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It is proposed t ha t so me diffraction problems can be conve nie n tl~r solved by a d irect 
numerical in tegrat ion of t he Fresnel-Kirchhoff formu la. T Il(' required properties of t he dif
frac t ion screen are represe nted by a series of numbers which ca n be eithe r regula r and 
periodic, or partially random. The necessa ry limits and in teg ratio n inte rvals are co ns idered. 
and the method is found t o be con venien t for Fresnel diffraction a nd fo r ir regulari t ies not 
too large compared t o the wavelength . Both deep a nd shallow modulation can be t reated. 
The acc Llracy of t he computat ions is verified in a simple case of sin usoida l mod ulat ion, and 
some new results a re deri ved for rando m p hase screens. 

1. Introduction 

Diffrac tion is an im.pol'tant phenomenon of radio 
propaga tion, which is likely to be encoun tered in the 
many instances of ilTegular propagation media. 1 n 
theoreticfil treatmen ts it is usually fissumed thfit the 
wave emerges from th e irreg ular medium wi th l'fW

dom flu ctu a tions of amplitude and/Ol' pbase along 
the wave fron t, and that the diffract ion problem 
concerns just the evolution of this ini tial modula tion 
as the wave propfigates, no addition al modula t ion 
being introduced further on. This leads to the con
cept of a thin diffraction "scr een" where all fluctua
tions of signal are supposed to be in trodu ced. Given 
the properties of the diffrac tion screen it is then 
required to find the proper ties of the signal over an 
observa tion plane some distan ce beyond it. The 
compu ted diffraction pattern may su bsequ ently be 
compared with exper imen tal da ta, in order to make 
deductions about the character of the il'reo'ular 
medium. '" 

Even in this simplified form the p roblem is no t 
easy. The greatest step towards its solu tion was the 
development of the "angular spectrum" theory 
[Booker , R atcliffe, and Shinn, 1950 ; R atcliffe, 1956] 
which , drawing analogy with the frequency spectrum 
of a time-modulated sign al, provided a valuable 
physical concept of the process and leads to direct 
answers in the more simple in stances- for exampl e, 
when the diffraction screen in troduces only "shallow" 
modulation and the observation plane is far away 
from it. More difBcu]t arc th e situat ions where the 
observation plane is relatively close to the SCl'een
i.e., Fresnel diffraction- or wh en the screen in tro
du ces " deep" modulation, whi ch is usually taken to 
imply phase flu ctuations exceedin g one radi an 01' 

ampli tude flu ctu a tion s e 'ceedin g' one neper. H ewish 
[1951], Bowhill [J 957, J 96 1], and Wagner [1962] have 
attacked aspects of these problems by the angular 
spectrum method. An alternative approach , involv-
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in g direct application of I-lLlygen's principle through 
the Fresnel-Kirchhoff formula, has been taken by 
M ercier [1959, 1962]. 

By dint of m athematical sophistica tion both 
methods have yielded valuable resul ts; yet simplify
ing aS3Umptions, such as of a Gaussian distribution 
of fluctuations, or a small-angle approximation, 
have normally had to be invoked. 1I10reolTer , it 
does not seem to have been possible to obtain any 
numerical results for random screens whose phase 
modulation exceeds an nus I'alue of -J2 radians. 
The approach to be offered here, on the other hand, 
is almost entirely numerical, being based on a simple 
num erical integration or t h e Fres nel-Kirchhoff [01'
muLto The properties or random screens are simu
lated by t he gener ation of conelated l'fl.l1dom 
numbers. 'While the mathem atics are now ele
mentary, a high-speed computer and appropriate 
programming skill ar e required . The merits o[ an 
analytical solution are lost, bu t it seems th fl.t t he 
following adva.nt ages m ay b e gained by the numerical 
approach: 

1. T here is no need to restrict t he screen proper t ies 
for mathematical convenience. Any [orm o[ screen 
may be assumed, and the appropriate numerical 
solution will be obtained in a form suit able for direct 
comparison wi th experimental da ta. 

2. The Fresnel, or small-angle, approximations 
are avoided. 

3. Deeply modulat ed screens do no t present any 
part icular difficulty . 
Thus, the lost convenience of an analytical answer 
may conceivably be compensated by the ability 
to soll' e a greater range of pr oblems. 

The present task is to explore t he possibilit ies of 
the numerical method. W e shall t ry to e3 tablish 
confidence in its aCCUl'acy by worki ng out some simple 
cases whose answers are known from previous work. 
v\T e will examine the limits within which the method 
looks practicable (tllese are in effect limi ts of com
puting speed) and compute wme more difficult in
st ances as examples. 



