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The groundwave pulse has been considered in detail by Johler [1962, 1963b]. A theory
was presented as a direct numerical and analytic evaluation of the Fourier transform in-
tegral. Such a theory can be extended to treat pulsed ionospheric waves.

The reflection process for various model anistoropic ionospheres has been studied in
detail in previous papers by Johler [1962].  The analysis of the reflection coefficient thus
demonstrated is employed to construct transfer functions for the ionospheric wave. These
transfer functions are then introduced into the Fourier transform of the pulse, and the
behavior of LF pulses propagated by a reflection process at the ionosphere is determined tor
three models for the lower ionosphere. The composite ground and ionospheric pulse is
formed, and a method of tagging a point-in-time on the pulse is detailed.

1. Introduction

The low frequency radio signal [Johler, 1962] propagated from a transmitter at the surface
of the terrestrial sphere can overcome the curvature of the earth and reach a receiver some
distance away on the surface of the earth by diffraction as a groundwave pulse or by a single
reflection or multiple reflections at the lower ionosphere. Numerous investigators have treated
the groundwave pulse or signal theoretically [Novikov, 1960; Johler and Walters, 1959; Keilson
and Row, 1959; Pekeris and Alterman, 1957; Wait, 1955 and 1959]. Thus, for example,
Wait and Froese [1955]; Wait and Conda [1959] have developed closed form solutions for
certain pulses for relatively simple situations. On the other hand, very little has been accom-
plished on the pulse signal reflected at the ionosphere at LLF. A procedure was outlined by
Johler [1962] for treating theoretically both the groundwave and the ionospheric wave pulses
by a direct numerical integration of the Fourier transform-integral. Thus, regarding the

f - - - -
continuous time-harmonic-wave solution of Maxwell’s equations, 'Oat E=iwE; Vaa't I[):iwﬂ), as
the transform or transfer function of the propagation medium, it is no longer necessary for the
case of linear amplitude transforms to resolve Maxwell’s equations for each pulse. It is only
necessary to form the product of the pulse transform and the complex transfer function of
the medium and integrate to the time domain.

The reflection process for various model anisotropic ionospheres has been studied in con-
siderable detail by Johler [1962, 1963a; Johler and Harper, 1962a and 1962b]. Results obtained
with the aid of this analysis are employed in this paper to construct three transfer functions
for three models of the propagation medium. These transforms are then introduced into the
integrand of the Fourier integral of specified pulses, and the behavior of such pulses propagated
by reflection at the lower ionosphere is demonstrated. The composite ground and ionospheric
pulse is formed, and the methods for tagging a point-in-time [Johler, 1963b] on the pulse are
detailed.

1 This work was sponsored by the Advanced Research Projects Agency under ARPA Order No. 183-62, Amendment 4, or N BS Project 85411—
initiated under this contract. This work forms the theoretical basis for the experimental program pursuant under the same contract on NBS

Project 85461.
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2. Theory of Transient Propagation

- -
A radio signal, E(t, d), v/m or H(t, d) amp-turns/m, at a time, ¢, and a distance, d, along
the surface of the terrestrial sphere relative to a transmitter is related to the continuous time

- -
harmonic solution of Maxwell’s equations, £(w, d) or H(w, d) at a frequency f=w/2m ¢/s by the
Fourier transform-integral for linear amplitude restrictions,

E(t’,d):;};f exp (twt”) E(w,d)f,(w) f exp (—iwt)F(t)dtde (1)
2 . 0

where f,(w) is the transfer function of the receiver or measuring device and F(t) is the transient
dipole source current moment, and the local time, ¢/, is defined,

¢/ =t—mnde, (2)

where 7, is the index of refraction of air (1,~1.000338 at the surface of the earth), and ¢ is the
speed of light (¢~2.997925(10%) m/sec). The propagation medium transfer function, E(w, d),
can be split geometrically-optically [Johler, 1962] into the sum of a multiplicity of ordered
rays, =0, 1,2,3 . . -
E(w;d):E El’(w:(D) (3)
i=0
where j=0 corresponds to the ground wave, j=1 corresponds to the first ionospheric reflection,
etc. As a consequence of these rays, the pulse fields exhibit a corresponding series,

