Screens
5.1. Simulation of Random Screens

The diffractio nscreens appropriate to the natural
phenomena of radio propagation are usually random
in the sense that it is not possible to predict their
space and time characteristics in detail. It is usually
assumed, though, that their statistical properties
may be exactly defined by parameters such as the
standard deviation and the autocorrelation func-
tion—that is, that the screens are statistically sta-
tionary. We will specify a random phase screen by

o(AH) =+ BH)?

and
pm(A[I)—(AII) (AII)TI+IW
F(AH)
o being the standard deviation and p,, the correlation
coefficient with respect to interval m. It is now
necessary to generate a set of numbers having these
statistical properties, which will represent the varia-
tion of A/ across the screen.

A series of correlated random numbers, @, may
conveniently be generated from a series of un-
correlated random numbers, b, by

arz+l:f(1'n+.(]b; (8)

where £ and g are coefficients. If the standard devia-
tion of the a’s is to equal that of the b’s,

=T ®

Then the mth correlation coefficient is given by
Pm:fm-

This simple form will be used in the present work;

others could be devised if required. Figure 10

shows the values of p,, computed from 500 or 1000

numbers generated by this series for three values
of f. They are seen to agree closely with /™.

(10)

5.2. Procedure

Since the numbers are random it is necessary to
use enough of them when evaluating their statistical
ploputles As a guide we note (as can easily be
proved) that if the correlation coefficient is of ex-
ponential form,

pn=e€xp (—m/my),

then 7 points of the correlated series contain the same
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Fiaure 10. Awtocorrelation of generated random screens.

information as 7/2m, independent points. For smal
values of p, its standard deviation when calculated
from N independent points is

1

U(P):ﬁ

We therefore expect the accuracy of an estimate of p

1

=
\/27”0 s
ber of correlated points used to evaluate p, and m,
is the interval at which p has fallen to about
1/e(=0.37). Table 1 shows m, and o(p) appropriate
to 1000 points, for several values of f to be used in
computations. The value of €, defined as the
distance in wavelengths at which p falls to 0.5, is
also given assuming AX=1/8.

to be of the order of » where 7 is the num-

TasLe 1. Properties of correlated random numbers

f ’ mo a(p) (for r=1000) O(if AX=1/8)
0. 940 16. 1 0.19 144
884 8.1 L13 0.728
794 4.3 .09 . 390
.707 2.9 | .08 . 258
. 500 1.4 } .05 .125

In the following computations a series repre-
senting Afl is generated from (8), appropriate
values for f and o(h) having been ohoson in advance.
The properties o(AH) and p(AH) are computed
for this series. The series A/ is then supposed to
represent the phase fluctuation sampled at intervals
AX along the diffraction plane, and the amplitude
M of the diffracted wave is computed at intervals
AX” (where AX” can be equal to AX, 24X, etc.)
along the observation plane. The (omputatxon 1s
restricted to amplitude for the sake of brevity, this
being the quantity most often observed experi-
mentally. A is evaluated at 500 or 1000 intervals

and, finally, the statistical properties (M) and
p(M) are computed for comparison with o(AH)
and p(A). The distance in wavelengths at which
p (M) falls to 0.5 is defined as gq.

It is verified that the interval AX is sufficiently
small by repeating the computation with every other
point of the series AH eliminated and with AX
doubled. With satisfactory intervals there is no
significant difference between the two computations.
The intervals AX=1/8 and A X=1/4 were always found
to be adequate with shallow modulation, as would
indeed be anticipated from the foregoing sinewave
results.