2. Formulation 

The starting point is the Fresnel-Kirchhoff diffrac
tion formula 3 [Born and Wolf, 1959], which says that 

r::=;q(1+:;2) in the exponent , 

r::=; q in t he denominator, 
the field at R due to a source S is and 

u=_L J exp .ik(r+ s) (cos X -cos X )dA (1) 
2}" A rs ' s 

where 

and 

dA is an element of a surface A enclosing R or 
S (or an infinite plane between them), 

rand s are the distances of Rand S from dA, 
XT and Xs are the angles between the normal 

to clA and the directions to Rand S, 

27T 
k= );: J for wavelength },. . 

If t he source is at infinity, 

Whence, for the model in figure 2, 

u = . I ~ ( +00 exp l kq 0 + cos x) clx . (3) 
V JA J x~ - oo q' 2 

In contrast to previous analytical solutions, no 
approximation has been made in the x-direction 
where the irregularities are. 

It is now supposed that the constant-phase front 
of a wave which originated at infinity has been 
delayed during propagation to the plane A by 
amounts t"h(x) , as in figure 2. Thus, assuming 
t"h« h, 

U= I ~ ( +00 e, pjk('!h2+x2+ Mcos x).O + cos x) dx. 
-y JAJ x ~- oo ,rq 2 

U =_2 J exp jkr (1 + )clA 
2}" A r cos X, . (2) (4) 

In the present work, A will be a plane distant h 
from R , as in figure 1, and the simplifying aS3umption 
will be made that irregularit ies exist in the x-direc
tion only , being infinitely elongated in the z-direction. 
Diffraction in the z-direction does not then concern 
us, and the formulation can be reduced to two 
dimensions by applying to the z-direction the usual 
Fresnel approximations: 

h 

R 
lc' z 

FIG U RE 1. GeometTY of the model. 

3 Al though not rigorou ~, the Fresn el-Kirchhoff formula is qui te the most t racta
ble expression of Huygen's principle. 'rhe usual objection that it n eglects 
boundary effects at an opaqu e screen will not apply here because no cl i, continui
ties will be involved, and curvature of the constant-phase front will always be 
greater th an a wavelen gth. The deri va tion of (1) from the mo re basic Helmholtz
Kirchhoff eqnation assum es r, 8, > > Xj27f. 
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Replacing this by a summation, and expressing 
distances in terms of the wavelength, gives 

t"x +XL l + S e . 
U= / . ~ 28 3 / 2 exp 27TJ lHSe+ MI-/S e] (5 ) 

, JH - XL e 

where 

The limits are now ± X & instead of ± ill. For the 
other case of practical in terest, where both Sand 
R are distant h from the screen, similar reasoning 

(6) 

In general i t will b e convenient to express the field 
as an amplitude and a phase term: 

U= M exp (jep) . (7) 

Our general procedure will be as follows. The 
modulation function t"h(x) is generated, and the 

x-
--7"''''--.''~-=~_,.-, ___ .L-r~'''''''L- DI FFRACTION PLANE, A . 

CONSTANT - PHASE FRONT 

q 

x 
_.:.:.R-"'-___ -"X_·-_____ OBSERVING PLANE, A' 

FIGURE 2. Phase iTTeg1daTities . 



field U is determined from (5) or (6). The modula
tion function is then translated along the x-direction 
in steps of Llx', the corresponding U(x') being 
evaluated at each step. Thus the diffracted field 
along the observing plane will be derived, given an 
assumed initial modulation at plane A. In the 
present work only sinusoidal or random screens 
will be used, and the diffracted fields will be derived 
from (5), corresponding to the source at infinity. 

3 . Preliminary Tests: Unperturbed Wave 
Front 

Before (5) can be used in computing diffraction 
problems, it is necessary to find the smallest summa
tion limit, XL, and the largest increment, LlX, that 
can be used without undue error. They in turn 

'f (2XL + 1) b 1 specry how many terms, t::..X 'must e ta cen, 

and so indicate the feasibility of obtaining solutions 
with a given computer. For this reason initial com
putations were made assuming the wavefront to be 
unperturbed- i.e., t::..H= O- in which case the result 
should be Al= 1, 10= 0. 

The progressive summation of (5 ) may be regarded 
as the construction of a spiral. When X is large 
relative to EI the terms become small and equal to 

t::..X . . d P . 1 d X· II 2.JX ill magmtu e. rOVle e t::.. IS sma , one 

revolution of the spiral is completed every tim.e X 
1 

increases by unity, i.e., every t::..X terms, and the 

spiral has radius 1'X. Thus, if (5 ) is summed to 
47r·vLl.. 

