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Radiation from primary current sources above or at the interface of a homogeneous
conducting dielectric half space has been studied extensively in connection with various
communications problems. In many cases of practical interest, however, the surface bound-
ing the conducting medium is irregular in configuration, the local deviation of the interface
from the average being a function of position and time. The present paper describes a
method for determining the effect of interface irregularities upon low-frequency electro-
magnetic fields propagated within such a conductor.

The electric field at a point within the medium is expressed as a stochastic integral over
the bounding surface using the method of Stratton and Chu. As a consequence of certain
restrictions which are prinecipally geometric in character, a perturbation technicque can be
employed to simplify the integrand. TFollowing the introduction of assumptions regarding
the statistical properties of the local surface deviations, approximate expressions are developed
for the expectation of the subsurface field and the mean square deviation of the field ampli-
tude. Numerical results for this latter quantity are obtained for the case of a vertical
electrie dipole as the radiating source on the interface between free space and a moderately

rough sea.

It is shown that sea surface irregularities can produce a pronounced effect upon

subsurface fields in some instances; a tentative physical interpretation of the numerical

results is advanced.

1. Introduction

Propagation of electromagnetic waves above and
within a homogeneous conducting dielectric half
space due to certain prescribed elementary (time
harmonic) current sources has been studied by a
number of workers beginning with Sommerfeld [1909].
Modifications of Sommerfeld’s original work by Weyl
[1919] and Sommerfeld [1926], together with more
recent extensions by Norton [1937], Bafios and
Wesley [1954], Wait [1959a], Moore and Blair [1961],
and many others, comprise a airly exhaustive treat-
ment of electric and magnetic dipole radiation in the
presence of a semi-infinite conducting medium.

In many situations of practical interest, the surface
separating free space from the conducting medium is
not smooth. In some instances it may bhe necessary
to include local excursions of the surface from the
mean in the derivation of expressions for field strengths
both above and internal to the conductor. KEven
slight boundary irregularities will perturb the electro-
magnetic field within the conductor from the value
corresponding to a smooth surface. However, the
comparative degree to which the fields are influenced
by boundary roughness in various frequency ranges
for a given conducting dielectric is a question which
often remains to be answered.

1 This work was supported by the Office of Naval Research under Contract
Nonr 3185(00).

2The author’s present address is Boeing Scientific Research Laboratories,
Geo-astrophysics Laboratory, The Boeing Co., Seattle, Wash.
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A preliminary study of this problem has been
reported by Wait [1959b] who considered a uniform
plane wave in free space traveling in a direction
parallel to the mean (plane) boundary of the con-
ducting dielectric. The interface was taken to be a
sinusoidal wave form with an amplitude much smaller
than the period, with the magnitude of both being
much less than the free space wavelength. Wait
found that the resulting perturbation of the field
within the conductor was proportional to the ampli-
tude of the wavy surface in the first approximation.

The present nvestigation is concerned with the
propagation of electromagnetic waves within a
conducting medium bounded by a rough interface
in the presence of a prescribed current source. The
precise configuration of the surface, however, is
presumed to be unknown, with only its statistical
properties being specified. As 1 the study
performed by Wait, it is assumed that the vertical
and horizontal scales of the surface irregularities
are very small compared with the free space wave-
length. A related problem of practical interest is
the question of very low frequency signal propagation
into the sea; for this reason, the conducting medium
is referred to as the sea throughout the discussion.
The general approach outlined here is applicable
to other physical situations as well, provided certain
relationships among the wvarious parameters of
importance are satisfied.

For the low frequencies under consideration, sea
water is characterized by an electrical conductivity



o of about 4 mhos per meter and a relative per-
mittivity e; of about 80. Conduction currents are
much larger than displacement currents, and, as a
result, the expression for the relative index of
refraction N of the sea can be simplified to read

1/2 12
W= (es—}-@' i > =<fi> exp (i 7—T>; (1)
we weq 4

where the time dependence of all field quantities is
exp (—2wt). Cosequently, the effective propagation
constant 8 can be written in the approximate form

B=k,N=3, exp (i Z); (2)
where
Og 1/2
o=t (22" ®)
[O1 )

In terms of B, the effective wavelength A\, in the sea
and the skin depth §; can be expressed as

A =212 B51=1580/~/f, m 4)
and B -
8:=+2 B5"'=252/vfo m. (5)

Since the magnitudes of these parameters are of
some importance to the developments which follow,
plots are presented in figure 1 of \; and 6, together
with the free space wavelength N\, as functions of
frequency f, over a wide frequency range.
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Ficure 1. Variation of \s, 65 and N, with frequency.
The geometry of the problem is illustrated in
ficure 2. A point source is located on the positive
zo-axis and the observer is situated at the position
(po, O0,— |20/). 1t will be assumed that the roughness
of the ocean surface is unidimensional in character
with the waves running in a direction which forms
an angle ¢ with the zp-axis. It will be convenient
at a later stage in the analysis to employ a coordinate

system whose origin is directly above the observer
(at po, 6, 0) with the z-axis parallel to the wave
direction. In this system the local height /& of the
ocean surface is expressible as a function of z alone.
(The planes z=0 and z,=0 are coincident with the
mean surface of the sea.)

