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In the present paper we consider the problem of a horizontal magnetic dipole situated
in or out of a lossy magnetoplasma halfspace when the magnetostatic field is parallel to the
axis of the dipole. The rigorous formulation of the problem is carried to the point where
the determination of the pertinent boundary coefficients remains to be a straightforward
but not a simple algebraic process. Due to the prohibitive algebraic complexity involved
in the explicit finding of the boundary coeflicients, a high frequency approximation is intro-
duced and the approximate form of the boundary coefficients found. The field integrals
are evaluated in the air region for the condition when the observation point is at a large
distance from the source. The results are applied to finding the radiation pattern in the
air due to a magnetic dipole situated near the lower edge of the ionosphere. It is found that
the most important correction due to the earth’s magnetic field occurs near the interface
and parallel to the axis of the dipole.

1. Introduction

The problem of a horizontal electric and magnetic dipole in air and in the presence of a
conducting, homogeneous, and isotropic halfspace was originally formulated and solved by
Sommerfeld [1926]. Extending the work of Sommerfeld to a conducting halfspace, Moore
[1951] and also Bafos and Wesley [1953] solved the problem of the horizontal electric dipole
while Wait and Campbell [1953] and Wait [1959] solved the problem of a horizontal magnetic
dipole.

The problem of radiation in free space from sources in magnetoplasma halfspace was first
considered by Barsukov [1959]. He obtained expressions for the Poynting vector in air for
the cases when the magnetostatic field was normal to the boundary and an electric dipole was
either normal or parallel to the boundary. He also presented a numerical example for a vertical
dipole at the boundary and for the particular set of conditions considered he found that the
plasma’s anisotropy manifested itself most strongly in the directivity of the radiation pattern.
A similar problem was also considered by Arbel [1960].

In the present paper we shall treat the case of a horizontal magnetic dipole situated either
in or out of the magnetoplasma when the magnetostatic field is parallel to the dipole axis. The
choice of a horizontal magnetic dipole as the source of the electromagnetic waves was motivated
by the fact that such an antenna in the presence of an interface effectively produces both
vertically and horizontally polarized waves; thus, both wave polarizations could be studied
in a single problem. Moreover, since the electric field lines form circular loops about the axis
of a magnetic dipole and the magnetostatic field is parallel to the same, then the alternating
electric field is normal to the steady magnetic field and, thus, maximum interaction of the
electromagnetic wave with the magnetostatic field could be expected.

2. Dipole in Magnetoplasma
2.1. Rigorous Formulation

The geometry of the problem is shown in figure 1. The horizontal plane z=0 coincides
with the interface between the anisotropic homogeneous plasma and air. For conven-
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FIELD POINT

Ficure 1. Geomelry of the problem of a magnetic
dipole in magnetoplasma.
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ience we shall call the plasma medium (1) and the air medium (0). The plasma, in addition to its
anisotropy, may be lossy while the conductivity of the air is zero. Moreover, we assume that
both media have the same magnetic inductive capacity of free space, uy. The factor causing
the anisotropy of the plasma, the magnetostatic field Hp., is oriented in the positive z-direction
as well as the source of the electromagnetic waves, the magnetic dipole.

The definition of the present boundary value problem implies the solution to Maxwell’s
equations subject to the usual boundary conditions at the interface and proper behavior at
infinity. In the air region it is convenient to introduce the Hertzian vector potential of the
magnetic type whereas in the plasma region it is found to be more convenient to work with the
actual field components.

For the purpose of this problem it will be assumed that the source of the electromagnetic
waves consists of a small wire loop carrying an electric current Ze=*¢’.  When the loop is small
enough, its electromagnetic effects can be adequately represented by its equivalent dipole
moment

m=I-8 1)

.
where S is the surface vector of the area enclosed by the loop. We localize the source by
writing for the magnetic current density

Tn—=ms(z)s(5)6(z+h). @)

In the magnetoplasma region the magnetic field will satisfy the inhomogeneous vector
wave equation
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where € is the permittivity tensor given by [Tyras and Held, 1959]
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where N is the number of free electrons per cubic meter, |¢|=1.6>107' coulomb is the
electronic charge, and m,=9.1>X107* kg is the electronic mass.
In the air region we use the Hertzian vector of the magnetic type defined by

=L3
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and satisfying the homogeneous vector wave equation

(V2 k2) T4 —0), (7

The formulation of the present boundary value problem can be simplified a great deal
by expressing the field components in the magnetoplasma and the air regions in terms of their
triple Fourier integral representation in Cartesian coordinates in the transform space as well
as in the configuration space. To this end we introduce a triple Fourier transform pair
defined by
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In what follows we shall also need the transforms of the derivatives. These can be obtained
by integrating by parts where the vanishing of the integrated part is assured providing that
the fields have a proper behavior at infinity.