P
E(t',(])":;; E,(t',d), (4)
j=

separated in time by ever later times, ¢/, as the order, j, is increased. The groundwave, j=0,
and the first ionospheric reflection will be considered in this paper. Obviously the latter
(7=1) will arrive at the receiver later, since the ray length between the transmitter, the iono-
sphere, and the receiver is longer than the distance, d, along the surface of the earth, to the
receiver appropriate to the groundwave, j=0. These facts have been verified experimentally
[Johler, 1962], and the ray theory for propagation between two points, s (source), and o (ob-
server) on the surface of the earth can be summarized as shown diagrammatically, ficure 1.
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Ficure 1. Propagation media and boundaries, illustrating various geometric-optical rays in the vicinity of the
terrestrial sphere.
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The electrical properties of the three principal media of propagation are described by the wave
numbers, ky, ks, ks,

k1:%" LA (5)
A2:§ —\/62‘—?: 0-#00;) ((i)
k=" nj: (7)

where e is the dielectric constant relative to a vacuum, ee=-e the permittivity, 60:8" —» and
“Mo

po=4m(1077) h/m, the permeability of space; ¢, mhos/meters is the conductivity of the
ground. The index of refraction for the ionosphere, n&;, is quite complicated, and there
are four such indices for a homogeneous layer, ordinary (o) and extraordinary (¢), upgoing ()
and ordinary (o) and extraordinary (¢), downgoing () indexes. KFurthermore, the electrical
properties of ks vary with altitude, &, ky="Fk;(h) which fact is taken into account in the reflection
coefficient, 7', of the ionosphere. The lowest electron density considered is taken as the lower
boundary at the altitude, %, for purposes of geometric-optical rays, figure 1.

The groundwave (j=0 ) signal, £,(t’, d) is considered to be the pulse which travels from
s to o, figure 1, along the surface of the earth taking into account the electrical properties of
the earth, £, and the medium, k;, assumed to be of infinite extent. This is the earliest signal
to arrive at o, and the earliest time such a signal can arrive at o is t’=0 or t=mnd/c. Somewhat
later (about 20 to 40 usec) the signal propagated over the ray, j=1, and reflected from the
lower ionosphere at a height, 4, and angle of incidence, ¢, ;, will arrive at a local time, t;=t; >0,
or will take on appreciable amplitude at a time, #>0. Obviously, higher order rays (j=2,
3,4 . . . are possible and indeed have been observed [Johler, 1962]. However, for purposes
of illustrating technique the distances, d=800 to 2000 statute miles or {1200 to 3000 km will
be considered in which for the assumed models, =0 and j=1, are of prime consideration.
Indeed, a model will be considered in which the j=1 ray, figure 1, is diffracted beyond the
geometrical-optical horizon, or beyond the point at which the ray is grazing incidence on the
earth, 7,=n= 7; The rays reflecting to and fro between the earth and the ionosphere are
influenced by the local reflection coefficient at the ground surface, r=a, and at the ionosphere
surface, r=a-+h. Distance, d=af, increases in the positive 6-direction or the signals are as-
sumed to be progressing toward the receiver or observer, o, in the positive 6-direction, figure 1.

The transform for the propagation medium, considering the groundwave, £ (v, d), and the
first ionospheric wave, F\(w,d) can be written [Johler, 1962] for vertical (llpoles at s
and o [Johler, 1961].
E(w,d) ==Ei(w,d)+ E\(w, d) (8)

(\P( [(lﬁ(l V3 a2l = J 3:5+T:|}

[273—]/5,,]

E(w,t/)z?[w('[owa»/a(/ )l ] ‘!
+iwdD7 O exp [1w(ti—t")|Gron 3T, 9)

where

O=(10"")I/d

and
G~sin 7y,
t'=t—mD/c, (10)
D,=2[(a+h) cos ¢;—a cos 7], (11)
¢z:¢i,1; (12)
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=T (13)

a~0.85, the earth radius factor, a is the radius of the earth, =, are the special roots of Riccati’s
differential equation [Johler, Walters, and Lilley, 1959],