± XL' where XL is large relative to H, there is a 
residual error with magnitude 

1 
~=----=, 

27r.JXr, 

with r6spect to the sum to infinity. In the more 
general case when XL is not necessarily large com
pared to H and the individual terms are of magnitude 

t::..X (l + Se) 
2-JH' Se3 / 2 ' 

the residual error may be obtained from figure 3 

h· l ' !H f' . f XL Tl ' w lC 1 gIves E-y 5" as a unctlOn 0 I-l' 11S was 

computed for H = 5 and shows, for instance, 
.. XL 

that ~ = 2.6 percent If H = 9 and H = 5. In this 

instance it would be necessary to include :~ terms. 

Fewer terms would be needed in the summation of 
(6) to the same accuracy because the individual 
terms, again at large X, fall off in magnitude as 
1/X5/2 rather than 1/Xl /2. 

The procedure adopted for computation with (5) 
is to evaluate the series up to some XL for which ~ is 

0.06 
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~ 0.03 
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FIGURE 3 .• "'/H/5 in tenns of XL/H. 

suitably small (usually 2 to 3%) and then to add on a 
computed error term of appropriate amplitude and 
phase. Test computations with H between 2t n,nd 
20, taking ~= 2.5 percent, ga \re remaining errors of 
less than 0.2 percent after the addition of the error 
term. 

In the course of the foregoing tests it was found 
that the increment, t::..X, had no significant effect on 
the results pro vided t::..X'::::; 7~ ' It seems tha t a rela
ti vely large in terval will suffice for an unmoclulated 
wavefront. However, this may not hold for modu
lated waves, where it will obviously be necessary to 
delineate the perturbations in sufficient detail, and 
the question of increment will be considered again 
later. 

4. Sinusoidal Screens 

4.1. Shallow Modulation 

Diffraction by a sinusoidal phase screen can readily 
be evaluated by the angular spectrum method 
[Hewish, 1951; Ratcliffe, 1956] when the modulation 
is shallow- i.e., when the fluctuations are small 
relative to 1 radian- and only first-order side
waves need to be taken into account. It is there
fore a suitable test of the numerical method. The 
modulation is of the general Jorm 

27rX 
t::..H= t::..Ho cos p. 

This calculation has been carried out by both the 
angular-spectrum and the numerical methods for 
a modulation depth (t::..Ho) of 0.01 wavelength and 
for different values of the period (P) , the distance 
from diffraction to observation plane (l-I) being taken 
as 5 wavelengths. As is well known, the diffraction 
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pattern is also sinusoidal, with the same period as 
the irregularities, but the actual magnitudes of the 
phase and amplitude fluctuations (~ and M) depend 

_ A A . 

on both P and H. I{J and 111 are shown as a functIOn 
of P, for H = 5, in figure 4. The two methods, in 
fact , give virtually the same result, differences being 
no greater than 0.001. XL/H=9 was used for the 
numerical method, and the same results were ob
tained for LlX = }~ , 7\6, and }~2. The "total fluctua-
tion," which is .J~2+ il, is independent of P when 
P is large compared to one wavelength, and figure 
4 illustrates how the fluctuation alternates between 
amplitude and phase, being mainly in the phase 
for periods somewhat greater than the first Fresnel 
zone (P>.Jll) . 

The close agreement between the two methods in 
the case of a shallow sinusoidal phase screen shows 
that the numerical method is capable of good 
accuracy in a simple instance. We shall now 
evaluate some more complex examples, for which 
analytical results are less readily available. 

4.2. Deep Modulation 

As long as the fluctuations in the screen are small 
compared with 1 radian (LlHo< < 1/27r) the form of 
the diffraction pattern is independent of the initial 
fluctuation depth, and the values of M and AI{J are 
simply proportional to it. When the initial modula
tion approaches 1 radian in depth these simple 
truths fail and then the modulation can no longer 
be considered "shallow." The results of a series 
of computations for LlHo= O.1 are plotted, suitably 
scaled, on figure 4, and a considerable deviation 
from the form of the shallow modulation can be 
seen. In terms of the angular-spectrum concept, 
these changes with increasing depth of modulation 
are due to contributions from side-waves of higher 
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order that introduce higher spacial harmonics into 
the diffraction pattern. Examples with LlHo near 
or exceeding O.I- a phase fluctuation of 7r/5 radian
plainly cannot be tretLted as shallow modulations. 