Thus transforming (3) one obtains for the plasma region

Xkt —o—a3 ay (et ika) a(a—tKas) ]L] elagh
s ) X , X o 5 = — e
oy (ay—TKkag) Xki—of—" of = oz 1K H, |_ LweoXM 0 (9)
g- g‘ (2Tr)3/2 «
. X B 5 , X =
o (a3t 1K) E' Q03— LKAy Xki—ai—= ob I8 0
S S
where ?
e2—n2.
x=2""; =1 (10)
€ €

The system of algebraic equations in (9) can be solved using Cramer’s rule. The
determinant of the coeflicients of the square matrix on the left is found to be

AZ%@@%ﬁM@ﬂ@ Y

where
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X

The result in (12) is not surprising. It is typical of what could be expected from analysis
of a double refracting medium like magnetoplasma. We have two modes of propagation
characterized by the eigenvalues s; and s, with which terms “ordinary’” and “extraordinary”
are often associated. These eigenvalues are given by the zeroes of A and are the poles of the

3 The correspondence between our notation for plasma parameters and that of the magneto-ionic theory [Rateliff, 1959] is as follows: e=1+4CU,
n=CY:, {=1—X/U. We feel that our notation is more convenient for cur purpose.
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field components. We note, for instance, that if av=a;=0 in (11), which is equivalent to
saying that the wave does not vary along the 7 and z coordinates, we obtain for the eigenvalues

(@)1 2=kovetn (13)

which can be recognized as the propagation constants of the rigcht- and left-hand circularly
polarized plane waves propagating in the direction of the magnetostatic field. Alternately,
if ¢;=a3;=0 we find

(c)r=ho/X
(a)s=ko Vs (14)

which again can be recognized as plane wave propagation constants transverse to the steady
magnetic field. Setting a;=a,=0 and solving for a; gives the same results as in (14).

We now proceed with formally solving the system of algebraic equations in (9). Using
Cramer’s rule and the results of (11) and (12) one obtains
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The inversion with respect to the as-transform variable can be performed immediately by
integrating in the complex az-plane along a path that runs along the real axis then along a
circular arc in the upper half-plane for z4-4>>0, and the lower half-plane for z-+A< 0. It can
be shown that the contribution from integration along the circular arc vanishes providing
Im{s; »} >0 and the resulting integral is equal to the sum of the residues at the poles s; and s,.
Furthermore, inverting with respect to the a;- and a.,-transform variable one obtains the
integral representation of the primary excitation as follows:
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To satisly the boundary conditions of the problem, we shall also need an appropriate
complementary solution of the homogeneous system of (9). From the theory of linear differ-
ential equations [Ince, 1956] it follows that the magnetic field satisfies

(a3—s1)(aG—s3 )Hm— (18)
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where a3 in this equation corresponds to the differential operator 70,. The solution to (18)
can be written immediately
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where we discarded solutions with positive exponentials for physical reasons. The coefficients
-

C}; are not all independent. For since H® must satisfy the given system the coefficients must
be related by
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where the square matrix elements F,(s; ;) correspond to the square matrix of the original
system (9) with az=—s;, or az=—s,. Now we express all coefficients C,, in terms C); and
()}, and normalize obtaining
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Inverting with respect to the «; and a, transform variables we obtain the complementary
solution as follows:
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The coefficients A; and A,, representing waves reflected from the interface, will be determined
uniquely from the boundary conditions.

The Hertz vector potential in the air region must satisfy the wave equation (7). The
appropriate solution can be written
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where s;= (ki—ai—a3)V? and we shall require that Im{s,} >0. The coefficients B, and B,
representing waves transmitted through the interface, will be determined uniquely from the
boundary conditions.

