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The amplitude and phase of the groundwave are calculated for oblique propagation

across a flat lying coastline.

The land and sea are assumed to be smooth and homogencous.
Attention is focused on the effects which take place near the coastline.

It is shown that the

reflected wave depends critically on the angle of incidence, 6y, while the transmitted wave has

only a weak dependence on 6.

1. Introduction

In certain radio navigational systems it is im-
portant to estimate the influence of inhomogeneities
of the earth’s surface. A striking example corre-
sponds to the situation when the transmission is
over mixed land/sea paths. Here, not only the
conductivity contrast, but also the change of ele-
vation of the various portions of the path may
influence the amplitude and the phase of the received
signal.

The problem of calculating fields over mixed
paths has been investigated by Feinberg [1946],
Millington [1949], Clemmow [1953], Bremmer [1954],
Furutsu [1956], Wait [1956], Wait and Householder
[1957], Godzinski [1958], Kalinin and Feinberg
[1958], and others. Surveys of this and related
work can be found in a recent review article [Wait,
1963].

It is the purpose of the present paper to consider
propagation across a straight coastline for oblique
mcidence. Special attention is given to the behavior
of the fields near the coastline 1tself since most pre-
vious theories are not valid there. Also, the reflec-
tion from the coastline and the change of wavefront
direction are evaluated. In part I, the influence of
a gradual elevation change between land and sea is
treated using an approximate condition due orig-
inally to Feinberg. Finally, in part III, the effect
of allowing for the nonabruptness of the effective
conductivity change between land and sea is
considered.

2. Formulation

To simplify the problem at the outset, a flat coast-
line is considered and the influence of earth curvature
is neglected. The situation is illustrated in figure 1.
With respect to a Cartesian coordinate system, the
zy plane is taken to be the plane surface of the earth
and the coastline is the 5 axis. For purposes of dis-
cussion, the medium to the left (i.e., z<0) is de-

1 The research work in this report was supported by the Air Force Cambridge
Research Laboratories, Bedford, Mass., PRO-62-201.

scribed as land with surface impedance Z while the
medium to the right (i.e., 2>>0) is described as the
sea with surface impedance 7. The transmitter at
A with coordinates (—ux, 7,) is reearded as a vertical
electric dipole, of effective height A, on the surface
of the land. The receiving antenna, of effective
height /,, is located at B with coordinates (d;, 0)
where d; may be positive or negative. For conven-
ience, the receiving antenna at B is also located on
the earth’s surface and it is assumed that it responds
only to the vertical electric field component at z=0.

In formulating mixed path problems of this kind,
it is usually assumed that the surface impedance Z
for the land, and Z” for the sea, hold right up to the
boundary. Actually, even 1f the boundary were ab-
rupt, there would be a violation of the basic premises
in the vse of the surface impedance concept. The
conditions for the applicability of the impedance
relations

E,=—7H, and E,=ZH,

are that 7 should change slowly in a distance equal
to the effective wavelength A, in the lower medium.
Because \, is much less than )y, the free space wave-
length, it means that the surface impedance relations
may be valid at distances from the boundary small
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Fraure 1. Plane view of the mized path showing the location of
the dipoles A and B.
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compared with \;. To extend the usefulness of the
surface impedance concept, it is desirable to insert
a transition zone such that Z changes gradually to
Z'. The width of the transition zone is equal to 2e
as indicated in figure 1. It may be defined such that
Z and 7’ are essentially constant when z<Z—e and
x >-¢, respectively. Apart from mathematical con-
venience, the existence of such a transition zone has
a practical significance in studying the influence of
a variable water depth in the vicinity of the shore-
line.