In the angular-spectrum method, problems invok
ing deep modulation require the addition of several 
side-waves whose amplitudes are specified by a 
Bessel function . The number of required terms 
increases rapidly with increasing modulation depth. 
By this technique Hewish [1951] computed diffrac
tion patterns from initial phase modulations of up 
to 8 radians. In the present numerical method 
deeply modulated screens can be treated as easily 
as shallow ones, apart from the need to verify that 
the summation interval (LlX) is adequately small. 
Figures 5 and 6 show the diffraction patterns com
puted for the conditions H = 5, P = 3}f, and H = 20, 
P =2, with initial modulation depths (LlHo) up to 
four wavelengths (25 radians ). These show plainly 
the distortion of the sinusoidal form by increased 
modulation depth, with periodicities down to half 
a wavelength in evidence. In general the overall 
amplitude fluctuation of the diffracted signal does 
not change greatly beyond LlHo= O.I; whereas the 
overall phase fluctuation (which has been plotted 
as a fraction of the input modulation <Ps= 27rLlHo) 
tends to increase at least as far as LlHo= 1.0. The 
curves are similar in general appearance to those 
given by Hewish [1 951], but a detailed comparison 
is not possible because he does not state his value 
of P. 

4.3. Summation Interval for Deep Modulation 

The foregoing compu tations were made with a 
summation interval LlX = 7i6. To investigate the 
adequacy of this interval, some computations were 
repeated using other intervals, in the range from 
J~2 to unity. Figure 7 shows the patterns obtained 
in the case H = 20 , P = 2, LlHo= O.l. The results 
are identical from intervals J{6 to 7~, and even interval 
.% incurs very little error in spite of the fact that it 
barely specifies the waveform adequately. Compu
tations for H = 5, P = 3%, 6.JIo= l, the most severe 
case of figure 5, using LlX = ?~2, Ji6, 7~ and }~, differed 
from each other by less than 0.0024 in either ampli
tude or phase; relative to a total fluctuation of 1.3 
in amplitude and of 5.8 in phase this is a negligible 
error. An even more severe case in figure 6, H = 20, 
P = 2, LlHo= 4 , was computed using several intervals 
between }~2 and K Here the resul ts for }~2 and 7~6 
agree, yet those for }{2 and 7~ were utterly different, 
as figure 8 shows. It is curious that the error should 
increase so drastically for intervals which are only 
slightly too large. Figure 9 clearly illustrates the 
rapid deterioration at two particular points of the 
pattern: intervals less than 7L are accurate, }i5 
shows a small error, and intervals larger than 715 
cause unacceptably large errors. 

The sharpness of the transi tion between satis
factory and unsatisfactory intervals has one useful 
aspect . It is possible to test an interval by simply 
repeating the computation with the interval doubled. 
It the two results agree it is highly probable that 
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both intervals are satisfactory. According to these 
tests the interval can be so large that the phase 
fluctuation in the diffraction screen is permitted to 
change by several Tadians between sample points. 
This, and the need to specify the shape of the 
modulation in sufficient detail , are the criteria to 
be kept in mind when deciding what summation 
interval should be used in a particular instance. 

4.4. Discussion 

The numerical method appears to be accurate in 
computing diffraction from both shallow and deep 
sinusoidal phase screens . It is estimated that on 
an IBM 7090 computer the calculation for H=20 
us.ing a summation interval of ~{6 would tak:e 0.21 
mm; so even deep-modulation problems can be 

evaluated quicldy and cheaply. The diffTaction 
screens which arise in nature may not normally be 
sinusoidal in form; nevertheless, as an approximation 
it is sometimes convenient to consider them so, and 
the methods outlined so far may be useful in this way. 

5 . Random Screens 

5.1. Simulation of Random Screens 

The diffractio nscreens appropriate to the natural 
phenomena of radio propagation are usually random 
in the sense that it is not po sible to predict their 
space and time characteristics ill detail. It is usually 
assumed, though, that their statistical properties 
may be exactly defined by parameters such as the 
standard deviation and the autocorrelatioll func
tion--that is, that the screens are statistically sta
tionary. We will specify a random phase screen by 

and 

<T being the standard deviation and Pm the correlation 
coefficient with respect to interval 1n. It is now 
necessary to generate a set of numbers having these 
statistical properties, which will represent thE> varia
tion of 6H across the screen. 

A series of correlated random numbers, a, may 
conveniently be generated from a series of un
correlated random numbers, b, by 

(8) 

wherej and g are coefficients. If the standard devia
tion of the a's is to equal that of the b's , 

(9) 

Then the mth correlation coefficient is given by 

Pm= jm. (10) 

This simple form will be used in the present work; 
others could be devised if required. Figure 10 
shows the values of Pm computed from 500 or 1000 
numbers generated by this series for three values 
off. They are seen to agree closely withj'n. 