The boundary conditions to be satisfied by the Cartesian components of the field vectors
require continuity of the tangential components of the electric and magnetic fields at the
interface z=0. This implies the following
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The above boundary conditions give four equations in four unknowns A,, A, B, and F,.
It can be shown that this system of four equations can be reduced to just two equations in

two unknowns as follows:
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Once the coefficients A; and A, are found, the remaining coefficients B, and B, can be deter-
mined from (25). In fact we find
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The explicit determination of the four boundary coefficients 4,, 4,, B;, and B, is now a
straightforward although a tedious matter. The results would necessarily be lengthy and
probably not very useful. In the next section we shall introduce a high frequency approxi-
mation which will simplify the results a great deal without the loss of the essential aspects of
the problem.

2.2. High Frequency Approximation

Any approximation that we may introduce to simplify the field components is necessarily
contingent upon the simplification of the propagation factors in the z-direction; i.e., s; and s,
given by (12). A useful approximation will prove itself to be one based on the assumption

()IJ'()[[I)(’ \/<]

wm, |

(29)

which can be brought about by either a weak magnetostatic field or by a sufliciently high wave
frequency.* Furthermore, for a high enough wave frequency it usually happens that

e (30)

is also satisfied. If these two assumptions hold, it can be shown that the components of the
permittivity tensor in (4) can be simplified as follows:
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where we retained only first order terms in wy/w and v/w. Consistent with these approxi-
mations it can be shown that s, , in (12) simplifies to

s o~ 82 kkicy (32)

4 In the earth’s ionosphere, the region of validity of this approximation will be limited to frequencies in excess of 1 Mc/s.
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where s=(k2—a2—a3) and ky=+/¢k,. Now in regions where |s?|>>>>|kkia;| we can approximate
further by writing
Kklal.

2s

81,2"\-’S:E (33)

It will appear that last form of s; ;is indeed the only useful one. The usefulness of it is, however,
reduced by the fact that it is not valid in the vicinity of s=0 which corresponds to the critical
angle in the absence of the magnetostatic field.

Introduction of approximation (32) into (27) and (28) results in the following:
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As a consequence of the above results, the coefficients B, and B, pertaining to the air region
can be found as follows
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In the above expressions the first terms represent the regular field in the absence of the magneto-
static field. The terms preceded by « represent the first order correction for the presence of
the magnetostatic field.

To facilitate the approximate evaluation of the various integrals we shall define certain
fundamental integrals from which all others could be derived by differentiation. We define
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The above intecrals are not independent. Indeed, one can show that they are related as
follows:?
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0
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In what follows we shall avail ourselves of the above relationships to check the differentiability
of the results after integration is performed. Employing the above definitions of U;, U,, and
U; one can write the components of the Hertzian vector in terms of them. One obtains
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The integrals in (38) are surface integrals over the entire a;—a, plane of a form that
lends itsell readily to a transformation to cylindrical coordinates in the configuration space

as well as in the transform space. Thus we employ the transformation
T=p COS ¢
Y=p sin ¢ (41)

for the space coordinates and
;=N\ COS ¢
;=N\ Sin o (42)

for the transform variables. Now the fundamental integrals are of two distinet types. The
first one is
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In the appendix we show that
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In view of the above we can rewrite the fundamental inteerals as follows:
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5 It may be shown that the differentiation under the integral sign is permissible by virtue of the fact that the resulting asymptotic expan
sions are identical,
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where we used a well-known relationship between the Bessel and Hankel functions.
Now we transform to spherical coordinates using the transformation

z=r cos §

p=r sin 6 (48)
for the configuration space and

A=k, sin 8 (49)

for the transformation space. The results are
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where T, is the appropriate path of integration in the complex g-plane and
HP (kop sin §) = H (ko sin ge~ e 25, (51)

In what follows we shall evaluate the integrals in (50) by the method of steepest descent which
is contingent upon being able to deform the original path of integration T to the path of steepest
descent I'.  In the process of the continuous path deformation we must make sure that any
singularities between these two paths are properly accounted for. To this end we shall investi-
gate the location of the various singularities of the integrands of U, U,, and U, in the complex
B-plane.

The examination of the integrands in (50) reveals a possibility of poles at points
where the denominator vanishes, ie., where sin =4 ({)*(1+¢)%  The corresponding
Riemann surface consists of two sheets and we shall denote the upper sheet one on which
Im {(¢—sin? g)*} >0 and the lower sheet one on which Im {(¢—sin® 8)*} <C0. Then it follows
[Tyras, 1962] that when |¢|< 1 the resulting poles P;, P,, P;, and P, are located in the com-
plex B-plane as shown in figure 2 where P, and P, are the upper sheet poles and P; and P,
are the lower sheet poles. In particular it can be shown [Tyras, 1962] that the poles P; and
P, are on the same side of the branch cut Im { (¢—sin? g)¥} =0 as the origin.