If the problem involved only a homogeneous land
of surface impedance Z, the mutual impedance z,
between dipoles A and B would be readily calculated.
Thus, it is convenient to regard the medium to the
right of the coastline as a perturbation and the
resulting change of the mutual impedance is denoted
Az,. From previous work [Wait, 1956], it is known
that Az, can be expressed in terms of a surface
integral over the plane z=0, of the form

1 7T
Azmzﬁffs (Z'—Z)H,, - H},dS, (1)

=
where H,, is the tangential magnetic field of dipole
A over the reference earth of constant surface

sy
impedance Z and where Hj, is the tangential mag-
netic field of dipole B over the actual inhomogeneous
earth. In formulating this integral, the current at
the terminals of dipoles A and B is /.

Following earlier work [Wait, 1956], it is conven-
ient to express the tangential field vectors at the
variable point P(z, ) i the following forms

= vl I 1 » > o
IIM:ZZW?" 1+W> ¢ “”F(r] Z) (%’X%Z)y (2>
and
17 ——__ikh”l ‘1_ — kR 7 Ly
"= 0xR 1+ikR>e F'(R, Z,2') (izX1:), (3)
where )

r=[(z+4x0)>+ (¥—y0) 1},
R=[(z—d\)*+v*},

> o
and F and F’ are slowly varying quantities. 1i,, 7z,
-

and 7, are unit vectors in the directions of increasing
r, R, and z, respectively.

The attenuation function F' is a known quantity
from the theory of groundwave propagation over a
flat homogeneous earth of surface impedance Z. The
explicit form [Wait, 1963] is given by

F(r, Z)=1—i(xp)te=? erfc (iph), 4)
5 2
where pz—gﬁq Z When |p|<<<1, F(r, Z)~-1
0

while, if |p|>>1, F(r, Z)~—1/(2p). The function

F'(R, Z, 7Z’) 1s not known except to say that it is a
function of R, Z and Z’ and that it approaches
unity if R is sufficiently small.

- -
Using the above representations for H,, and H,,
(1) for Az,, may be written

 Ehehy [

Azn= 4r®

+ 6—ik(1+1?) . 7 ) I Z
R 7 07 (T ’
| 2P @ 2,2)

T=—¢

X(Z'—2Z) (1—{—;&%) (1—{-%) cos odedy, (5)

where ¢ is the angle subtended by the units vectors

- -

1, and 1z. Here the element of area dS has been re-
placed by dady. Also, it should be noted that the
surface S is the region z>—e since Z'—Z=~0 for

r<—e.
3. Approximate Solution

A number of approximations are now made in
order to facilitate the integrations. First, it is
assumed that dipole A is in the far field such that the
incident wave fronts are approximately plane in the
neighborhood of the boundary under consideration.
Then the slowly varying attenuation function
F(r, Z) may be replaced by F(r,, Z) which is the
value appropriate to the origin. Also, it is assumed
that the attenuation function F'(R, Z, Z’) may be
replaced by unity if quantities of first order only
are to be retained.

Within the approximations stated above it is
evident that

c0s §=c0s (8p+8;)=c0S §, cos §,—sIn §; sin 4,

where
Sin 51281:?/0/7'0,
COS 51:012(1—6'3)%:930/7"0,
. l‘—dl
sin §,=y/R and cos §,= 7
Thus
Nx_dl _E
Ccos 6~ i @ i Si.

In the phase factor exp(—uk(r+R)) it is desirable
to simplify » by retaining only first-order variations
in z and . For example,

= (@+0)%+ (Y—yo)?
=15+ 5+ 20— 2y,
reero+2C—yS,.

and, therefore,

Furthermore, in the integrand of (5), 1/r may be
replaced by 1/ry, and the factor 1-4-1/ikr by unity.
Using the simplifications indicated, it readily fol-
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lows that

k? hahb e~ 7o
1|'

F(TO;Z>

® ’r —ikC1z Tee i
><f_€<Z —Z)e~t1 f_w e <1+sz>
(7 oty s

By making use of the identity

LAz, —

a e—ikR

OR R

e —ikR

—k <1+7kR R

it readily follows that

—akhah, e

Az,=
g A’

F(/(,,/)f (Z'—2Z) exp [—ikCyx]

—ikR

0 (t=e
Y — p—
X{(l x,ﬁm 1
4 e —1{kR
-8, f (““l/ (h/l(lx (7)

The infinite integrals with respect to y may be ex-
~pressed in terms of the Hankel function of order zero
[Campbell and Foster, 1949].  Explicitly

e*Sudy

FE iy @ R
f et n dy=—1uwHP[kC)|lx—di|], (8)

©

which is valid because & can be regarded to have a

vanishingly small but finite negative imaginary part.