5.3. Shallow Modulation

To illustrate the application of the numerical
method to shallow random screens, some problems
will be explored which lie on the borders of approxi-
mations commonly applied in radio diffraction theory.
It is generally accepted, for instance, that irregu-
larities much less than a wavelength across (@< <1)
do not propagate and therefore do not appear in the
diffracted signal. For irregularities larger than a
wavelength it is well known that the statistical form
of the diffracted signal becomes identical to that of
the diffraction screen when the first Fresnel zone
over the diffraction screen is so large that it includes
many irregularities, i.e., 1<<<Q<<yH. It is not
always evident, however, at what point such approxi-
mations become valid. As conditions like these have
no special significance in the present numerical
method, but also present no particular difficulty, we
shall use it to investigate

(i) diffraction from irregularities about one wave-
length across: ¢~1; and

(ii) the transition from the Fresnel to the Fraun-
hofer region: Q~+/H.

A range of examples has been computed with @
between 0 and 2.7 and with H between 3 and 30

{i.e., \H between 1.7 and 5.5). Typical results are
eiven 1n figures 11 and 12 which show how the dif-
fracted pattern changes with the distance (H)
between the diffraction screen and the observation
plane for two values of ). The diffracted amplitude
pattern is obviously narrower near the screen, and
the amount of fluctuation (¢ (M)) is smaller. Also,
the smaller @, the less is the dependence of ¢ on H.
In figure 12, where <1, the correlation function
has a different shape at the two planes, which is
consistent with the evanescence of irregularities
much smaller than a wavelength. Nevertheless a
considerable depth of fluctuation remains even at
H=30. Figure 13 shows the dependence of the
pattern width in the observation plane (q) on that
in the diffraction plane () at a constant //=9. In
all cases H >Q. Tt is seen that ¢< @ for the larger
values but that ¢ >@ for the smaller ones. Overall,
¢ varies much less than @. The depth of fluctuation
a(M)
a(AH)
near Q=1. I‘he loss of fluctuation for ¢ >1 is prob-
ably because ¢ is not sufficiently small compared
with the first Fresnel zone, and the loss for <1 is

(expressed as ) passes through a maximum
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o (M)
o (AH)

0 10 20 30
H

Fiaure 11. Diffraction patterns for Q=2.55.
probably caused by evanescence of the finer compo-
o o o . o(M)
Nowhere in these computations does AL
reach the theoretical limit y27 (=4.44) which is an-
ticipated in the condition 1< Q< <VH. Tt is
clear that situations up to +H =4 remain well
within the Fresnel region, with o(M)<y2re(AH)
and ¢<().

A particularly interesting case is that for @=0.
In contrast to previous work [Bowhill, 1957; Rat-
cliffe, 1956], the present calculations give ¢ >0,
a(M) >0. This case has been computed for a range
of H between 3 and 48, the calculations being per-
formed with two different sets of random numbers.
The results are given in table 2. There is no ap-
parent trend with 77, differences being attributed to
statistical error. The mean of these curves is plotted
in figure 14. The existence at ()=0 of a finite ¢ of
about N4, and of a residual ¢(M) o about 20(AH),
is probably due to contributions from signals scat-
tered obliquely; these will obviously be correlated
for displacements X’ up to about N\/4. Theoretical
treatments that presume a small-angle approxima-
tion will miss these contributions.

nents.
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TasLe 2. Computations for Q=0

Random numbers \ H \ q
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As a summary of the behavior over the

of computations, figures 15, 16 and 17
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Fraure 17. o(M) /o (AH) for shallow modulation.

width of the amplitude pattern (¢) and the depth of
amplitude fluctuation (¢(M)). Figure 15 illustrates
the behavior of ¢:

(1) If @ <1, ¢ increases with increase of (). How-
ever, it changes relatively slightly with 77, passing,
in fact, through a maximum.

(i) If @ >1, q¢ changes more slowly with @ but
depends more stronely on 77. It appears that
q oy H, at least to VH=20), when @=2.5.

The fluctuation depths computed for @ 1 are given
infigure 16 as a function of VH/Q. (M) is expected to
fall off at the smaller values of +//Q because ir-
regularities very large compared to the early Fresnel
zones will make negligible contribution. By similar
reasoning, o(M) must be zero when H/Q is zero.
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The slope found here is very different from the
theoretical results of Bowhill [1957] and Wagner [1962]
which are also plotted. It must be realized, though,
that the three examples are for different forms of
irregularity: Bowhill’s for a Gaussian correlogram
falling to 0.61 at @; Wagner’s for a “medium cut-
oft”” power spectrum; and the numerical method for
a correlogram of form f™ falling to 0.50 at .