The integrands in (50) also contain the radical (¢{—sin® g)* as a result of which the point
B=-Larc sin ¢ is a branch point. The convergence of the integrals is assured if the path
of integration at least begins and ends on the upper sheet. The two sheets are joined along
the lines Im{(¢—sin® B)}=0 starting at the branch points. These lines are shown dashed in
figure 2.

We now investigate the possibility of replacing the original path of integration T, with
the path T' corresponding to the path of the steepest descents through the saddle point g=4.
Since the poles Py and P, lie on the lower sheet they need not be taken into account when
deforming the path of integration T into I The upper sheet poles P, and P, need not be
taken into account either since they will never be crossed lying beyvond the region of interest,
—7[2<60<x/2.
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Next we focus our attention on the following. As we remarked earlier, the integrals
in (50) are double valued since they contain the radical ({—sin? 8)!.  The original path of
integration passes over the upper sheet of the corresponding Riemann surface and it can be
deformed into the path of the steepest descent I' only when at least the beginning and the end
lie on this sheet. In the case when the angle 6 does not exceed the critical angle 65=arc sin "
the transition from the path T, to the path T'is accomplished without complications and the
only contribution to the integrals will be from the saddle point. When 6 exceeds the critical
angle 65 a more complicated path must be devised which results in the contribution from the
saddle point and the contribution from the integration along the borders of the branch cut.
The latter contribution results in the phenomenon of lateral waves [Brekhovskikh, 1960;
Tyras et al., 1963]. In the present formulation we introduced the high frequency approxima-
tion in (33) excluding the neighborhood of the point {=sin? g from the region of validity.
This makes the integral expressions of (50) not suitable for carrying out the branch cut inte-
eration and thus the evaluation of the lateral wave field.®

The evaluation of the integrals in (50) by the method of saddle-point integration is a
straightforward process [Brekhovskikh, 1960]. We obtain for the leading term
i2 cos felthVE—sin® 0
VE—sinZ §+¢ cos 0 kyr

()/ik(,r

Uj~—

2 cos fekotVi—sin? 0 ikyr
e = - (53)
VE—sin? §(y/c—sin? 6-+¢ cos 6)2  kyr

The evaluation of the integral U, in (50b) is more complicated and we shall use the saddle-
point method for double integration to accomplish it [Bafos and Wesley, 1953]. First we put

= f F(B)eitur cos 8-0)dB (54)
I
where !
Y I
. (1) : ik by ¢—sin2 B8
]4‘(6):’(0g B[.12u+l(k:()p SH.] B})E . (55>
\—sin? B(y ¢ —sin® B4¢ cos B)
Now we put
w=3—1~0 (56)

6 It may be of interest to point out that in the rigorous formulation the branch points occur at si,2=0 corresponding to sin f==+/e£n. As
wir/w™0 these two branch points coalesce into one at sin 8==+/t. The evaluation of the lateral field is possible in the case of line sources [Tyras
et al., 1963].
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which transfers the saddle-point to the point w=0 in the complex w-plane. Following the
procedure of Banos and Wesley [1953] we make the next transformation as follows:

2

%:ikor (1—cos w) (57)

and note
dw i

%:ikor sin w (68)

It can be shown that w can be expanded in a power series of z as follows:

W= oL T o0 G =
from which we note that w is an odd function of z, i.e., w(z)=—w(—x). Using the above
transformation we can recast the integral (54) in the form

I=cite f " G@ e (60)
where 0
G(z)= [F(w—}—ﬂ)ll(‘)(kop sin (w—+0))+F(— w—}—&)H“’(AOp sin (— w+0))] (lw (61)

Putting this expression under the integral sien in (60) results in two integrals w1th the inte-
gration range from 0 to +w. In the second integral we make the substitution z=—z’ and
reverse the limits of integration. Due to the fact that dw/dx is an even function of x, we can
add these two integrals to form a single one as follows:

eikor
tkor |

f T 2FWH) Froy g o sin (wt6))eda 62)

o SInw

Now we make use of the integral representation of the Hankel function

I8V (E) = 6 f 2v(4 2)r=1/20 =172 63
(&)= w‘>3vr(u+1/2) - Y ¥?) Y (63)
which we put in (62) to obtain
4 ei(kgr—vr) I“" I“” —222,—y%2
= x,y)e" dady (64)
Hr BT A1) gy J-e o COY

where
xy? F(w+6)[4ikop sin (w+6) —12]" 12
sin w [sin (w-+0)]”