%—Qaﬁrﬂ:o (14)
where for vertical polarization 6=4,
PP ol Pl (15)
(ya)' [_—1]
where k; and ks, are defined in (5) and (6),
@ sin %
sin ¢;= (16)

[Za(a—l—h) (1—005 %>+hz]l/2
a1=<l+%> [2 sin %/sin 0] llz{l:a <1—cos %>+h]/[(a+h) cos %—(L]}lﬂ/‘ll (17)

1/2
A1~<7§T a) H)(z1) exp {—il5n/12—z]} (18)

21=(k; a cos® 7,)/(3 sin? 7,) (19)

. : - xp [—i (kna/2)' 6’ p]
F.a=Y2 oxp [—ik eff exp [,, i (ky
eew oxp [—tiiad ] o exp [—izefsl  Wi(p)—qWi(p)

where 0’ = (d—dy)/a, dy is the distance to geometric-optical horizon, figure 1, TI:g;

kl(l L/kd kl \/ _ZC_Z
—i(%) £+ (21)

[Wait and Conda, 1958; Johler, 1962]. W(z) and Wi(z) are airy integrals related to the
Hankel functions, H{(2), H(2),

(20)

Wi(p)=exp [—2mi/3Vr/3 (—p) 2H{3[3(—p)*?], (22)

Wi (p)=exp [—4mi/3]\[3pHZ[3(—p)*2], (23)
where

™ S
—= <ar -
5 Sarg p<
m .
and arg (—p)=arg p—m, arg p" ":z arg p where m and n are integers. ) can also be calcu-

lated in the geometric-optical diffraction zone (n:g; fig. 1) with the aid of [Wait and Conda,

1958], an alternate formula,
o _ 1/3
Fi~—2ir exp [—ik,ab’ ]Z (exp dia) oia]

27, — W27,

(24)
This formula clearly shows the groundwave nature of the diffracted wave, since it is the classical

residue series by analogy to first term of (8) and (9), which is the groundwave. H{3(z) was
computed with the aid of a computer technique [Berry, 1962] using the relations,

Hijy(z )*i_eXP< >J1/3( )+ -3 (2 )} © sin ("‘) (25)
15— —exp (1) o)+ Tan) } [ 5w (=3 (26)
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where

s (L2
J”(o)_ngo m! T’ (v+m-+1)

_ (2 [, (z2)2 (22 (2/2)° 1 2\, 7
—T’(H—J)l:l 1!(7,--{-1)+2!(v+1)(v+2) :;!(z>+1)(w+2)(u+:5)+"'](“3’3) 20

J,(2) is made single valued by specifying arg (z/2)"=wv arg (z/2) for A—27<arg (z/2) <A. Ordi-
narily, A== but may have different values, depending upon applications.

As |z| gets large, (27) converges slowly and loses precision. Also, the precision lost in
(25) and (26) 1s serious, since in half of the z-plane the terms on the right are nearly negatives
of each other when Im (2) is large. It is therefore necessary to use the asymptotic series,

_exp [—izFi(o+Dnf2]

\7I'.2/2

H®(2) T,(212), (—2r<arg z<m)

where,

o 2__12 2_ 92 2 R 2
Tl,(z)zl—{—g (40*—12) (4v :Ly)(42)n [40*—(2n—1) ] (28)
T,(2) is asymptotic except for v=n-3% and integral n, and hence should be terminated at the
smallest term, the next term being greater than the error of such a termination.