To simplify the final expression and to cast it into

a dimensionless form, the results are normalized by
“dividing by the mutual impedance z,, defined by

iknhohs <1 1

o 27T0?‘ 7]L’/' 0

1 —ikrg J( A
k;6>>(' F(TO; Z)J (9)

where 7,=7,+d,C,. This expression corresponds to
the mutual impedance between dipoles A and B, at
separation distance 7, if they were located on a flat
homogeneous earth of surface impedance 7.  Within
the limitations already imposed,

?. k‘/)oh hb

o~ k10— KCLUF (7Y
271"7[) ( W J)

(10)

“m [

Making use of (7) and (8), it readily follows that

Az gkCy Lo J1_7

= — €
277 = Mo

x{ g a% HOkCo—d|]

—ikCyz

“m

Following an integration by parts,

A ~m

Z - ® / .
?mg_zz_ ezwldl f_é l:(Jl ({[(;)_?/kf(x)]

X e~ " [ @[k |a—dy|de,

(12)

where f(z)= (Z'—
less quantities

Z)[ne. Introducing the dimension-

a:k(,vlz, [¢3] :lij(vl(ll,illl(l ao:/é'(’lé,
it is evident that

Az m__
Zm

](,via

— e f;n(gma—al
df (a)

x| 0. L

%f(va)]da,

where f(a) = (Z"—7) [n, is regardad as a function of «.

When the vertical stratification in the earth may be
neglected, the surface impedance function can be
expressed in terms of the conductivities o, and ¢’
and dielectric constants ¢, and €. Thus

(13)

. . 1 1
(@)= (iew) [(U,]r’{g/;); (ag%—iegw)"i]’
where

=38.85X10~12.

4. Special Case of Abrupt Boundary

To effect the integration with respect to a requires
that the function f(«) is specified. The simplest
case, of course, is the coastline which can be regarded
as abrupt. For example, one may consider

J(@)=—A¢'"*u(a)
where
u(a)=1 for a >0,
=0 for a<0.

Here, A, is to be recarded as a constant and defined
) 0 )
such that
Z—7'
Mo

e—*iw“

AO:

If both media (i.e., land and sea) are sufficiently
well conducting that displacement currents can be
neglected, Ay is a real quantity. In general, however,
A, is complex and 1s a measure of the contrast in
surface impedances between the two homogeneous
regions.

For the assumed sharp boundary,
noted that

it should be

([f(a) i em/l(;(a)
1 da
2TT @[ Iof T | ,
iR (]‘HJ O e 8(a) is the Dirac impulse function at a=0.
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Therefore

AzmiAO
Zm

o3/ gia [OlHéz)(]all)

_g,;l ﬁ : Hgm(]a—all)e*“da]- (14)

It is immediately evident that this expression for
the impedance or the field possesses a singularity as
o; tends to zero. For example, when |ao|<<1,

Héz)([a1|)g1—i§ (log |as| —log 2--0.5773), (15)

which would indicate that the field has a logarithmic
singularity at the boundary. As will be indicated
below, the singularity is spurious since for any finite
transition between Z and Z’ the field no longer
behaves in this manner very near the coastline.
However, provided |o;| is not too small compared
with unity, the assumption of an abrupt or sharp
boundary is satisfactory.