5.2. Procedure 

Since the numbers are random it is necessary to 
use enough of them when evaluating their statistical 
properties. As a guide we note (as can easily be 
proved ) that if the correlation coefficient is of ex
ponential form , 

Pm=exp (- m/mo), 

then r points of the correlated series contain the same 
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FIGURE 10. Autocorrelation of gen erated mndom screens. 

information as r/2?no independent points. For smal 
values of p, its standard deviation when calculated 
from N independent points is 

1 
CT (p)= ~N-3· 

We therefore expect the accuracy of an estimate' of p 

to be of the o,der Of..J : ' whe" " i, the num
- -3 
2?no 

bel' of correh1ted points used to evaluate p, and ?no 
is the interval at which p has fallen to about 
1/e(= 0.37). Table 1 shows ?no and CT (p) appropriate 
to 1000 points, for several values of j to be used in 
computations. The value of Q, defmed as the 
distance in wavelengths at which p falls to 0.5 is 
also given assuming 6.X= 1/8. ' 

TABLE I. Properties of con· elated mndom numbers 

f mo u (p) (for r = 1000) l)(ifI1X= l j8) 

0. 940 16. 1 0. 19 1.44 
.884 8. 1 .13 0.728 
. 794 4. 3 . 09 . 390 
.707 2.9 . 08 . 258 
. 500 1.4 . 05 . 125 

I~ the foll~:nving computations a series repre
sen tIng 6.H IS generated from (8), appropriate 
values for j and CT (b) haying been chosen in ad,oance. 
The properties u(6.H) and p(MI) are computed 
for t his series. The series 6.H is then supposed to 
represent the phase fluctuation sampled at intervals 
!:1X along the diffraction plane, and the amplitude 
M 01 the diffracted vva ye is computed at in tel'\Tals 
6.X' (where 6.X' can be equal to 6. X, 26.X, etc. ) 
alon& the obseI'\Ta.tion plane. The compu tation is 
re~tl'lcted to amp~I tude for the sake of brevity, this 
bemg tho qu~ntlty most often observed experi
mentally. J.I[ IS evaluated at 500 or 1000 intervals 

and, fulally, the statistical properties CT (1\if) and 
p(M ) are computed for comparison with CT (6.H) 
and p(MI). The distance in wavelengths at which 
p (1\11) falls to 0.5 is defined as q. 

It is veri.fied that the interval 6.X is sufficiently 
small by repeating the computation with every other 
point of the series t::.H eliminated and with 6.X 
doubled. With satisfactory intervals there is no 
significant difference between the two computations. 
The intervals!:1X= 1/8 andt::.X= 1/4 were always found 
to be adequate wi th shallow modula tion , as would 
indeed be anticipated from the foregoing sinewave 
results . 

5.3. Shallow Modulo lion 

To illustrate the application of the numeri cal 
method to shallow random screens, some problems 
will be explored which lie on the borders of approxi
m a tions commonly applied in radio diffraction theory. 
It is generally accepted, for instance, that irregu
larities much less than a wavelength across W< «1) 
do not propagate and therefore do not appear in the 
diffracted signal. For irregularities larger than a 
wavelength it is well known that the statistical form 
of the diffracted signal becomes identical to that of 
the diffraction screen when the first Fresnel zone 
over the diffraction screen is so large that it includes 
many irregularities , i.e., l « Q« $. It is not 
always evident, however , at what point such approxi
mations become valid. As conditions like these have 
no special significance in the present numerical 
method, but also present no particular difficulty, we 
shall use it to investigate 

(i) diffraction from irregularities about one wave
length across: Q~ 1; and 

(ii) the transition from the Fresnel to the Fraun-
hofer r egion : Q~ ~ H. i 

A range of examples has been computed with Q 
between 0 and 2.7 and with H between 3 and 30 
(i. e., $ between 1.7 and 5.5) . T ypical results ar e 
given in figures 11 and 12 which show how the dif
fracted pattern changes with the distance (H ) 
between the diffraction screen and the observation 
plane for two values of Q. The diffracted amplitude 
pa ttern is obviously narrower near the screen, and 
the amount of fluctuation (u (M») is sm aller . Also, 
the sm aller Q, the less is the dependence of q on H . 
In figure 12, where Q< l , the correlation function 
has a different shape at the two planes, which is 
consistent with the evanescence of irregulari ties 
much smaller than a wavelength. Nevertheless a 
considerable depth of fluctuation remains even at 
H = 30. Figure 13 shows the dependence of the " 
pattern width in the observation plane (q) on that 
in the diffraction plane (Q) at a constant H = 9. In 
all cases ."IH > Q. It is seen that q< Q for the larger 
values but that q> Q for the smaller ones. Overall, 
q varies much less t han Q. The depth of fluctuation 

( u(AI[) ) . 
expressed as CT (6.H) passes through a maXllnum 

near Q= 1. The loss of fluctuation for Q> 1 is prob
a.bly because Q is not sufficiently small compared 
with the first Fresnel zone, and the loss for Q< l is 
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o-(M) 1 
o-(ilH) 

1 -

X' (UNITS OF A/8) 

H 

30 

30 

FLG URI'; 11. Dij/raction pattem s for Q=2.55. 

probably caused by evanescence of the finer compo-

nents. Nowhere in these computations does :(c::J) 
reach the theol'eticallimit ,(2; (= 4.44) which is an
ticipated in the condition 1« 0< <./H. It is 
clear that situations up to {l1= 40 remain well 
within the Fresnel region, with O"(M) < -fj,7r0" (tJ.H) 
and q< O. 