It was not possible to find any simple empirical
relation that would describe the variation of o(M)
in terms of A and @ over the whole range of . A
relation between o(M)/o(AH) and ¢q derived from the
same computation is apparent, however. As indi-
cated in figure 17a, the points derived for a given @
tend to lie on a straight line of slope proportional to
1/¢) which passes near the point computed for ¢@=0.
This rather curious result is further illustrated in
figure 17b, which shows how ¢(M)/oc(AH) is simply
related to a quantity (¢—0.30)/¢. The scatter 1s
probably no more than statistical error, the points
which deviate most having been derived from small
values of (. For diffraction in the Fraunhofer
region (H >>@) it is to be expected that
a(M)/a(AH)=4.44, and that ¢=¢ (both being large
compared to unity) so that (¢—0.30)/Q@=1. The
trend of ficure 17b indeed passes through this point.

In illustrating the use of the numerical method
with shallow random screens, the following two
results have emerged:

4 T T
04 —
03— o

02— =

0.l f— =

a(M)
M o(AH)

o (AH)

Ficure 18. Deep random modulation.

(1) Even very small irregularities produce a diffrac-
tion pattern with finite fluctuation depth and finite
pattern width.

(i1) Fraunhofer diffraction—in which the forms of

the diffraction screen and of the amplitude pattern
in the observing plane are identical, and in which
the relative fluctuation depths are simply related—
cannot be considered to apply until the first Fresnel
zone is many times the pattern width.
Such results will have a bearing on the interpretation
of experimental data of LLF and VLF fading, since a
100 ke/s signal received at the ground is 30 wave-
lengths from a diffraction screen at a height of 90
km and a 15 ke/s signal is a mere 3.5 wavelengths
from a screen at 70 km.

5.4. Deep Modulation

To illustrate the method’s application to deep
random phase screens, one example has been com-
puted which illustrates how the pattern width and
depth of amplitude fluctuation change with increasing
depth of phase modulation. It is taken that the
diffraction and observation planes are nine wave-
lengths apart, and the phase perturbation is of small
horizontal scale: @=0.369. The results are shown
in figure 18. The effect of increasing ¢(AH) is ini-
tially to reduce the width of the amplitude pattern,
to reduce the mean amplitude, and to increase the
fluctuation depth. Beyond o(AH)=1, however,
these quantities are virtually independent of modula-
tion depth. Presumably, additional contributions
to the fading now go into components with structure
too small for them to propagate a distance of nine
wavelengths. An additional point of interest is that
o(M)=M?when ¢(AH) is large. The interval AX=
% was found to be adequately small in all these
computations.

5.5. Discussion

Because of the need to obtain an adequate statisti-
cal sample, computation with random screens is
much lengthier than it is with sinusoidal ones. For
instance, the computation takes 11.6 min in the
case H=20, AX=} when 1000 amplitude points
are taken. A limited amount of random screen
computation is probably justified, however, because
of the closer approach to experimental reality. A
set of computations, such as those for shallow modu-
lation, can clearly be applied to practical propagation
studies. If it seems reasonable to assume an initial
modulation of phase only, and if the present form
of correlation coefficient is taken, then figure 15
relates ¢, ¢, and 1. An observation of ¢ and an
estimate of /1 then lead to ¢. Having measured
o(M) it is then possible, from figure 17, to determine
o(AH). 1t may also be possible to find o(A/) from
a(M) and o(¢)—though this has not been done here.
In that event one could work back to a determination
of H.