Using the identity

2 faeie () @) F il @) )=+ H @),  (16)
it is a straightforward task to show that
VAV \ . 9 c
X 26 e (1o HEP (—e)

+taHP (—a)lets, (17)

for a;<0, while
A m A i Y. Y 2 i 2
=gl OO — i) HYP (o) — e P (e, (1)

fOI‘ 011>0.
For purposes of computation, it is convenient to
write

s 1
4 =C1Aog (on) =A0Cy [gl(al)+?§ [/2(“1)]’ (19)

where ¢, and ¢, do not depend on (; or A,. Noting
that HS (x)=Jn(x)—1Y.(x) where J, and Y, are
Bessel functions of order m, it is a simple matter to
obtain the following e\phmt formulas in terms of
real quantities.

For x=a, >0,

0= l:cos (%T—l—x Jo(X) +sin (%’Hux) Yo(x):l

+ ,:sin (Er+x) T —cos (374) Yo(x>} (20)

and

$200—> [cos G—l—x) (Jo—Y ) +sin (§+x> (J1+Y0)]

+1 = l:sm < -I-X) (Jo—

where the arguments of the Bessel functions are
x(=a;) throughout.
For x=a,<0,

n(xX)= l:cos <3r+x> Jo(—X) +sin <—+x> Yo (— x)] |

o [sin (%Urx) Jo(—) —cos ——+x)Y X>]

(22)

3 [eos (5+%) Tt ¥ —sin (F4x) (=70 |

+i} [sin G—{—x) (Jo-+Y1)+cos <§+x) (JI—YO)],
(23)

cos( +X> (J1+YO):| |
(21)

and

where the arguments of the Bessel functions are
—x(=—a,) throughout.

Employing the preceding formulas, the real and
imaginary parts of g(a;) are calculated for a range
of @, from —20 to +20. These results are shown
in figures 2 to 6 for selected values of 6,. Additional
curves of this type may be readily calculated from
the numerical values of ¢; and ¢, given in the appendix.

When the dipole at A is transmitting, the fractional
change of the field at B, resulting from the presence
of the medium of surface impedance Z’, is (Az,/2n)
or (JAw(ey). Thus, the curves in figures 2 and 3
show the nature of the phenomenon near the coast-
line. As expected, the field exhibits a singular
behavior near the boundary. For positive values

0.2 LA I B I B B I LA I

TOWARD THE
LAND

TOWARD THE _|
SEA

REAL g(a,)

el L 1w L1
-12 -0 -8 -6 =) =0 0 2 4

DISTANCE FROM COAST LINE, a,

Ficure 2. Real part of the function g(a;) for mear normal

wnctdence.
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Frcure 4. Real part of the function g(ay) for various oblique
angles of incidence.

of a (i.e., Blocated over the sea), the field is smoothly
varying and for a; greater than 2 or 3, the imaginary
part of g(ay) is predominant and it increases to
relatively large values as «; is increased further.
For negative values of «;, (i.e., B located over the
land) there is strong evidence that reflection takes
place at the boundary. Presumably, the standing
wave pattern results from the interference between
the incident and the reflected waves. It is interest-
ing to note that at an angle of §=45° the reflection
from the coastline appears to be very weak. This
fact is confirmed by noting in the asymptotic
approximation for (—a;) > >1, that

g(oq)z—ﬁr(—«%al) ¢t [<1+8(Tia§+ . >
“z—é—% <1+3.2—(£’i71)+. . )] (24)

: g . 1 -
It is evident that, if (i=cos 6,—5 the leading

2
terms in the expansion cancel. In this case, g(a;)
is varying as (—e;)™% and thus the reflected wave
would be attenuated quite rapidly. This same
asymptotic expansion shows that the reflection is

IMAG. g(a))

-12 -10 -8 -6 -4 = 0 2 4 6
DISTANCE FROM COAST LINE, a,

Ficure 5. I'maginary part of the function g(a;) for various
oblique angles of incidence.

