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The ampli tude a nd phase of th e groundwave are calculated fo r oblique propagaLion 
across a flat lying coas tline. The land and sea are assumed to be smooth a nd homo"eneous. 
Atten tion is focll sed on the effects which t ak e place neal' t he coastlin e. It. is shown t hat the 
reflected wave depends c ri t ically on the angle of incidence, 00 , while the tran smi tted wave has 
only a weak d ependence on 0". 

1. Introduction 

In certain radio navigational systems it is im­
pOl'tant to estimate the influence of inhomogeneities 
of the earth's surface. A striking example corre­
sponds to the situation when the transmission is 
over mixed land/sea paths. H ere, not only the 
conductivity contrast, but also the change of ele­
vation of the various portions of the . path m ay 
influence the amplitude and the phase of the received 
signal. 

The problem of calculating fi elds over mixed 
paths has been investigated by Feinberg [1946], 
Millington [1949], Clemmow [1953], Bremmer [1954], 
Furutsu [1956], Wait [1956], Wait and Householder 
[1957], Godzinski [1958], Kalinin and Fein bero' 
[1958], and others. Surveys of this and related 
work can be found in a r ecent review article [VVait , 
1963]. 

It is the purpose of the present paper to consider 
propagation across a straight coastline for oblique 
incidence. Special attention is given to the behavior 
of the fields near the coastline itself since most pre­
vious theories are not valid there. Also, the reflec­
tion from the coastline and the change of wavefront 
direction are evaluated. In part II, the influence of 
a gradual elevation change between land and sea is 
treated using an approximate condition due orig­
inally to Feinberg, Finally, in part III, the effect 
of allowing for the nonabruptness of the effective 
conductivity change between land and sea is 
considered. 

2 . Formulation 

To simplify the problem at the outset, a flat coast­
line is considered and the influence of earth CUI'lTature 
is neglected. The situation is illustrated in figure 1. 
With respect to a Cartesian coordinate system, the 
xy plane is taken to be the plane surface of the earth 
and the coastline is the y axis. For purposes of dis­
cussion , the medium to the left (i .e., x< O) is de-

1 The resea rch work in this report was supported by the Air Force Cambridge 
Research Laboratories, Bedford, M ass. , PRO·62-201. 

scribed as land with surface impedance Z while the 
medium to the right (i .e. , x > O) is described as the 
sea with surface impedance Z'. The Lransmitter at 
A with coordinates (- xo, Yo ) is regarded as a vertical 
electric dipole , of effecti \Te height ha, on the surface 
of . the lan~l. The r eceiving an tenna, of effective 
heIght hb' l S located at E with coordinates (d1 0) 
where d1 may be positive or neo·ative. For con~en­
ience, the receiving antenna at bE is also located on 
the earth's surface and it is assumed that it responds 
only to the vertical electric field component at z= O. 
. ~n formulating mixed path problems of this kind , 
It IS U ually assumed that the surface impedance Z 
for the land, and Z' for the sea, hold right up to the 
boundary. Actually, even If the boundary were ab­
rupt, there would be a violation of the basic premises 
in the use of the surface impedance concept. The 
conditions for the applicability of the impedance 
relations 

E x= - ZHy and E y= ZHx 

are that Z should change s lowly in a distance equal 
to the effective wavelength Ae in the lower medium. 
Because Ae is much less t han Ao, the free space wave­
leugth , it means that the surface inlpeuallce relaLioIls 
may be valid at distances from the boundary small 
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FIGURE 1. Plane view of the mixed path showing the location of 
the dipoles A and B. 
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compared with Ao. To extend the usefulness of the 
surface impedance concept, it is desirable to insert 
a transition zone such that Z changes gradually to 
Z'. The width of the transition zone is equal to 2€ 
as indicated in figure 1. It may be defined such that 
Z and Z' are essentially constant when x< - € and 
x>+€, respectively. Apart from mathematical con­
venience, the existence of such a transition zone has 
a practical significance in studying the influence of 
a variable water depth in the vicinity of the shore­
line. 

If the problem involved only a homogeneous land 
of surface impedance Z, the mutual impedance Zm 

between dipoles A and B would be readily calculated. 
Thus, it is convenient to regard the medium to the 
right of the coastline as a perturbation and the 
resulting change of the mutual impedance is denoted 
t. zm- From previous work [Wait, 1956], it is known 
that t. zm can be expressed in terms of a surface 
integral over the plane z= O, of the form 

(1) 

-) 

where H at is the tangential magnetic field of dipole 
A over the reference earth of constant surface 

-) 

impedance Z and where H~t is the tangential mag­
netic field of dipole B over the actual inhomogeneous 
earth. In formulating this integral, the current at 
the terminals of dipoles A and B is I . 