A particularly interesting case is that for 0 = 0. 
In contras t to previous work [Bowhill, 1957; R at
cliffe, 1956], the present calculations give q> O, 
0" (JYJ) > 0. This case has been computed for a range 
of H between 3 and 48, the calculations being per
formed with two different sets of random numbers. 
The results are given in table 2. There is no ap
parent trend with H , differences being attributed to 
statistical enol'. The mean of thesil curves is plotted 
in figure 14. The existe nce ftL 0 = 0 of a filliLe q of 
about Aj4, and 0(' a residual O"(Nf) 0 abo u t 2 0" (MI) , 
is probably due to contributions from signals scat
tered obliquely; these will obviously be cOl'l'elated 
for displacements X' up to about A/4. Theoretical 
treatments that presume a small-angle approxima
tion \",ill miss these con tributions. 
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FIGURE 12. Diffraction patterns fo?' Q = O.625. 

TABLE 2. Computations fa?' Q = O 

,,:,::"~"=~~ ... 1-;'4~:82 ----;0'. ~;;:;;i:;-;i~;- I-U-(~_\ n_l_u(C;-l "j'":l 

1 . 3500 2. 1:l9 

1
3 . 2875 2.015 
6 .2687 1.771 

Second scL_____________ ~4~8 : m<J i: ~~~ 
.3062 1. 94:l 

Mcan___________________ ______ .2962 1. 902 
Standard dcviatioll_____ ______ .0265 0.120 

As a summary of the behavior over the full range 
of computations, figures 15, 16 and 17 show the 



p(6H) 0.5 

P (M) 0.5 

, 1/4) 

10 

x' (UNITS Of=: Al8) 

5 10 15 

x' (UNITS OF A/ 8) 

1.0 r-----r----,---,---,-----.--,---,-----,---,--, 

0.5 

p(M) 

- 0.5 '----'---'---'----'--"---'----"----'---'-----' 
o 4 9 10 

x' (UNITS OF Ala) 

FIGU RE 14. :M ean of 10 computations fo r Q= O. 

CT(M) 

CT (lIH) 

Q 

F IGUR E 13. Diffraction patterns f or H = 9. 
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FIGU RE 15. Shallowly modulated random SCl'een: width oj 
diffract ed ampli tude pallem. 
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FIGU R E 16. Change of amplitude fl uctuation with ..jH /rp. 

a-(M) 

a- (6 H) 

a-( M) 

a-(6 H) 

( 0 ) VAR IAT ION WITH q 

0= 1.4 - 1.6 X 

0 =0.6 - 0.7 + 
0=0. 31- 0. 37 I;] 

0=0.11 - 0 .24 VI 
0 =0 8. 

O L--L_~~_-L_L-~_~_L--L~ 

o 0.5 1. 0 

q 

( b ) VA RIATION WITH ( q -0. 30)/O 

. • 
~ 

CO MPUTED 

THEOR ET ICAL 0 

O L---L-~ __ -L __ -L __ ~ __ L-~L-~ __ -L __ ~ 

o 0.5 1.0 

(q'- 0.30)/Q 

FIG URE 17. cr (l\II) / cr (i.\H) fo r shallow modulation. 

width of the ampli tude pattern (q) and the depth of 
amplitude fluctu ation (a-(1Vl )). Figure 15 illustrates 
the behavior of q: 

(i) If Q < 1, q increases with iucl'ease of Q. How
ever , it changes relatively slightly wi t h II, passing, 
in fact, through a m.aximum. 

(ii) If Q > 1, q changes more slowly with Q bu t 
depends more strongly on H. J t appears that 
q (X,JH , at least to , IH = 2Q, wh en Q= 2.5 . 
The flu ctuation depths computed 1'0[' Q > 1 are given 
in figure 16 as a function of , IH /Q. a-(JIIl) is expected to 
fall off at the smaller values of ,JH /Q because ir
regulal'i t ies very large compared to the early Fresnel 
!lones will make negligible contribution. By similar 
reason ing, a- (M ) m ust be zero when ,JR/Q is zero. 
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The slope found here is very different from the 
theoretical results of Bowhill [1957] and Wagner [1962] 
which are also plotted. It must be realized, though, 
that the three examples are for different forms of 
irregulari ty: Bowhill's for a Gaussian correlogram 
falling to 0.61 at Q; Wagner's for a "medium cut
off" power spectrum; and the numerical method for 
a correlogram of formjm falling to 0.50 at Q. 