The reflection coeflicient, 7, of the ionosphere comprises a quite complicated computa-
tion which has been detailed by Johler [1962] and Johler and Harper [1962a and 1962b]. The
ionosphere is considered locally, figure 1, at the reflection point of the ray; that is, a point below
which the electron density < ~5-10 electrons/em®. This point in the ionosphere can be tested
for contribution to the reflection coefficient by varying the lower boundary. At LEF and VLF
the reflection coeflicient will be found to be determined by greater values of electron density.
A plane wave, /7, is assumed to be transmitted into the plasma,

1B= E exp I:'L <wt—§ nD)], (29)
where
nD=ux sin ¢, sin ¢,+y sin ¢; cos ¢,+ z¢, (30)

in which ¢ is in general a complex number related to the index of refraction, »,

n'=¢*+sin’ ¢, (31)

and a right-handed z, y, z Cartesian coordinate system is assumed locally at the lowermost
ionosphere boundary, so that the y—z plane is oriented toward magnetic north and, hence,

5
contains the earth’s magnetic field vector, #(. The angle ¢,, is measured clockwise toward
the z—z plane from magnetic north as the orientation of the plane of incidence of the incident
wave, and the dip or inclination angle, 7, is measured downward from the horizontal z—y plane.
The angle of incidence, ¢, is measured from the vertical.
The quantity, ¢, is determined by a simultaneous solution of the continuous time-harmonic
form of Maxwell’s equation,
@ 2 o 2 ) = 4 o = o e =4 T o .
> =10k, > H=1iwH, VX E+pgiwH=0, VX H—J—¢iwE=0, (32)

and the equation of motion of an electron,

iwm?’+mg?/—l—uoe(ax i{H—eﬁzO, (33)
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=
and J=
vector.

Equations (32) and (33) imply that Maxwell’s equations can be written in terms of the
dielectric tensor, |||/,

- -
—NeV for N electrons/cubic meter of charge, ¢, and mass, m. V is the electron velocity

= D=
VX E+ pyiwH=0

- -
VXH—||e||-E=0 (34)
where in Cartesian z, v, z coordinates, Johler and Harper [1962b]
B $ —'th @hT 7]
e =K I
. ih (h7—s?) s*—hi .
[|— W _ \Mp=87) L ‘
lell=evie) 5 s(s*—h?) s(s*—h?) (85)
—thr b i
| = o= T
where
s:if il ”—], h=222,
[OFNg w Wy

-

hy=—"h sin I, hp=h cos I, wg=peeF{ /m, F{=|F{ |, and wi=Ne*/eym, and fz=wy/27, and

fy=uwy/27 are the gyro and plasma frequencies, respectively. & =H,~0.5 gauss or 40 amp-
turns/m.

1e complex, frequency-dependent parameter, ¢, 1t yquati motion (33) is foun

The complex, freq v-d lent ter, ¢, in the equation of motion (33) is found

v an integration over a Maxwellian energyv distribution expressed i S0 nergy, eu—smV"

o) tegration o M 11 oy distribution expressed in terms of energy, wmV?,

or fo=le/mkT)*? exp [—eu/kT], in which there exists momentum transfer collisions with gas
molecules proportional to the energy, u, v=v(u). Here £7is Boltzmann’s constant-temperature
product. Such an integration can be readily accomplished for a continuous electromagnetic
wave of angular frequency, w=2=f. Thus,
4 e ( )
ex eu/kT)du 36
[ () ia) au ) %P (—eufkl) i

where @ is an angular frequency yet to be identified [Johler, 1962; Johler and Harper, 1962a
and 1962b].

The dielectric tensor can therefore be generalized to take account of collisions, v=uv(u),
proportional to energy [Johler and Harper, 1962b,

[ [i . 4| )
! 2 1 ‘ sin I sin I i I -1
m,+x;’!_2_:_ fhem | gf’L___+_7-—__ w? S o e cos I
| g()+i g(02)+i0, ‘g(m)’r i0,  g()+i: " {gmm Q g(ﬂz)+101
B 4
B oomi S g 1sin®1  1sin’I [ ; ]
llell = e L:JZ - z "‘A i + w? cos® I 2 i R 2 o sinIcos I % sinlcosI 1 sinlcoslI
g(M)+i0, " g(Q)+in, g(no)hno g(O)Fi0y) | g()+in, Jg(ﬂ,) T, g(m i AR mEJ
L r
i i [ ) - :
_ |7 cos I S cos I | -sinIcosI 1 sinIcosI 1 sinlcos i sin® 1 cos®1 1cos®1
Wy =t Wy = a S— . 0.+ w?| 2 2
[g(@)+i0; g(0:)+i0y Y g(Qo) + iQ, g(@) + i, g(®) + i i + wy ig(i‘-o)+if‘o+g(01)+ if‘-1+g(ﬂz)+if‘e
L L |
L=