The electromagnetic field (or, alternatively, the
Hertz potential) induced by a point source in the
presence of a semi-infinite conducting dielectric with
a smooth interface is usually given in a component
form appropriate to a cylindrical coordinate system.
In the present work, however, we shall be interested
primarily in horizontal subsurface electric field com-
ponents /., and #,; i.e., the components in direc-
tions parallel to and perpendicular to the wave
direction, respectively. In the process of deriving
expressions for these fields we shall have occasion to
utilize the z, 7, and z components of the free space
electric field appropriate to the smooth surface prob-
lem. Referring to figure 2, the transformation from
cylindrical components (£, , £, £.) to Cartesian
components (4, I7,, I7,) is simply

By~ cos (—4)— i, sin (61—9)
E,=E, sin (6—¢)+Fy, cos (6p—¢)
E.=E,. (6)

In section 2 approximate integral expressions are
derived for the z and y components of the electric
field within a moderately rough sea, in terms of the
field (/2,, I2,, I£,) in free space induced by an arbitrary
point source above a smooth sea. Subsequent to the
mtroduction in section 3 of certain elementary
assumptions regarding the statistics of the surface
irregularities a quantity is derived which provides a
measure of the effect of surface roughness upon the
amplitude of the subsurface signal. Finally, in sec-
tion 4, a specific source is assumed ; namely, a vertical
electric dipole positioned at (z,, 7, 20)=1(0, 0, 0+),
transmitting at a frequency f, in the VLF range.
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Ficure 2. Geomelry of the problem of propagation into a

rough sea.
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Quantitative descriptions of the amplitude fluctua-
tions of /7, (the component ol the subsurface electric
field in the wave direction) are presented for varying
degrees of surface roughness and various observer
locations.

2. Horizontal Electric Field Within the
Rough Sea

The electric field within the sea can be obtained
by direct integration of Maxwell’s equations using
the method of Stratton and Chu [1941], modified
slightly to include the finite conductivity of the
medium. It should be remarked that the derivation
presented by these authors assumes a time depend-
ence of the form exp (—iwt) whereas, in our case,
the changing structure of the sea surface produces
a more complex temporal variation. For frequencies
greater than a few tens of cycles per second, however,
the intrinsic period of the electromagnetic fields is
far in excess of periods characterizing changes in the
sea surface profile. Consequently, the integration of
the field equations can be carried out with a harmonic
time dependence as a “quasi-steady state’” approxi-
mation which applies when the ocean surface profile
is a slowly varying function of time. It will be
understood in the sequel that the local deviation A
of the surface from the mean plane z=0 is a slowly
varying function of time without explicitly exhibiting
its dependence upon t.

We shall employ the nondimensional variables:

x'=1/|2|

¥ =yl

2'=z/|z

k' =h/|z|
R'=R/|zo|= (@ +1P)]|2]

P — &g (1) % (7)

where 1’ is the (normalized) vector from the point
of integration to the observer. Moreover, the true

vertical and horizontal scales of ocean surface
roughness, o, and §,, will be written as
JO:UJZ(,], 5”:5‘:0!. (8)

As a consequence of the mnondimensionalization
process, it will be convenient to employ the quantity

B=DB¢ =8

20 (9)

in place of Blz| which appears throughout the
analysis.

Omitting the primary source terms, an expression
can readily be derived for the electric field E, at the
position of the observer in terms of the electromag-
netic field vectors (E-, H™) just below the ocean
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surface. Dropping the primes from the nondimen-
sional variables defined in (7) the modified Stratton-
Chu integral can be written in the form

E— lfsuwyolzoMnXH-)G

S 4n

—vGAX(MmXE")+m-E7)y@|dS. (10)
In this equation, G is the solution of the three-
dimensional Helmholtz equation appropriate to a
medium characterized by a propagation constant
Bl|zo| and with a delta function source term:

_exp (iBr),

G- . (11a)
It is easily shown that
G- 1,—"715) G (11b)

The az-derivative of the local surface height A will be
m

denoted by the symbol y. The local normal n to

the surface can thus be written in the form (in the

case of unidimensional roughness)

n—(—yk+4) (1712 (12)

The normal is directed outward from the medium,
in the direction of free space.