A number of improvements and extensions are
possible. Computational refinement may speed up
the computer program (whose block diagram is given
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in appendix 1). It would be logical to make com-
putations for different forms of correlation coef-
ficient, for a point source, and for oblique-incidence
propagation. The model could conceivably be
extended to two-dimensional (or even three-di-
mensional) irregularities. Finally, it may be advan-
tageous to evaluate the phase as well as the amplitude
properties of the diffracted waves.

6. Conclusions

The object of this work has been to investicate a
proposed numerical technique for solving diffraction
problems. The technique in its present form appears
to be appropriate for radio problems where the
irregularities in the diffraction screen are a few
wavelengths across and where the observation plane
is not more than a few tens of wavelengths away.
These are conditions of practical concern in the
ionospheric propagation of LF and VLF signals.
It has been shown that the technique gives accurate
results with sinewave modulation across the screen,
and it has been found that, even for deep modulation,
integration intervals can be larger than might be
thought at first sight. It has been possible to derive
original results for random screens observed in the
Fresnel region.

Although the numerical method is not always the
best one to use, and is limited by considerations of
computing time, there are cases where it is very
convenient and it may be particularly valuable in
the interpretation of experimental diffraction data.
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8. Appendix 1. Block diagram of
computer program

Read basic parameters

H®1/AX,® X [H,® AX'[AX,® F ®,

Required standard deviation of AH,® =g, (AH).

Number of values of M @ to be computed=2N,,.

Number of autocorrelation coefficients, p, to be
evaluated for A/ and for M, and interval
between successive values.

Whether or not every other value of A7 is to be
omitted.®

Starting parameter for random number generator.

Compute
AX/H,AX|VH.
N® =1+X,/AX +1/2AX)

r J AX/
A’/\J (1%0) =S (2]\/0"' 1) +H

(Ny—1)
G:x‘j -—Fé

Generate random screen

If every other AH used

o
Generate B,

Compute D=FAH ,+GB,

Generate B,

Compute AH, =FD+GB,
L

.
repeat for w

Store AH except for first 25 points @V
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Find statistical properties of AH
Compute mean, A71
standard devmt]on o(AH)
autocorrelation coefﬁments, o(AH).
Output these.

Compute

1/Set®  (EHISe)/28¢, HSe, for (AX> Xotd

Generate
sine and cosine tables 0(3°)357° and store
Compute

14-8S AH\. 1+Se . AH
= _—ZSe“’i cos 2 <HSe+§¢;>, Us=3%" —2~S+e—3/2 sin 27 <H56+§>
X —X,/AX +XL
fOrH Vel <
WA= Z_‘, 2S 3/2 ¢ cos 2 (HSe—I—AH> U>=2] I;E’/i sin 2 <HS@+
X X, AX\X,+13
for 0 H (— —
ﬂ[—\/——\ (U, +0U )+ U,+-8U »)*
Shift
values of AH by AALX intervals.

Find statistical properties of M
Compute mean, M,
standard deviation, (M)
autocorrelation coefficients, p(M).
«—————Output these
Output next random number parameter.®

1 Histhe distance in wavelengths between diffraction and observation planes.

2 AX is the distance in wavelengths between sample points in the diffraction
plane.

3 X is the limit of summation in the diffraction plane.

4 AX” is the distance in wavelengths between points in the observation plane
at which results are to be computed.

5 Fis the parameter determining the width of the correlation pattern at the
diffraction screen.

8 AH is the phase deviation.

7 M is the amplitude at the observation plane.

8 A;]\lltemate values of AH can be omitted to test whether AX is sufficiently
small.

9 N, is the number of values of |X | required.

10 N7 is the total number of difiraction screen samples required.

Repeat for Ny,

11 Early points are dropped to ensure statistical uniformity in the series.
X2

2 = ——

12 Se \/1—{— 7

18 5 Uy, Uz are the correction terms for finite X&r.
14 The next random number parameter is saved so that computations can be
repeated with an independent set of numbers.

Note: The program is in Fortran. Tape storage is used for extra capacity.
Assuming Nj=1000, N. can be up to 4000.

(Paper 67D6-298)
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