48 T T T T T T T T T T T
0 —]
32— |
’t;_ o =
o 24— —
0. 8,= 65°
< o =
2
16— —
L 6,= 45° N
08f— -
L 4= 54° .
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Ficure 6. I'maginary part of g(ay) for various values of 6y
when plotted as a function of (ay)3/cos? 6.
strong at highly oblique incidence (where € is
small).
The asymptotic behavior of the field for large

positive values of a; is also very interesting. For

example, if oy > > 1,

gfix . 2 i
Y 2__ = Lin/4
en; 20° [(01 ioy) \/mxl e <1+—8a1+ .. )

— z i31r/4< __31 [
o \/7ra1 e 1 8a1+ .. > - (25)

On retaining terms of first order only,

( i <2a1>}

)~z — )

gel~oi\x

and if 7, denotes the distance, measured in the direc-

tion of propagation, from the coastline to the ob-
server, geometry indicates that

(03] :k(ZI ('yl :]L']'I(,yf.
Therefore, within a first order,

Az, . AN
onag(aoon( 1 ) ;

™

” (26)

“m

which is independent of the angle ;. To demon-
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strate how closely this law is followed in the general
case, Im q(al) for positive «; is plotted as a function
of (oq) /C7 using the complete expressions derived
above. It is quite evident that for larger values of
a;, the curves for all angles up to 70° approach a
straight line with a slope of (2/r)%.

5. Coastal Refraction

An extremely interesting aspect of oblique propa-
oation across a coastline is the resulting change of
wave front direction. To simplify the discussion, it
is assumed that the field, incident on the boundary
at =0, has the form

Ew():@—ikclreiksly’ (27)
which is appropriate if the transmitter at A is suffi-
ciently removed to the left in figure 1. Then the
resultant field has the form

E=FE,(1+AgC)~FE, exp (Aog(h), (28)

where 4, ¢, defined by (19) et seq., is a function of
z only.
By definition the phase velocities in the z and y

directions are given by
= —(1/k)(d/0x) phase I,
v,/e=(1/k)(0/dy) phase I,

(29)
and
(30)
where ¢ is the velocity of light. Then it readily
follows that

vofe~ C— (1/k)(9/0x) Im (C1A.g),

v,lc=2S;.

(31)
(32)

and

The effective direction 6,,, of phase propagation is
then obtained from

tan Geri= (v,/v;), B3)
or
tan 0. ~tan 6, l:l—{—k o> Im (Aog)] (34)
The refraction error 66 is given by 66=60.,—6,. Thus,
to within a first order of smallness in 46,
1 -
tan (0[,+50) =5l 00"*—(@0; 66> (-%D)

which leads to the simple but important result that

(=%

in
g~ %o = Im (A0gCh).

~ k ox G

In terms of the variable ay=k(C\d;, and for an ob-

server at t=d,, the refraction error may be expressed

in the form
80~8,C3

Um Agg(a)]. (37)

Using the general expression for g(e;) given by (19),
it is found that for a, >0,

aez% o {Aoei<“‘+f)[i(0§—1)ﬂgﬁ> (@)

—CiH? (on)]}; (38)

If Ay is regarded as real,

6(0) ~ % JAYS {sm <a1-{—4>

—cos (a+]) [Y0+0%<J1—Yo>]}: (39)

—Ci(Jo+1)]

where, as usual, the arguments of the Bessel func-
tions are «;.

At reasonably large distances from the boundary,
where a; >>1, (38) simplifies to

60%’S1 <27371>E Re Ay

~sin 0,(2rkd, cos 8,) 7 Re A, (40)

which is in agreement with a formula given by
Feinberg [1946]. It is evident that the effect is very
small when d, is greater than a few wavelengths.
(When propagating from land toward the sea Re A,
may be replaced by (ew/o,)! where e=8.85X 107!
and o, 1s the conductivity of the land.)