Certain simplifications can be effected by first
utilizing the standard conditions of continuity of
the tangential components of E- and H~ together
with the conservation of charge flow across the
boundary :

n<XE - =nxE
n<H —=n<H
n-E-=;n.E (13)

where E and H are the electric and magnetic fields
just above the surface S. Incorporating (11a),
(11b), and (13) into (10), the expression for the
electric field at the position of the observer appears
in the form

1 :
Esﬂ.ﬁg{l’wﬂofﬁo

<n><H>—<7l,.,—ff> l:r>< (nE)

1 ({[Ifr ,
‘—A,Z (nE)/:l T ds. (14)

In order to extract quantitative information from
(14) regarding the effect of a randomly rough ocean
surface on the propagated signal, it is necessary to
reduce the integrand to a combination of known
deterministic functions and stochastic functionals of
the surface height #. To this end, we place the
following restrictions on our considerations:

(A) The sea surface profile is only moderately
rough in the sense that the vertical scale ¢ of the
irregularity is at least an order of magnitude smaller



than the horizontal scale 6 (alternatively, the quan-
tity v is to be considered at least an order of mag-
nitude less than unity); at frequencies in the VLI
range and lower, the scales of the surface irregulari-
ties are much smaller than the free space wavelength;

(B) The horizontal displacement p, of the observer
from the primary source and the free space wave-
length N, are much greater than the skin depth é;
consequently, the horizontal variation in amplitude
and phase of the free space field® about z=0, y=0
over distances a few skin depths in extent is negli-
gible;

(C) The location of the observer is such that the
local excursions of the ocean surface from the mean
can be considered small compared with p, and |z/;

(D) The depth of the observer is somewhat
greater than a few é; so that B,! is a small quantity
compared with unity; and

(E) The primary source frequency is sufficiently
low to insure the smallness of 1/|NV|.

The upper limit of the frequency range is determined
in part by restriction (E) and in part by the require-
ment that the approximation expressed by (1) be
valid. On the other hand, restriction (D) implies a
lower limit on f, which depends upon the magnitude
of |zo|. For example, for depths of the order of 50 m,
the transmitter frequency should be greater than
about 1 ke/s.  When [z is considerably greater than
this, the minimum frequency 1is correspondingly
lower, extending to a few tens of cycles per second for
depths in excess of 200 m or so. We also remark
that the factor exp (¢Br) in (14) provides for ex-
ponential damping of contributions to the integral
from portions of the integrand evaluated at z and y
in excess of a few 8,/[zo|]. This last observation,
together with foregoing restrictions, implies that the
quantities B!, f, v, R* and N~' can all be regarded
as at least first order in smallness.

It is natural, therefore, to perform expansions
within the integrand of (14) in series involving
powers of the smallness parameters. For example,
the inverse of the distance r has the expansion

r=1=(14+2h+h2+ R2) -1
. Ioog 1 8 3 2 2

where terms of lower order than the second have
been omitted. Simplification of the remaining in-
verse powers of r proceeds in the same manner.
The factor exp (iBr) may be expressed approxi-
mately by retaining terms up to the first order in
the expansion for » and then performing the substi-
tution, giving

exp (1Br)=exp I:iB (1 —{—% R2+h>:|. (16)

3 In most cases of practical interest, the expression for the field at a height z
involves quantities such as kopo,Bp0, and trigonometric functions of §p. The in-
equalities of restriction (B) insure the slow variation of the expression when po
and pofo are altered by a few és. An inspection of figure 1 reveals that the in-
equalities are satisfied for po in excess of a few hundred meters over the frequency
range of interest here.
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Correct to all orders, the normally directed differen-
tial element of area ndS can be written as

ndS=(—yX-+z)dxdy. (17)
Moreover, we observe that according to restriction
(B) the variation of the free space electric field in
the horizontal direction is small throughout a region
centered at (z,7)=(0,0) and a few &, in extent.
This suggests that E(z, 5, z=h) can be replaced ap-
proximately by E(0, 0, z=h) which, in turn, can be
expanded in the form

E(0, 0, z:h)—=-¢(h):¢(0)+h¢’(0)+% K’ (0) 1 . .,

(18)

where the prime indicates differentiation with respect
to z. A similar approximation holds for the mag-
netic field. Since the roughness scales of the sea
surface are extremely small compared with the
wavelength, the electromagnetic fields in free space
are scarcely altered by the surface irregularities.
Hence, the derivatives of ¢(z) can be calculated from
the solution to the smooth sea problem with little
error and the final result is a representation for E
for substitution into (14) in which the only variable
is . 'The expression for the magnetic field is treated
in the same fashion.

The approximate expression for E; is obtained by
first substituting (15), (16), (17), and (18) into (14),
together with the appropriate expansions of higher
inverse powers of 7 and the series development of H
which is the counterpart of (18). The final result
for E; will be correct to the second order if those
terms of the integrand are dropped which involve
powers of smallness parameters which are lower than
second order.