Qz,y)= (65)

We recognize the integral (64) as being analogous in form to single integral of the type
to which Watson’s Lemma can be applied. A theoretical basis extending Watson’s Lemma to
double integrals has been provided by Bafios and Wesley [1953]. Thus, at this point all that
remains to be done to find the saddle-point contribution is to expand the integrand @(z,y) in
a double power series and integrate term by term. When performing such an integration we
avail ourselves of the following well-known result [Brekhovskikh, 1960]

@ 2 v+1/2
f e~ 2y =T ( > ( > (66)

Combining the above results we obtain for the leading term

' _ kol —sin2 8 ikor o
Uy~ - _220500;* 2 - > sin (2v+1)e. (67)
sin 8+/¢—sin? 0(+/¢ —sin? 64¢ cos 0)kor 0
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The series on the right in (67) can be summed. We write formally

IR SR 1
//qu 2vp J— = 68
_S_U ' sin (2v4-1)p=1Im {( Eu ‘e }—2 T (68)
where we used formula for summation of a binomial series. Thus
ik h\/f—sin2 [} ikor
U cos fe ) (69)

* sin 0 sin py/¢—sin2 8 (vt —sin? §+¢ cos 6) ko

Collecting the above results we find the components of the Hertzian vector and hence the
field components. Thus

ikym cos felkohVi—sin? 0 . .. sin® ¢
E P Uy —
"™ T2 (5 cos 01 vi—si g) L on e M| ¢ os o Vs —sin® 6
n 4.0082 peost L ;3052 <p:|}e_ik_°: (70)
2+/¢—sin? (cos 0+ +/¢—sin2 9) 7
o . iy £ —sin? 0
E o~ ikom cos ¢ cos ge S {y’g“—sin2 0(cosf /¢ —sin? f-+sin?0)
27( ¢ cos 94+/¢—sin? )
e sin 6 sin ¢ [ sin® -+ cos m/{—siﬂz—()_ 1
Je—sin?6 | ¢ cos0++/¢—sin?6  2(cos 6++/f—sin?6)
_ikoh(¢ cos 0/ f—sin’® 9)]} et (1)
2(cos §++/¢—sin? 9) r
ETONO. (72)

One observes that the above field components contain the regular field that would exist
in absence of the magnetostatic field and a first order correction for the presence of the mag-
netostatic field (the terms preceded by 7). It will be seen that these corrections are not in
general symmetric about the 6=0 and ¢=0 axes. The time average Poynting vector given by

Sw:gizo (1Bl | Eyel?) (73)

where Z; is the free space impedance, is plotted in figures 3 and 4 when ¢=0 and /2 respec-
tively for a plasma roughly equivalent to that in the lower edge of the ionosphere and the
magnetostatic field equivalent to that of the earth. It will be noted that the correction due
to the magnetostatic field is noticeable only in the plane ¢=0 and within the region of validity
of (29) it is significant only in the proximity of the interface.

Hpc=0
————— Hpc=4gouss

Ficure 3. Power pattern in air of a horizontal e
magnetic dipole in magnetoplasma; ¢=0°, N=750 °
electrons per cubic centimeter, h=1000 meters, /i
v=10¢ collisions per second. s
o /
o _/ ®
— (e}
P e
|
T
o -0 db -20 -30 -20 -10 0
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Ficure 4. Power pattern in air of a horizontal
magnetic dipole in magnetoplasma; ¢=m/2, N=750
electrons per cubic centimeter, h=1000 meters,
v=10° collisions per second.

3. Dipole in Air

3.1. Rigorous Formulation

Since this problem is in many respects similar to the preceding one, we shall not go into
it in great detail.

The geometry of the present problem is shown in figure 5. As before we shall work with
the Hertzian vector of the magnetic type in the air region and with the actual field compo-
nents in the magnetoplasma region.