Following earlier work [Wait, 1956], it is conven­
ient to express the tangential field vectors at the 
variable point P (x, y) m the following forms 

E7T _ ikhaI ( + 1) -ikrF( Z) (7 7) ~at- 27rr 1 ikr e 1', u ~rX~z, 

and 

E-:j, ikhbI ( + 1 ) -ikRF'(R Z Z,)( :7X7) 
"J. bt=27rR 1 ikR e ' " ~R ~z, 

where 

r= [(x+xo)Z+ (Y_ YO )2]t, 

R = [(x-d1)2 + y2]t, 

(2) 

(3) 

and F and F' are slowly varying quantities. ~T' iR, 
-) 

and i z are lmit vectors in the directions of increasing 
1', R, and z, respectively. 

The attenuation function F is a known quantity 
from the theory of groundwave propagation over a 
flat homogeneous earth of surface inlpedance Z. The 
explicit form [Wait, 1963] is given by 

F(r, Z)~:::d-i(7rp)te-P erfc (ipt), (4) 

wherep=_ ikr(Z)Z. When Ip l« l, F(r, Z)~ + l 
2 7)0 

while , if Ip l> > 1, F(r, Z)~ - 1/(2p ). The function 

F' (R, Z, Z' ) IS not known except to say that it is a 
function of R, Z, and Z' and that it approaches 
unity if R is sufficiently small. 

-) -) 

Using the above representations for H at and Hbt, 
(1) for t.zm may be written 

t.Zm=-~ F(r, Z )F'(R, z, Z') 
Ph h 1+00 i +oo e-ik(r+Rl 

471" X=-' y =-oo rR 

where 15 is the angle subtended by the units vectors 
-) -) 

ir and iR . Here the element of area dS has been re­
placed by dxdy. Also , it should be noted that the 
surface S is the region x> - € since Z' - Z~ ° for 
x<-e. 

3 . Approximate Solution 

A number of approximations are now made in 
order to facilitate the integrations . First, it is s: 
assumed that dipole A is in the far field such that the 
incident wave fronts are approximately plane in the 
neighborhood of the boundary under consideration. 
Then the slowly varying attenuation function 
F(r, Z ) may be replaced by F Cro, Z) which is the 
value appropriate to the origin . Also , it is assumed 
that the attenuation function F' (R, Z, Z' ) may be 
replaced by unity if quantities of first order only 
are to be retained. 

Within the approximations stated above it IS 

evident that 

cos l5 = cos (l5o + I5I )=cos 150 cos I5I -sin 150 sin 151, 

where 

Thus 

sin 151 = SI = yo/ro, 

cos 151 = 01 = (1-S:)t =xo/ro, 

x-d1 
sin 150= y/R and cos 150= -----rr-· 

In the phase factor exp( -ik (r+ R )) it is desirable 
to simplify l' by retaining only first-order variations 
in x and y. For example, 

and, therefore, 

1'2 = (X+XO)2 + (y - yo)2 

~x~+~+2xxo- 2yyo 

r~ro+xOI-ySI. 

Furthermore, in the integrand of (5), 1/1' may be 
replaced by 1/1'0, and the factor 1 + l /i kr by unity. 

Using the simplifications indicated, it readily fol-
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lows thn,t 

X (Z'-Z)e-ikCIX _e _. - 1+-. -. f oo f +OO -ikR ( 1) 
_ , _ OO R t ieR 

X [ (X R dl ) 01 - ~ SJe ikSIYdydx. (6) 

By making use of the identity 

I it readily follows that 
I 

I 

: .6. zm -~kl~ahb e-,ikTo F(1'o, Z ) J OO (Z' - Z ) exp [- i lc01x] 
I .n- 7 0 • -, 

x { 0 1 ~ f +OO e- ikil eilcS ,Ydy 
oX _OO R 

f +OO 0 e- ik ll I 
- SI eikS ,y - -- dy r clx. 