The z- and y-components of the subsurface elec-
tric field are of principal interest here and can be
written in the form (correct to the second order) of
integrals over all z—y space in the manner just de- -
scribed.  Since the random variable & depends only
upon z, the integration over y can be performed at
once. Some compactness of notation is achieved by
replacing H with

_H
v="H. (19)

Omitting the algebraic details, the final result for
the horizontal components of the subsurface electric
field, following integration over y, can be expressed as

B3 ()" 3 2

) 271' =1

2 ‘EIZ
A, f ¢'2 " (2, by y)de, (20)

—®

where j=uz or y, and



Ji=1 fs=" Jo=h(@® 42B™)
fr=2 foe=2v  fo=7@"+iB™")
fi=2*4+iB'  fi=h  fi=a*12iB~2*—3B-?
Ja=h fs=hy
and
An=—¥,+ 1 +iB )¢,
A, =N,
Apy=50,— (1 431B")¢,
A=Y=y — (1 42BN, +(1 4B )g;
A= (14iB )¢
A =0
==V, +¥,— 3, +b:—¢. 3¢,
Ap=—¢,+0,
Loy=—3¢, +3¥, +3b,— ¢
Apo=—¢,
An=¢:—3¥,
A=y, 4+ (1 +iB )¢,
A,=0
Ayy=—3— (1 +-3iB7")¢,
Ays=—Yo ¥ — (1 42iB g, +(1 +iB7")¢,
=V
Ayy=— (1 +iB V)¢,
Ayr=vdo— Vo 3V, +0,— ¢, +30)
Ap=—v. +¥.
Ap=3— 3 +30—o,,
Ayo=—3¢.

‘4y11 :d)y +%‘P2~

In these explessmns o™ and ¢ are understood
to mean ¢{®(0) and xh(”) (0) where the differentiation
precedes specialization of the argument.

3. Sea Surface Structure and Electric Field
Amplitude Fluctuation

Field components £, and £, resulting from a
particular wave structure could now be calculated
simply by substituting the appropriate function for
hinto (20) and performing the remaining integrations

numerically or in some other approximate way.
In the present study the more general assumption
is made that the sea profile is a stochastic function

of z. A quantitative measure of the effect of bound-
ary irregularity on the subsurface field can be

obtained by calculating the mean square deviation
(msd) of the field amplitude from its average value.
Denoting mathematical (ensemble) averages (or
expectations) by & { | we have (after normalization)

msd (|E))= & {[£;— & {E}] £,
— 6 {E 1} E B} EFE)

=[E {EEL}E {Es} EX{E;}]—1. (21)
However, the analysis can proceed only after some
assumptions are made concerning the statistics of
the surface profile. Therefore, an elementary statis-
tical model is introduced and certain averages
necessary to the calculation of (21) are derived.

The simplest classical model of ocean waves
consists of an infinite succession of one-dimensional
periodic progressive waves of nearly equal amplitude.
In actuality, sea wave structure is almost never
characterized by a single crest height or crest-to-crest
distance. Instead, the profile of the surface through-
out any local region is more realistically described
as a superposition of a great many waves with a
wide range of amplitudes and wavelengths. In the
presence of moderate or high winds, the complexity
of the wave configuration is enhanced and the
surface loses nearly all appearance of regularity.
The local departure of the sea surface from its
mean value is therefore treated as a random variable
in the present study.

Sea surface structure 1s an extensive subject in
itself and cannot be presented in any detail here
(for an excellent summary the reader is referred to
Defant [1961]). Suffice it to say that the statistics
of ocean wave structure is dependent upon a great
number of factors (including wind speed, (lumllon,
and fetch) and that the precise nature of this de-
pendence is mnot thoroughly understood at the
present time. For this reason (and for the sake of
comparative mathematical simplicity) the surface
height A will be described as a stationary Gaussian
random process with a constant dispersion o’
The surface height has been assumed to vary with
a single linear coordinate since swells and seas of
moderate roughness often exhibit a general tendency
toward unidimensional structure over fairly extensive
regions.

The restriction to

“moderate” surface roughness,

together with the assumption that 'y::% is a small

quantity (for most realizations), requires that the
variance (the expectation of the product A(x))h(x,))
imply a value for the mean square local surface
slope which is second order in smallness. It will be
assumed here that the variance is a Gaussian function
of the form

,)*/6%]

& {lnhe} =o*p (21, 2)=0" exp [— (22— (22)
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where the subscript affixed to A signifies the point at
which it is to be evaluated. It can be shown (see
section 6, appendix A) that the mean square surface
slope is given by

& ¥

2

. ., 0% o
}=lim & {v1v:} =lim ¢* Dxlbx2:2 Fo

T9—1 Z27

(23)

As ¢ and 6 have been defined in this section, they are
measures of boundary roughness in the vertical and
horizontal directions and can be considered identical
to the roughness scales previously employed. Hence,
in accordance with the discussion in section 2, the
mean square slope is a second order quantity ‘with
the variance defined as in (22). It should be noted
that if an exponential variance were assumed, this
condition would not be satisfied since the equalities
in (23) would lead to an infinite value for the mean
square slope.