J

(37)

where three characteristic frequencies, 2, have been identified, Q;=w, Q=0+ wy, and B=ow—wy.
- -

The vectors, V" and H, can be eliminated, whereupon it can be concluded a quartic equation
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-
in ¢ is satisfied if the field, £, exists,
Ayt a5+ 0+ an g+ ag=0. (38)

Equation (38) is analogous to the Booker [1939] quartic in classical magneto-ionic theory
and can be readily solved by various numerical techniques [Johler and Harper, 1962a and
1962b]. Since the quartic has four roots, the four indexes of refraction of the ionosphere,
ne !, can be identified with the aid of (31).
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the analysis procedure, illustrating the concept of
continuous stratification.

The ordinary and extraordinary upgoing and downgoing propaga-
tion components are coupled at each boundary.

Fraure 2. Model ionosphere profiles, N(h), llus-
trating the variaiion of the electron density (elec-
trons/cm?®) of the lower ionosphere with altitude: (a)
Houston Composite model appropriate to lower geo-
graphic latitudes; (b) Blackout Model appropriate
to higher latitudes (with Gaussian distribution in
the region 40-60 km).

The detailed structure of two model ionospheres is illustrated, ficure 2, as the electron
density-altitude, N(h), profile. The collision frequency-altitude, »(h) profile has been previously
described as the Nicolet/3 profile, Johler [1962]. These structures were represented by a
flexible plasma stack of slabs illustrated, ficure 3 of arbitrary thickness (except for the top-
most slab of thickness, z,— «). Both the number of such slabs, p, and the thickness were
quite flexible, since the idea of this analysis is that the measured electron density-altitude and
collision frequency-altitude (N(2) and »(2), respectively) profiles can be approximated to any
desired accuracy by decreasing z, and increasing p simultaneously until a stable reflection
process 1s obtained.

A constant electron density, collision frequency and static magnetic field with respect to
altitude, z, is of course assumed for each slab, z,, and associated with each such slab a set of four
roots, ¢, is found to exist. Two of the roots will exhibit a negative imaginary part (Im ¢ nega-
tive), corresponding to an upgoing propagation component (-+z direction, fig. 2). Also, two
of these roots will exhibit a positive imaginary part (Im ¢ positive), corresponding to a down-
going propagation component (—z-direction, fig. 3). Except for the topmost slab, it is neces-
sary to consider both upgoing and downgoing components in this analysis.

- -

It is necessary [Johler, 1962] to equate the tangential /7 and H fields at each boundary,
figure 2 (top and bottom of each slab), whereupon it can be concluded that a p>}p+2 matrix
equation defines the propagation:
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where the elements a;; . . . can be deduced as a consequence of these boundary conditions,

provided the reflection coefficients, 7, and the transmission coeflicients, U, 7" are defined,

77 _E_h” Ly it _EV’Z U _% U ._%
ee — 7 ee — I eio — I ero ~
Ey’z Ez/i Bz/’i Fyi
T _Ez’r ’ ¥Ez’t U(") Fu?o U(w) _Fvnro
em — em — mio mro
Ey’i Ey’i Ez i E:c i
(n) (n)
P El/’r g pl E y't Un — FW U™ fere
me i me 1 eie — ere ~
Ez’i -E:r/z -Ey i EZ/ 7
(n) (n)
T :EZ'T ) :@1 7w :EW Um —ure (40)
mm mm mie nl mre
E:c'i Ex'i Ez’i ! Ea:’i
where, figure 3, n=1, 2,3 . . ., p—1, p, and the four 77 are defined as a transmission coeffi-

cient into a topmost slab of infinite extent, z.