_ OO oy R ) 
(7) 

• The infinite integrals with re pect to y may be ex­
I pressed in terms of the Hankel func~i~n of order zero 
· [Campbell and Foster, 1949]. ExphCJtly 

(8) 

which is valid b ecause lc can be regfLrded to hiwe a 
I vanish~ngly. ~mall but finite ne&,a tive imaginfLrJ~ p.n,rt. 
· To sImplIfy the final expreSSIOn and to cast It mto 

a dimensionless form, the results are normalized by 
dividing by the mutual impedance Zm, defined by 

Following an integration by pmts, 

!;,. Z,n i ike d f OO [0 df(x) ·lc'·{() ] ----~-- e ll 1 ---t J X 
Zm 2 -, dx 

wheref(x) = (Z'-Z) /TJo. Introducing the dimension­
less q uan ti ties 

a= k0 1x, al = lc O,cll,fwd ao= lcOIE, 

it is evident that 

where f (a) = (Z' - Z) / 7]0 is regarded fiS a function of a. 
When the vertical s traLification in Lhe earth may be 

neglected , the surface impedance function can be 
expressed in terms of the conductivitie (Jg and (J' 

and dielectric constants Eg and E'. Thus 

where 

4. Special Case of Abrupt Boundary 

To eHect the integrn,tIOn with respect to a requires 
t hn,t t he function f(a) is specified. The simplest 
case, of course, is the coastline which can be regarded 
as abrupt. For example, one may consider 

(9) where 
f(a ) = - .6.oei~/ 4u(a) 

u(a) = 1 for a> O, 

= 0 for a< O. , where ro = ro.+ cl , 0 1 • This expression corresponds to 
I the mutual Impedance between dipoles A and B , at 
sepn,ration distance ro, if they were locn,ted on n, flat 
homogeneous earth of surface impedance Z. Within 
the limitations already imposed, 

(10) 

Making use of (7) and (8), it rtludily follows that 

x { - in- Ol ! IP~) [ lc CI [ x-dd ] 

+n-kSU:l (~) [ lc OI [ x-dd ] ~ clx. (11) 
) 

Here, .6.0 is to be regarded as a constant and defin ed 
such that 

Z - Z' -i /4 .6.0=-- e ~ . 
TJo 

If both media (i.e. , land and sea ) are sufficiently 
well conducting that displacement currents can be 
neglected , .6.0 is a real quantity. In general, llOwever , 
.6.0 is complex and IS a measure of the con trast in 
surface impedances between t he two homogeneous 
reglOns. 

For the assumed sharp boundn,ry, it should be 
noted that 

where o(a) IS the Dirac impulse function at a = O. 
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Therefore 

~~n= ~o eih/4eial [ 01HJ2) (Iall) 

_~ r oo Ha2 ) (Ia-al l)e-iada] . (14) 
01 Jo 

It is immediately evident that this expression for 
the impedance or the field possesses a singularity as 
al tends to zero. For example, when lal l< < 1, 

which would indicate that the field has a logarithmic 
singularity at the bowldary. As will be indicated 
below, the singularity is spurious since for any finite 
transition between Z and Z' the field no longer 
behaves in this manner very near the coastline. 
However, provided lal l is not too small compared 
with unity, the assumption of an abrupt or sharp 
boundary is satisfactory. 

Using the identity 

it is a straightforward task to show that 

for al > O. 
For purposes of computation, it IS convenient to 

write 

where (h and (/2 do not depend on 01 or Llo. Noting 
that H '?l(x) = J m(X) -iYm(X) where J m and Ym are 
Bessel functions of order m , it is a simple matter to 
obtain the following explicit formulas in terms of 
real quantities. 

For x= al > O, 

gl(x) =~ [ cos C: +x) J o(x) + sin C: +x) Yo(X) ] 

+~ [ sin C: +x) Jo(x) -cos C47r +x) Yo(X)} (20) 

and 

g2(X) =~ [ cos G+x) (Jo- Y I ) + sin G+x) (Jl + Yo)] 
I 

+i~ [sinG+x)(Jo-YI)-cosG+x) (Jl+YO)} j 

(21) 

where the arguments of the Bessel functions are 
x( = al) throughout. 

For x= al < O, 

+~ [sinC:+x)Jo(-X)-cosC:+x)Yo(-X)} i 
(22) 

and 

g2(X) =~ [ cos G+x) (Jo + YI)-sin (~+x) (JI -YO) ] : 

+i ~ [ sin G+x) (JO+Yl)+cos (~+x) (JI-YO)} 

(23) 

where the arguments of the Bessel functions are I 

- x (=-al) throughout . 
Employing the preceding formulas, the real and 

imaginary parts of o(al) are calculated for a range 
of al from -20 to + 20. These results are shown 
in figures 2 to 6 for selected values of 00 , Additional 
curves of this type may be readily calculated from 
the numerical values of 01 and 02 given in the appendix. 