It was not possible to find any simple empirical 
relation that would describe the variation of (J eAt) 
in terms of Hand Q over the whole range of Q. A 
relation between (J OvI)/ (J (!:J.H) and q derived from the 
same computation is apparent, however. As indi
cated in figure 17a, the points derived for a given Q 
tend to lie on a straight line of slope proportional to 
l /Q which passes near the point computed for Q= O. 
This rather curious result is further illustrated in 
figure 17b, which shows how u(M )/u(!:J.H) is simply 
related to a quantity (q-0.30) /Q. The scatter is 
probably no more than statistical error, the points 
which deviate most having been derived from small 
values of Q. For diffraction in the Fraunhofer 
regIon (--JH > > Q) it is to be expected that 
(J(M)/(J(MI) = 4.44, and that q= Q (both being large 
compared to unity) so that (q- 0.30 )/Q= 1. The 
trend of figure 17b indeed passes through this point. 

In illustrating the use of the numerical method 
with shallow random screens, the following two 
results have emerged: 

q 

M, 
<TIM), 

<T IM) 
M 

0.5 r---,-----,----,-----,-- ---, 

0.1 

0.1 

°0~--~--~--~---L--~1 . 5 

<TILlH) 

<T ILlH) 

FIGURE 18. Deep random modulation. 
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(i) Even very small irregularities produce a diffrac
tion pattern with finite fluctuation depth and finite 
pattern width. 

(ii) Fraunhofer diffraction- in which the forms of 
the diffraction screen and of the amplitude pattern 
in the observing plane are identical, and in which 
the relative fluctuation depths are simply related
cannot be considered to apply until the first Fresnel 
zone is many times the pattern width. 
Such results will have a bearing on the interpretation 
of experimental data of LF and VLF fading, since a 
100 kc/s signal received at the ground is 30 wave
lengths from a diffraction screen at a height of 90 
km and a 15 kc/s signal is a mere 3.5 wavelengths 
from a screen at 70 km. 

5.4. Deep Modulation 

To illustrate the method's application to deep 
random phase screens, one example has been com
puted which illustrates how the pattern width and 
depth of amplitude fluctuation change with increasing 
depth of phase modulation. It is taken that the 
diffraction and observation planes are nine wa ve
lengths apart, and the phase perturbation is of small 
horizontal scale: Q= 0.369 . The results are shown 
in figure 18. The effect of increasing u(!:J.H) is ini
tially to reduce the width of the amplitude pattern, 
to reduce the mean amplitude, and to increase the 
fluctuation depth . Beyond u(MI) = 1, however, 
these quantities are virtually independent of modula
tion depth. Presumably, additional contributions 
to the fading now go into components with structure 
too small for them to propagate a distance of nine 
wavelengths. An additional point of interest is that 
(J(M) = lo.12 when u(!:J.H) is large. The interval !:J.X = 
7~ was found to be adequately small in all these 
computations. 

5.5. Discussion 

Because of the need to obtain an adequate statisti
cal sample, computation with random screens is 
much lengthier than it is with sinusoidal ones. For 
instance, the computation takes 11.6 min in the 
case H =20, !:J.X= 7~ , when 1000 amplitude points 
are taken. A limi ted amount of random screen 
computation is probably justified, however, because 
of the closer approach to experimental reality. A 
set of computations, such as those for shallow modu
lation, can clearly be applied to practical propagation 
studies. If it seems reasonable to assume an initial 
modulation of phase only, and if the present form 
of correlation coefficient is taken, then figure 15 
relates q, Q, and H. An observation of q and an 
estimate of H then lead to Q. Having measured 
(J(M) it is then possible, from figure 17, to determine 
(J(!:J.H). It may also be possible to find u(!:J.H) from 
(J(M) and u(¢)- though this has not been done here. 
In that event one could work back to a determination 
of H. 

A number of improvements and extensions are 
possible. Computational refinement may speed up 
the computer program (whose block diagram is given 



in Rppendix 1) . It would be logical to make COlU

puLations for different forms of correlation coef
ficient, for a point source, an d for oblique-in cidence 
propagation. The model co uld conceivRbly bo 
extended to two-diluensional (01' even tlu'ee-di
mensional) irregularities. Finfl,lly, it mfl,y be advan
tageous to evaluate the phase as well as the ampli tud e 
properties of the diffracted Wfl, ves. 