Obviously, the matrix (39) can become quite large, and the success in handling such an
equation (39) is dependent upon the memory capacity of a large-scale computer (such as the
IBM-7090). For example, a 104106 complex matrix equation (39) corresponds to the
upper limit of 26 slabs used on the IBM-7090 and the CDC-1604 computers [Johler and
Harper, 1962a and 1962b]. The size of such slabs were approximately 0.5 km. This was
much finer detail than can ordinarily be resolved from N(h) curves of the lower ionosphere.
Ordinarily, only 8 to 10 slabs exhibited quite remarkable convergence of the reflection coeffi-
cients at frequencies of 10 to 100 ke/s for graphical significance in the computation.

The distinction between the four propagation components, upgoing (i) and downgoing (),
ordinary (o) and extraordinary (e), figure 3, becomes obscure when the ionosphere is con-
sidered to be nonuniform in the vertical z-direction. This is a consequence of the couphng at
each boundary. Thus, the boundaries of each slab are introduced as an expression for the

- - -

continuity of the tangential /£ and /1 fields and possibly the normal I at each boundary,
figure 3, of the model plasmas. This is accomplished by equating the field immediately above
and immediately below each boundary which, after considerable ado, results, for example, in
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a 104 <106 complex matrix equation, or 26 slabs [Johler and Harper, 1962a and 1962b]. In
addition to the transmission coefficients, U/, four reflection coeflicients referenced to the bottom
of the lowest slab used (N=10, h=65 in Houston composite model, figure 1, N=8, h=45 in
Blackout model), 7.., T.,., Ty, Ty can be defined. These coefhcwnts describe the reflection
into the region below the model plasma. Thus, 7,,, used in this analysis, refers to vertical
electric polarization of the incident wave and a corresponding vertical electric polarization of
the reflected wave. 7, refers to the generation of the abnormal component (horizontal
electric polarization) by the incident vertical electric wave. Similarly, 7, refers to vertical
magnetic incident wave and vertical magnetic reflected wave, and 7, refers to the correspond-
ing abnormal component (horizontal magnetic). Employing this analysis procedure, and using
the vertical electric reflection coefficient, 7',,, three models were constructed as illustrated in
figure 4. Model No. 1 employed the Houston Composite profile figure 2, and a distance of
1609 km between transmitter and receiver with typical values of the other parameters. Model
No. 2 is a local ionosonde blackout model appropriate to high latitude condition in the auroral
zone. Model No. 3 is the same model as No. 1, but employs a greater distance beyond the
geometric-optical horizon. These models then define the propagation medium for the pulses
to be described.

3. Pulse Synthesis

The phenomena of time separation of pulses into ground, first ionospheric reflection, ete.,
has been shown experimentally by Johler [1962] employing the radio-navigation-system pulse
. o . t=] & .
Loran-C radio-navigation/timing system). Kach such pulse can be synthesized as a super-
t=] Ls C* o,
position of three damped sinusoids as separate source-current moments.

I (t)= o\p (—yi)—z‘i exp (~V1t)——1 exp (—wat), (41)

where v=c;+1iw,, r1=¢,+1(0,+2w,), v=c,+1i(w.—2w,) and f,=w./27 frequency, characteristic.
By choice of various values for ¢, and w,, a variety of radio-navigation type pulses can be
investigated. Methods of inserting such pulses (damped sinusoids) in the Fourier transform-
integrals and evaluating such integrals numerically and analytically have been deseribed by
Johler [1962] and Johler and Walters [1959].  Thus, both the damped sine wave and the damped
cosine wave source current fields can be found by evaluating the integral:

Et! d):Qi# fo " E(w,d)|

lr cos wt’ —a¢,-+tan~! '+w):| cos[—wt—}—cpc—l—tan 1 (o w)]
i \Cl+(wr+w)z \Cl+(wc ) —
sin [wt'~¢2+t:m’1 »_(u;”;w):l sin I:—wt’-[—¢2+tnn“1 @]_ \l?
a — L - — d 9
e VeTt (ot w)? h Vet (o—w)? J) de @2

where ¢/ =— ¢, —n/2=arg [E(w,d)] and E(o,d) =FE(»,d) or Ei(o,d) for the groundwave or for
the ionospheric wave respectively, where the field of the damped cosine source, Re £ (¢) is Re
E(t’,d) and the field of the damped sine source, —Im F(t) is —Im £(¢',d) or Re [iL2(t}d)].