When the dipole at A is transmitting, the fractional 
change of the field at B, resulting from the presence . 
of the medium of surface impedance Z', is (LlZm!Zm) ) 
or OILloo(al)' Thus, thG curves in figures 2 and 3 I 

show the nature of the phenomenon near the coast- I 

line. As expected, the field exhibits a singular 
behavior near the boundary. For positive values 
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a: 

-0.8 
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-11 
-11 
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FIGURE 2. R eal part of the functi on g(a,) for near normal 
incidence. 
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FIGURE 4. Real part of the function g(at) for val·ious obliq1te 
angles of incidence. 

of a (i.e ., Blocated over the sea), the field is smoothly 
varying and for al greater than 2 or 3, the imaginary 

1 part of y(al) is predominant and it increases to 
relatively large values as a l is increased further. 
For negative values of at, (i.e. , B loca ted over the 

I land) there is strong eviden ce that reflection takes 
place at the boundary. Presumably, the standing 
wave pattern results from the interference between 
the incident and the reflected waves. It is interest­
ing to note that at an angle of {) = 45° the reflection 

I from the coastline appears to be very weak. This 
fact is confirmed by noting in the asymptotic 
approximation for (-al» > I , that 

1 '2 [( i + ) -;=:=;:===:= e' at 1 +--- ... 
.J27r ( - al) 8( -al) 

1 ( 9i )] -20i 1+32(-al)+ ·· · . (24) 

It is evident that, if Oi = cos Oo=~, the leading 

terms in the expansion cancel. In this case, y(al ) 
is \7arying as (-al)-3/2 and thus t he reflected wave 

I would be attenuated qui te rapidly. This same 
asymptotic expansion shows that the reflection is 

3.1 

1.4 

§ 
'" 1.6 

<9 
« 
~ 0.8 

DISTANCE FROM COAST LINE, al 

FIG U RE 5. Imaginary part of the function g(al) for various 
oblique angles of incidence. 
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11 
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1.6 

0.8 

J 

FIGUHE 6. I m aginary part of g(at) f or val·ious values of (Jo 
when plotted as a f 1tnction of ( at )!/cos2 (Jo. 

strong at highly oblique incidence (where 0 1 is 
small). 

The asymptotic behavior of the field for large 
positive values of al is also very interesting. For 
example, if al > > 1, 

On retaining t erms of first order only, 

g(al)"'i..- (2al)!, 
O~ 7r 

and if 1\ denotes the distance, measured in the direc­
tion of propagation , from the coastline to the ob­
server , geometry indicates that 

al= kd I 01= lcr l m. 
Therefore, within a first order, 

LlZm . (21\k)t -~LloOlg(al)"' ~Llo - , 
Zm 7r 

which is independent of the angle 0 1, 

(26) 

To demon-
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stl'ftte how closely this law is followed in the general 
case, Im g(al ) for positive a ] is plotted as a function 
of (a])! / m using the complete expressions derived 
abo \~e. It is quite eviden t that for larger values of 
ai , the curves for all angles up to 70° approach a 
straight line with a slope of (2/7r) ~. 

5. Coastal Refraction 

An extremely interesting aspect of oblique propa~ 
gation across tt coastline is the resulting change of 
wave front direction. To simplify the discussion , it 
is assumed t hat the field , incident on the boundary 
ftt x= O, has the form 

(27) 

which is appropriate if the transmitter at A is suffi­
ciently removed to the left in figure 1. Then the 
resultant field has the fonn 

(28) 

where Llo g, defined by (19) et seq ., is a function of 
x only. 