6. Magnetic Field Near the Coastline

In the analysis in this paper, the mutual impedance
ratio Az,/z, 1s valid when the antennas at A and B
are vertical electric dipoles. Actually, if neither A
or B is near the boundary, the results are still appli-
cable for other antennas which transmit or receive
vertically polarized waves. However, if one of the
antennas, say B is close to the boundary, the mutual
impedance ratio will depend on whether the antenna
is a vertical electric dipole (e.g., a whip) or a hori-
zontal magnetic dipole (e.g., a vertical loop). For
the general case of a loop antenna at B and a vertical
dipole at A, it is possible to use the same method
outlined in this paper. However, a complexity

-

arises since the tangential magnetic field vector /1,
has additional terms proportional to 1/R* and these
tend to complicate the integrations. However, if the
direction of propagation is perpendicular to the coast-
line, the final results may be obtained in a relatively
straightforward manner.

If the field incident on the boundary, at 2=0, has
the form

E():e-ikz’
then the resultant vertical electric field may be
written
E.(x)=e "**[14 F(x)], at 2=0, (41)
where

F(z)=22m,

o
<“m
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is the mutual impedance ratio given by (13) with
=il gl dh=a.

The magnetic field which has only a y component
is obtained from the Maxwellian equation, written
in integral form,

H,(x)—H, (%) =1ew f K (x")dx’, (42)
where 2, is some reference distance. Now, if
kZ,>>>1, it is safe to assume that

nol, (B0) = — B, (3) = —e~ [ 1+ F(&p)].  (43)
Then, without difficulty one finds
—nod,=e" "1+ G (2)], (44)
where
G(@)=F (&) e~ %02 +-ike™ | " F(a')e~"da’. (45)

Since F(x) is known, the function G(x) can be found
from an integration which can be best done numer-
ically. Tt can be seen that, when kx> >1, G(x)~
F(x), as it must.

It is interesting to note that, for an abrupt bound-
ary, G(z) does not have the singular behavior char-

T T T T L T
I I I 2 Te 10
0f— —
—~ -2 =
z
o> B VALUE OF X N
- INDICATED ON CURVE
© -4
=
06— —
| o I
08 1 l 1 1 1 I L I 1 l 1 l |
15 14 -12 -l -08 -6 04 -02 0
REAL g (X)
Fraure 7. Argand plot of gi(x) for x >0.
T T
04— e
02— B
ER ]
6 -
g -0} —
=
[ VALUE OF X o
—04 INDICATED ON CURVE |
_087 -
1 l 1
14 -1z -l 0§ -05 -04 02 0 0z 04
REAL g;(X)

Ficure 8. Argand plot of g1(x) for x< 0.

acteristic of F(z), at the boundary. While F(z)
behaves as log z, the function G(z) behaves as
z(log z) —x when 'kz]<<1

7. Appendix

For convenience in auxiliary calculations, a
graphical plot of the functions ‘9.(x) and (]o(x) 1s
presented in figures 7 to 10. In complex form these
quantities are defined by

9:1(x) = (1/2) exp [ix+i(B3x/9)H,* (|x]) for x=0
9200 = (x/2) exp [ix+i(x/4)IH (x) —iHP (x)], (47)
for x>0, and

92(x) = (x/2) exp [ix+i(n/4)] [1152’(—x)+?'1/1‘”(—é)§),
for x<0.

The mutual impedance increment Az, may then
be calculated for any value of 6, by noting that

, (46)

"’771
[nl(/l(al +(7 (Il(al)] (49)
"’I’I
where ;= cos 0,.
N L S B B B B L
VALUE OF x e
INDICATED. ON CURVE
N T
ke =
S >
(&5 _—RIGHT SCALE 005 - ©
; _J 003 g
s 002 =
\( 00 06
LEFT SCALE
\A\\\&M
P 0.2
019 021
REAL ga(X)
Ficure 9. Argand plot of g»(x) for x >0.
[ U [ A
-0.0! _
02 VALUE OF X e
| INDICATED ON CURVE —005Y |
ol N
) B
= -0.2
o
0
(G}
<<
- | |
01— N
05 |
-02 N
| 1 | I 1 | L | .
202 ~0) 0 0.l 0.2 03

REAL g, (X)

Frgure 10. Argand plot of g:(x) for x<0.
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