The calculation of the mean square deviation of
electric field amplitude requires the expectations of
both £, and the product K E%. For the former
quantity we have, from (20),

\/BO i(B- s)z

B
Ajm E j‘g {giljhfm(x} h) PY) }dx (24)

and for the ensemble average of F ;[ we find

s B
8 {EJ\E;k\ } :g;_)

v igz 1B 2
* 1
Aijjnffe 2
J)

D3P
m n

721:,5 { giBn—iB:M

Jn(@r, by v) 5 (@2, o, v2) }dand,  (25)
where we have introduced the notation
Bi=B
B,= B*. (26)

Since we are interested only in results correct to the
second order, it is permissible to neglect lower order
terms (such as m=8,n=4) in the double sum in (25).

The various expectations appearing in the inte-
grands of (24) and (25) are readily calculated with
the aid of the Karhunen representation (see e.g.,
Davenport and Root [1958]). The final results for
those expectations required in the calculation of (24)
and of (25), subsequent to the deletion of terms which
are lower than second order, are given in section 6,
appendix A. It should be noted that the off-diagonal
terms of the Cauchy product of £, and £% occur in
complex conjugate pairs so that only one term of
each pair need be calculated.

With the aid of the equations listed in appendix
A, the definitions following (20), and the relations
given in (19), it is easily shown that the expectations

556

in (24) have the simple form

1

& {e®™f,(x,h,7)} =¢ 2’
=187

Falz) (27)
where

(28)

and where F,(z) 1s a simple polynomial in z with
complex coefficients. The integration over z can
be performed at once, with the result

_N2p o (NEp o b
- 3 Bo i Bo z)

g{Ejo}:§ €

[Aﬂ+2 » AgtiBoA,

+0’2(1-‘B20'2)Aj7—20'2A]‘9_B§2 Ajll (29)

The expectations appearing in (25) are somewhat
more complicated; utilizing (19), (20), (22), and
(26), as well as equations in section 6, dppendlx A,
we find that

& {BM™Blaf (0 By, yi) 5 (e, ko, v2) }

— e =R, (5 7)) (30)
where F,,,(2,,2,) is a polynomial in 2, and z,. Thus,
the calculation of (25) has been reduced essentially
to the problem of evaluating the integral

I

& b exp [— (xy—12)2/82]

Fon(21, o) dayduy =1, say. (31)
First making the change of variable
i
x1*i<uf—_e ! @> (32)
\‘2 Va
T
b:ﬁ; <Q—£—I—e = @> (32)
\sZ Va
and substituting into (31), we have
mzz I‘f —u?-ar? () [,,m(u l)([ﬂ(]v (33)
where .
_\2B#* (
— (34)

For realistic values of ¢ (less than about 3 meters),
the parameter b=Bis* is less than unity for the
range of frequencies of interest here. Consequently,
it is possible to expand the second exponential in
(33) to obtain



lm// [I‘('_[h = I,,I,,(U I)(/ll(/l‘ (:‘)h—)
4\ ‘)(1 140 1

Since 17,,(u, v) is a polynomial in % and », it is a
simple matter to calculate 7,,. The final result for
the expectation of K £ is obtained by substituting
the functions /7, into (25). This result, together
with (29), provides all that is required for the calcu-
lation of (21). The complete expression for the
normalized mean square deviation of |[7; is recorded
in section 6, appendix B. In the next section a
specific source is assumed and numerical results are
presented for various frequencies, sea states, and
observer locations.

4. Numerical Results for a Vertical Electric
Dipole

An application of the foregoing developments
which may be of some practic: al interest is the case
of a vertical electric dipole on the surface of the sea,
transmitting at very low l'l(‘quonvivs. [t will be
supposed that the observer’s location corresponds
to a horizontal displacement p, which is several free
space wavelengths in extent. The depth |z of the
observer below the mean ocean surface is assumed
sufficient to insure the smallness of 3,7!