6. Conclusions 

The object of this work has been to investigate a 
proposed numerical technique for solving diffraction 
problems. The technique in its present form appears 
to be appropriate for radio problems where the 
irregularities in the diffraction screen are a f ew 
wavelengths across and where the observation plane 
is not more than a few tens of wavelengths away. 
These are conditions of practical concern in Lhe 
ionospheri c propagation of LF and VLF signals. 
It has been shown that the technique gives accurate 
resul ts wi th sinewave modulation across the screen, 
and it has been found that, even for deep modulation, 
integr ation in tervals can be larger than migh t be 
thought at first sight. It has been possible to derive 
original results for random screens observed in the 
Fresn el region. 

Although the numerical method is no t Rlways the 
best one to use, and is limi ted by considerations of 
computing time, there ar e cases wher e it is very 
convenient an d it may be particularly valu able in 
the in terpretation of experimental diffraction data. 
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If all t::.H used 

Generate random number (B~ with 1 
standard deviation rJ r( !::,J-1) " 
Compute t::.Hn+J = FM1n + GB 

I 

repeat for (NT +50) 

Store t::.H except for first 50 values (11) 
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8 . Appendix 1. Block diagram of 
computer program 

R ead bas ic parameters 
II, ( 1) l /t::.X, (2) XL/II, (3) t::.X' /t::.X, (4) F (5 ) . 

R cquired tandal'd dcviaLion of t::.H,(6) = rJ r (t::.[l). 
N umbel' of val ues of 1\;[ (7) to bc compu ted = N M . 

N umbel' of all tocorl'elatio n coefficients, p, to be 
evaluated for t::.II and ('or lli, and interval 
between succe sive valucs. 

IVhcther or not every other value of t::.H is to be 
omitted. (8) 

Starting parameter 1'0 1' random number gencrator. 

Compute 

t::,X /I-l , t::.xNl1. 

N~9) = (l + X L /t::.X + 1/2t::.X) 

~ T( JO)_ ( N )+ t::,X' (N ) l VT - 2 c- 1 !:1LY M- 1 

Generate random screen 

If every other t::.H used 

Generate BJ r:J 
Compute D= Ft::.Hn+ GBJ 
Generate B2 
Compute M1n+J= FDt GB2 I 

N +50 repeat for --'T'----'-_ 
2 

Store t::.H except for first 25 points ( 11) 



Find statistical proper ties of !:lH 
Oompute mean, !:lH 

standard deviation , Cl (!:lH) 
autocorrelation coefficients, p(!:lH). 

<-----Output these. 

Compute 

1/S e(12) (HSe)/2Se3/2 HSe for X = 0 (!:lX) XL +t , " H H H 

Generate 
sine and cosine tables 0(3°)357° an d store 

Compute 

f ,X= -XL (!:lX) + XL 
01 H H H H 

U (13)-"" l + Se 2 (HS +MI). U _ "" l + Se. (HS !:lH) 8 1 - LJ2Se3/ZCos 7r e S e ,8 2-LJ2Se3/2sm27r e+ S ( 

for ~= ~1 (~)X}tt 

Shift 

M=~X -/(U1+ 8U1)2+(U2+ 8U2 )2 
-yH 

!:lX' 
values of !:lH by ----v- in tervals. 

!:lA I 
L-_____________________________________________________________________ I 

Find statis tical proper ties of M 
Oompute mean, M , 

standard deviation, Cl(M) 
autocorrelation coefficien ts, p(M). 

<-----Output these 
Output next random number parameterY 4) 

I His the distance in wavelengths between difTraction and observation planes. 
, AX is the distance in wavelengths between sample points in tbe diJIraetion 

plane. 
3 XL is tbe limit of summation 1n the diffraction plane. 
4 /l.)C' is the distance in wavelengths between pOints in the observation plano 

at whicb res ults are to be computed . 
5 F is the parameter determining the width of the correlation pattern at the 

diffract ion screen. 
S All is the phase deviation. 
7 ]V! is the am plitnde at the observation plane. 
S Alternate val ues of A[-[ can be omitted to test whether AX is suffi cientl y 

small. 
, N, is the n umber of values of IXI required. 
to NT is the total number of diffraction screen samples required. 

Repeat for NM 

II Early points are dropped to ensure statistical uniformity in tile series. 

I---x" 
12Se= "l+~ 

Ii' 

13 0 Ul, oU2 are tbe correction terms for flnite XL. 
14 rrhe next random number parameter is saved so that computations can be 

repeated with an indepen dent set of numbers. 

Non: The program is in Fortran. Tape storage is used [or extra capacity. 
Assuming NM = LOOO, N, can be up to 4000. 

(Paper 67D6- 29S) 
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