For the air region we can write immediately

isglz—h|
30 =~ ffl: - + B, e"ﬂ'] et el oy day (74)
o 8wy J,
0 =_— ffB etttV t30I o doy (75)
R 87r wpo J.

whereas for the magnetoplasma region the integral representation of the field components is
identical to that in (23). Application of the boundary conditions (25) gives a system of equa-

tions as follows:
[_ ]. 0 013 01 4] ( B1 (b
0 29 02 ng B 2 0
2 3 4 _ (76)
L 0 Cs. Css C34J LXAI LO
1 O 034 ,v,“ XA? b

(ymzaz[q’l (81) Fai®s(sy) |+ inxkis ad

Q

where

i (s)) (77a)
0142013('5‘1:32) (77b)
AL -

C = (77¢)
o[ ®y(s1) — (k§—af) Ba(s1) | —ikx ki (k5 —ad) sy

Co= a‘ZCbl(sl) (77d)

024:023(81:82) (77e)
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(0) AIR: Mo, € ;‘

(1) PLASMA: pLo,€0 €
¢

5 oc P

X
Ficure 5. Geometry of the problem of magnetic
dipole above a magnetoplasma halfspace.

itk (si+a)
% axd, (81)

(Y34:(Y33(31:82)

FIELD POINT

AIR

PLASMA

Frcgure 6.  Geomelry of the source and the image.

(s
43 Soaa {X P (51)

Cu= (V‘ia(*'l =8,)

e

isgh

So

- Caa®y(s) (51— [Ka2)+af(x'*1—1‘1\"125")[az(bz("'l)‘}‘?.'\’xfkggl]_GE(X_ Ols1®1(s1) — ke (771)

XPy(s1)

(77k)

The coeflicients A, , and B, , are thus determinable from (76) but as before we shall forego
finding their explicit form in the present formulation.

3.2. High Frequency Approximation

Using the approximations (33) we can find the coefficients B, , as follows:

— __l 7,2,?,‘ 7 ; ,2‘1/:Z . _— ‘if)'i()______]} isoh 78
B, { '9(J+'9+§N(»+In (v\'—!-§'-&‘(,)2+(12‘\'(~\'+«\‘0) (84¢s0) ‘ L)
2(§_ 1 )011 . l: 20100 a1<-93+a§)1 ]} ; -
By=—L —2_—— _ — AN isgh
T G T 6o T G rs (st s) (st-cs S ¢ e

To evaluate the field components we avail ourselves of the integrals U/}, U,, and Uj in (38) and

the results in (52), (53), and (69) and obtain



o N—imlco sin ¢ (e”‘OT ei"0’0> ¢ cos fsin ¢ e
80 = —
2 2 r T ¢ cos 0++/(—sin2g T

i sin 6 cos 6 sin? ¢ cos 6 cos? ¢ ] gﬁ’i’} (0)
¢ cos9++/¢—sin? 0 |_¢ cos 6-++/¢—sin? @ 2\/§—sm2 9 (cos 6-++/¢—sin2 §)

——1k0m cos @ cos 0 { ( et g0 ) \/g‘—sin“’ 0 (sin 6-+cos /¢—sin2g) et
E‘po’\’ = e —
¢ cos B-F+/¢—sin? 6 r

+ in sin 0 sin @ sin2 §+cos 64/ —sin? o :| iky } 81)
Ve—sin? 0(¢ cos 0++/¢—sin? 6) | ¢ cos ++/¢—sin?8  2(cos 6++/¢—sin?6) |

E,o~0 (82)

where 7, and 7 are the distances from the source and its image to the field point respectively
as shown in figure 6.

4. Appendix
The integral under consideration is
T el)\p cos (c—¢)
- do. (A1)
~ sine

Expanding the numerator in terms of Bessel functions [Stratton, 1941] and interchanging the
order of summation and integration gives

©

ine
I=3ire=meJ, (o) | -

—® P Sm

do. (A2)

Now we focus our attention on the integral on the right. By making the transformation

z=¢" one obtains
I~ f Gl ~2f g (A3)
_.Sin o (z+1)(z—1)
where (is a unit circle. Now we consider

2"z
v (FArl)(e=1)

where the contour is shown in figure 7. Integrating formally it can be shown that

K= (A4)

Z—PLANE

I

=

€ € Ficure 7. The complex z-plane.

b3
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11:—2613011 {J;q—{—fr} (A5)

which gives

Ii=mi[l1—(—1)"]. (A6)
Substituting the (A6) into (A2) we obtain the desired result
T ei)\p cos (¢—¢) ) .
f ————— do=4m1i > (—1)"sin 2n+1)gJ2nt1(Ap). (A7)
- Sin o 0
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