The quantities of interest here are the mean
square amplitude fluctuations of the horizontal com-
ponents of the subsurface electric fields due to sea
surface irregularities. Although at low radiofre-
quencies the wavelength in free space is enormously
large compared with the scales o, and 6, and the
free space fields are hardly perturbed at all, we never-
theless expect the surface structure to produce a
pronounced effect upon the amplitudes of the sub-
surface fields, particularly in the case of a vertical
electric (hp()lo. The reason for this can be seen by

noting that, in the case of a perfectly smooth
boundary, the dominant contribution to /£, and

E, arises from the horizontal component £, of
the free space electric field, which is continuous
across the surface z=0. In the radiation zone, the
ze-component of the electric field of a vertical
electric dipole on the upper side of the boundary of
a conducting dielectric is greater than /£,, by a factor
of N, and this component is reduced by a factor of
the order of 1/N*across the boundary of the condue-
tor. On the other hand, when the surface is charac-
terized locally by a nonzero slope, the field 7., will
contribute to the local tangential electric field at
the true surface. Since this component is coupled
through the surface without change, it can contribute
sl(rmfl(' wtly to the horizontal (01]1])0]!(‘llt of the
subsurface electric field. In the case of a vertical
electric dipole over a unidimensionally rough

it is expected that this effect will manifest itself
primarily in the az-component of the subsurface
field. This observation is verified by an inspection
of (20), where the contributions to /,, from the
projection of £, on the true surface are contained in
the terms k=35, 8, and 10 which involve the product
vE..

In order to perform numerical calculations, it was
first necessary to obtain expansions of the type (18)
for the electric and magnetic fields above a smooth
conducting dielectric. The expressions used for this
purpose were those developed by Norton [1937] for
a vertical electric dipole on a conducting half-plane.
The coeflicients of these expansions are required for
calculation of the A, recorded in (20).

The results of several representative computations
are shown in figures 3, 4, 5, and 6. These calcula-
tions were performed to assess the effect of varying
parameters on the mean square deviation of the
amplitude of £, In figures 3, 4, and 5, the direc-
tion of the ocean waves was assumed to be parallel
to the radial displacement p, of the observer from
the dipole. The magnitude of p, itself was fixed at
500 km. Figures 3 and 4 reveal a ste: ady decrease
in the unplltu(lo fluctuation with increasing depth
and with increasing frequency for fixed sea states
(constant ¢, and 6,, Figure 5 shows the variation
of the fluctuation intensity with increasing correla-
tion distance 6, for several values of ¢,. In contrast
with ficures 3 and 4 these curves are not monotonic,
but instead indicate a maximum fluctuation level
which depends upon the sea state, other parameters
being fixed.

Figure 6 shows the effect of varying the angular
coordinate 6, of the observer for fixed sea states when
the ocean wave direction is parallel to the yg-axis.
The steady increase in the relative fluctuation level
as the observer moves in the direction of decreasing

0, 1s not unexpected. When 6, is equal to zero,
the observer is located on the z,-axis. The ocean
wave direction is ¢—90° and therefore the z-axis

(and f7,,) is perpendicular to z,. The source is a
vertical electric dipole and for a smooth sea
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would be identically zero. In the present instance,
however, the subsurface field £,, does not vanish
because of the fact that the vertical component of
the free space field can in general have a component
tangential to the true surface. On the other hand,
the mean field strength itself is at a minimum when
0,—0° and thus the relative fluctuation in intensity
as defined here is greatest on the zi-axis. Calcula-
tions were also performed with p, as the running
variable, but only slight changes in relative fluctua-
tion intensity were predicted.

5. Physical Interpretation and
Conclusions

A few general observations can be made concerning
the influence of ocean surface roughness on sub-
surface field amplitude fluctuations by returning to
figure 5. For a fixed rms surface wave height, the
mean square deviation of |7, is seen first to increase
to a broad maximum and subsequently decrease as
the horizontal scale of the surface roughness is in-
creased. A possible explanation of this functional



behavior is provided by the considerations described
below.

Suppose the dipole to be transmitting at a fre-
quency f, to an observer at a depth [z,]. On the
average, the predominant contributions to the re-
ceived signal arise from a roughly circular region of
the mean sea surface. The boundary of this region
is defined by the intersection of the mean surface
with a cone whose vertex is at the observer’s location
and whose axis is colinear with the z,-axis. The
vertex angle « will be defined approximately by
the relation

cos a=|z|/|21], (36)

where |z, is the distance from the observer to those
points on the mean surface where the contributions
to the field at the observer have fallen off by the
factor ¢7!. In the case of a vertical electric dipole
and nonnegligible surface slopes, the most important
contributions originate in regions of maximum slope
where the large vertical component of the free space
field can contribute to /,. Taking these contri-
butions to be proportional to those of point sources
in an infinite medium for order of magnitude esti-
mates, the distance z; can be defined approximately
as the solution of the transcendental equation

o1 P (*‘ZOV‘;.@)_:QXP (—lzl/8,)
/ | 20| |21

where §; is the skin depth at frequency f,. The
radial extent a, of the important contributing region
of the sea surface is then

(37)

(]

ao=+/[z1]*—[zo]*- (38)

Thus, at a fixed depth and frequency the radius a,
is determined.