By definition the phase velocities in the x and y 
directions are given by 

and 
VX /c=-(I /k )(%x) phase E , 

vy/c = (l /k ) (oldy) phase E, 

(29) 

(30) 

where c is the yelocity of light. Then it readily 
follows that 

and 
(3 1 ) 

(32) 

The effecti\~e direction Oe!! of phase propagation is 
then obtftined from 

(33) 
or 

The refmction error 50 is given by OO = Oc/J- Oo. Thus, 
to within a first order of smallness in 00, 

1 
tan (00+ 50)=tan 00+--2 -0 00, (35) 

cos 0 

which leads to the simple but important result that 

sin 00 d 
50~-k- ox Im (6.ogCI ). (36) 

In terms of the variable a] = lcC]d] , ftlld for an ob­
server at x= d], the refraction error may be expressed 
in the form 

(37) 

Using the general expression for g(al ) gi lTen by (19), 
it is found that, for al > O, 

OO=~l Jm { Llo e< "'1+~)[i(Ci-l)H62)(al) 

- CiH i21 (al)] ~ , (38) 
) 

If 6.0 is regarded as real, 

o(O)~ ~I Llo { sin ((Xl+~) [J o-Ci(JO+ Y l )] 

- cos ((Xl +~) [Yo + Ci(Jl - yo)] } , (39) 

where , as usual, the arguments of the Bessel func­
tions are al . 

At reasonably large distances from the boundary, 
where a] > > 1, (38) simplifies to 

( 1 )~ OO~SI 27ral - Re Llo 

~sin 80 (27rlcdl cos Oo) -t Re 6.0 , (40) . 

which is in ftgreement with a formula given by 
Feinberg [1946]. It is e,·ident that the effect is very 
small when dl is greater than a few wavelengths. 
(vVhen propagating from land toward the sea Re Llo 
ma,y be replaced by (fOUJ / rJg )! where fo = 8.85 X 10- 12 

and rJ g is the conducti vity of the Iftnd.) 

6 . Magnetic Field Near the Coastline 

In the analysis in this paper, the mutual impedance 
ratio LlZm/Zn, is valid when the antennas at A and B 
are vertical electric dipoles. Actually, if neither A 
or B is near the boundary, the results are still appli­
cable for other antennas which transmit or receive 
vertically polarized waves. However, if one of the 
antennas, say B is close to the boundary, the mutual 
impedance ratio will depend on whether the antenna 
is a vertical electric dipole (e.g., a whip) or a hori­
zontal magnetic dipole (e.g., a vertical loop). For 
the general case of a loop antenna at B and a vertical 
dipole at A, it is possible to use the same method 
outlined in this paper. Howev6r , a complexity 

--> 
arises since the tangential magnetic field vector H bt 

has additional terms proportional to 1/R3 and these 
tend to complicate the integrations . However, if the 
direc-tlOn of propagation is perpendicular to the coast­
line, the final results may be obtained in a relatively 
straightforward manner. 

If the field incident on the boundary, at x = O, has 
the form 

then the resultant vertical electric field may be 
written 

E z(x) =e-ikX[l + F(x)], at z= O, (41) 
, here 
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-: 

is th e mutual impedance ra tio gl\Ten by (13) with 
0 1= 1 and d, = x. 

The magnetic field which has only a y component 
is obtained from the M axwellian equation , writ ten 
in integral form , 

aeteristic of F (x) , at the boundary. While F (x) 
behaves as log x, the function G(x) behaves as 
x (log x) -x when Ikxl < < l. 

7 . Appendix 

For convenience in auxiliary calculations, a 
graphical plot of the fun ctions gl (x) and g2(X) is 
presented in figures 7 to 10. In complex form these 
quantities are defined by where Xo is some r eference distance. N ow, if 

kxo> >1, it is safe to assum e that gl(x) = (1/2) exp [i x + i(3 7T/4)]Ho(2)( lx l) for x==< O, (46) 

(43) g2(X) = (x/2) exp [i x + i( 7T/4)][Hci2)(x)-iII{2 )(x) ], (47) TJoH y(xo) ~ - E z(xo) = _e- i k£o[ l + F(xo)]. 

Then, without difficulty one finds 

(44) 
where 

Since F (x) is known , the function G(x) can be found 
from an in tegration which can be bes t done numer­
ically. It can be seen that, when kX» l , G(x),,-, 
F (x), as it must. 

It is interestin g to no te that, for an abrupt bound­
ary, G(x) does no t have the singular behavior char-

_ -2.0 
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0.4 

for x> O, and 

g2( X) = (x/2) exp [ix + i(7T/4) ] [Hci2)(- x)+ i n C2)(-x)]' 
(48) 

for x< O. 
The mutual impedance increm ent /:::" zm may then 

be calcula ted for any value of eo by no ting tha t 

/:::" Zm= /:::,.o [ Olgl (a l ) + 01 g2(a1) ] ' 
Zm 1 

(49) 

where 0 1 = cos 00 , 

I ' I I I I , ' 1.4 

VALUE OF X 
1.1 
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)( 

'" '" .;: 
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