When 4, (the horizontal scale of irregularity,
corresponding roughly to the length of a surface
wave) is sufficiently small compared with a, the
surface area of importance will contain a relatively
large number of contributing regions, all radiating
with more or less random phases. As 4§, decreases,
this state of affairs is enhanced and so also is the
tendency toward destructive interference at the
observer’s location, resulting in a net decrease in
the relative fluctuation in field intensity. On the
other hand, if §, is initially large compared with a,
and becomes increasingly larger, not only does the
probability of finding regions of maximum slope
within the area decrease but the excursions of the
field at the observer due to these contributions are
diminished since they are proportional to the deriv-
ative of the local surface profile. Again, the net
result is a decrease in relative fluctuation intensity.

Between these two extremes is a transitional state
in which, according to the foregoing remarks, the
number of important radiating regions lying within
the cone is of the order of unity. For the sake of
discussion, assume the sea surface to be sinusoidally
corrugated with a profile of the form

h=hg sin (2wx/dy). (39)

Then a transitional state in which the fluctuation
intensity is a maximum will be similar to the one
illustrated in figure 7 where the observer is located
below the region of maximum slope and where, for the
sake of definiteness, one of the line segments |z
(a generator of the cone) is taken to pass through
a point in the trough of the wave profile. The

MEAN SEA SURFACE

/

OBSERVER

Fiaure 7. Geomelry of a representative transitional state.
vertical and horizontal roughness scales o, and
8, associated with the statistical model can be re-
lated to the wave height Ay and wavelength dy of
the deterministic model by equating the ensemble
averages of A% and »* with the mean values of these
quantities as obtained from (39). Using (22) and
(23) this procedure leads to the relations *

ll;()‘—> \/50‘0
dy— \rﬁJQ—TBo. (40)

The validity of the foregoing observations can be
tested in a simple manner. The transitional state
which is illustrated in figure 7 should correspond
roughly to a sea state for which the mean square
deviation of |E,| is a maximum. The geometry in
figure 7, together with (37), (38), and (40), is suffi-
cient to determine the correlation distance (call it
dirans Which corresponds to this state when o,
2o/, and &, (or f,) are given. From figure 7 and
(40) we have the relations

Otrans = 2 :ﬁw\—

d 4q,
¢ — o (al—h). @)
20
An approximate solution of (37) can be obtained by
a single application of Newton’s Method. Com-
bining this result with (38) and (41), we obtain

e <1zo1—\%a{[lﬁi(“’-l) 2—1}”2. (42)

V2 8yt e| 2|
4 Expressions such as these may be useful in relating statistical parameters to
“apparent wave height’’ and ‘“‘apparent wavelength’’ which oceanographers
often associate with various sea states.
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When plots such as those in figure 5 are drawn for
several values of |z¢| and f,, as well as oy, (with 4,
as the running variable) we should expect to find a
maximum 1in each, located at a value of §, which
corresponds closely with éqms as given by (42).
The dashed curve in figure 5 shows the locus of the
maxima of curves corresponding to various ¢, as
calculated from (42). However, a test against a
single variable is inconclusive. Calculations similar
to those in figure 5 were performed for several values
of fy and |z|. Values of 6;rens were read from these
curves and compared with calculations from (42).
The results are presented in figures S and 9. The
agreement in all three cases is seen to be satisfactory.
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In conclusion, it should be borne in mind that the
quantity selected for evaluation in this paper, i.e.,
the mean square amplitude deviation of the horizon-
tal components of the subsurface electric field, was
chosen primarily to illustrate the method for assess-
ing the effect of boundary roughness on subsurface
signals. The same technique can be applied to any

component of the electromagnetic field (or combina-
tion of components) within the conducting medium.
Moreover, the restriction to unidimensional rough-
ness is not essential; bidimensional irregularities can
be treated in precisely the same fashion.

The author expresses his thanks to Drs. J. E.
Storer and R. V. Row for several helpful discussions
of this problem. The assistance of Mr. R. Cassarino
who programmed the equations for the computer is
also gratefully acknowledged.

6. Appendix A. Derivation of Certain Statis-
tical Averages

The surface height &(z) is assumed to be a separable
random function, continuous for all z, with zero
mean and variance o’p(zy, 2;). In accordance with
the Karhunen-Loeve Theorem, there exists an ex-
pansion for & of the form

h(z)=lim > N, (2) 2, (A-1)
in terms of the orthogonal process z,:
& {202} =06pq, (A-2)

where 4,, is the Kronecker delta and where \,;* and
¢,(x) are the eigenvalues and eigenfunctions of the
integral equation

¢p(x1) :)\Zlfm

—

O'Qp(.?;l, 1‘2)(}511(.%2)([2:2. (A“g)

An analytical procedure which is closely related to
the one discussed by Hoffman [1955] provides us
with the auxiliary relations (for a Gaussian Process)

iByhy—iBsh
8{611 272 —

8 {zpe"Bl”“"B”” iz B — Byl IM(By, Bo)

— 2 (B!+B3—2B,Byp)

=M(B,, B,)

& { ™ b= (o AN B )0 )
— BB, (21)6,(2)
—B1B2,(22)$,(21)
+ B3¢, (22) ¢y (22) | | M (B, Be)
(A-4)
These equations, together with the definitions

*=3Ni¢3(z) (=const.)

o’ p(1, 22) = ZEN Ny (21) g (22), (A-5)
are sufficient for the computation of all expectations
appearing in (25), subsequent to the deletion of
terms of a lower order than the second. Averages
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of the type appearing in (24) can be calculated after

specializing (A—4) by setting 53, equal to zero through-
out. The various expectdtlom required in the cal-
culation of (24) and (25) are listed below. The
results apply when A is a Gaussian process with zero
mean and with dispersion and variance as given

by (A-5):

& (o) =17 =M(B)

& {he'®"} =iBs*M (B)

& (r¢™} =0

& {hye'™} =0

& {h2eiBh) — g2(1— B26?) M(B)

. _ O (BB —2B\Bu) -
§ Lot toa} =3 PTETERIS (B, By)

S {hlg“’l"l_iBQhZ} :igz(Bl-—ng);‘l(Bl, Bg)

& [yt Bhi=iBts) — B2 69}111(31, B
1

Op

,fh eiBIhl—iBzhz)? :]gq 4
8 L J 20 a‘tl(

BI_B2P)M(BUB2)

g {hz,yleiBlfll—iBth}
=0 —(1+B Bao?p— B2e)M(B,, By)
8 {h%eilllhl—iBth}
=0?(1—Bio*+2B,Byo*p— Bia*p*) M (B, B)
8 {hlh2gi81hl—i82h2}
=0*{p—Bid’p+B1Be* (14 p") — Bio*pl M (5, Br)
8 {,YI,YZez’Blhl—wzhz}

O%p
— a2
o bxlbx2+BlB2o

Op Op
or,

o) M(By, By, (A-6)
7. Appendix B. Normalized Mean Square
Deviation of | £,|

The expression for the normalized mean square

amplitude deviation of || can be written in the
form

5
msd (IEJOD_{ ¢~ V2Bo [Z Ap A5 Py4-2(Qm
4 @t Qo @t @t Q]71+Q]91+Q]m)]

—LHMY b (IR (B-D)
J

The definitions of the A, are recorded in (20). The

appropriate expressions for the (), are given by

Qjmn:Reafl {fiijjnI)mn " (B_2)

where the various 7, are defined as follows

PH:II

; 6%
Pa=5 12—13)

2

Pu=g I Lo It g (G LI 4
P44:UZI7+B(Q)U4IJ+B304LO

2 2
1)55:2%17_4 %Ig— BOO‘ [11

) 0

1 \2
131* ]2+?/ 13+ (L42)1,
> \g 5 . .
141:_‘2— By’ [(1—1) 1+ (1+42) 1]
])43—_—_‘72[(1—i)12—i11‘|‘(1+i)18
+I—(1+)als+ (1—1)al)

I) 2=— TV 2300' IJ

Pm:‘i\/:éBo(Tz Ig
Pn=(*—1B%0*)1,+2B5¢
Py=io?[(14+i)T,—

4 iBiat

a(1—1) ;4114
— (=) Is—a(1+1)l,—I]
1)111:

2] .36‘1 6"1 2 N T
Fﬁ 5+?'§(7 4—4“ 6+7;—2 (1+’&) 2

2a

— (1 I3+ 3211. (B-3)

The I, appearing in these last equations are defined

by
Ii=1(a, b;0,0)
L=1(a, b; 1, 0)
Li=1(a, b; 0, 1)
Li=1(a, b; 1, 1)
I;=1(a, b; 2, 0)

I,=1I(a, b; 0, 2)
L=1I(a+1, b; 0, 0)

Ii=I(a+1,b; 1, 0)
Iy=1I(a+1, b; 0, 1)
Lo=I(a+2, b; 0, 0)
In=1I(a+2,b; 0, 1)
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where I(p, q; 7, k) is the series

I(p,q; j,k)=mD(j )D(k)Z T (p+')““” (B-5)

where '
. 27—1)!
DO—=
1
D)= (B-6)

Finally, the functions L, and M; in (B-1) are ob-
tained from

Lj—i—iMj:% e 7 e\p I: <—— By—= B2 Z>:|
I:A;H‘A]s > Glart)= A]4< Byo* ) ==
Aot (1—iB2o?) — A,o(265) + A <i %)]-
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