The source-current moment exp (—w»t) is complex, since v=¢,;+iQ. This is analogous to
the use of complex time function exp (iwt) in continuous time-harmonic wave analysis. The
real part is implied,
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Re exp (—vt)=exp (—e¢if) cos ()

which is a damped sinusoid. The corresponding field, Re £(#',d), is therefore implied in integral
(42) as the oscillogram of the propagated pulse. The imaginary part of the integral, hence,
corresponds to a source-dipole current moment, exp (—et) sin (Qf). Thus, in effect, two pulses
are propagated simultaneously by the complex form of the source. This defines a source
envelope, |F,(f)|, which for the case of sinusoids has a clear physical interpretation, (both for
the field, |£ (#’,d)|, and the source, |F;(t)|) as the detected pulse envelope, corresponding to the
results of an ideal detection process in a pulse receiver. Thus, the propagation of a third-type
pulse wave or envelope wave is described by the integral (42). The form or shape of the en-
velope wave is a precise description of the dispersion of the pulse, and methods of tagging a
point-in-time on the pulse to be described below employ the quantity, [E£(#',d)|. 1t is of interest
to note that the quantity, |[E({’,d)|, and Re £(t’,d) would be distinet even if the source, F,(t),
were real. In other words, an envelope would be synthesized for the pulse by the integral
(42) automatically.

4. Tagging a Point-in-Time on the Pulse

The measurement of the propagation time of a pulse or signal requires a method for tagging
a point-in-time on the leading edge of the pulse. Sommerfeld [1914] and Brillouin [1914]
established the consistency of signal velocity with relativity by defining such a point as the
“time at which the signal takes on appreciable amplitude.” Such a point-in-time while suffi-
cient to prove the consistency of electromagnetic theory with the relativity principle, i.e., to
prove that the signal always arrived at such times that the velocity of propagation is less than
the speed of light, is inadequate for modern radio navigation and timing systems. Conse-
quently, numerous precise experimental methods for defining and, indeed, tagging a point-in-
time on a radio pulse have been devised by Johler [1963a], Doherty et al. [1961], and Frantz,
Dean, and Frank [1957]. Although one method for tagging a point-in-time on the leading
edge of a pulse can be more efficient experimentally than another, the method used mathe-
matically is inconsequential as long as the mathematics does not lose computation precision
in the tagging process. A point later than ¢'=0 is usually tagged since the signal amplitude is
usually nil at zero time locally. The point tagged is inconsequential once it is tagged. Fur-
thermore, the behavior of such a point-in-time on a pulse as distance, conductivity of the
ionosphere or ground change can be studied. Such an analysis can lead to a criterion of pulse
dispersion.

The amplitude envelope minus the time derivative of the amplitude envelope method
[Johler 1963a] was employed in this analysis:

F@t',d)=C|E(t,d)|—C, (/% \E(t’,d)|=0. (43)

Thus, for given values of the constant, ./, the root of the differential equation (43) was
found, t'=1T,, or the zero crossings of the function, /(¢",d). The dispersion of the pulse can
be studied in detail by examining several such points, (%/(;; as a function of the distance and
conductivity parameters.

5. Propagation Analysis of the Pulse

The earliest pulse is illustrated, figure 5, at 1609 km (1000 statute miles); 1416 km (880
statute miles); and 2125 km (1329 statute miles). These distances, especially the latter, were
selected for checking the theory of propagation experimentally. Although the transmitters and
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receivers for propagation over the distance, 2125 km, were located on land the intervening
surface was primarily sea water; hence, a conductivity, =5, and a dielectric constant, e,=80,
were employed for the groundwave, and a conduectivity, ¢=0.005, and dielectric constant, e;—=15,
were selected for the factor, F).

The groundwave pulses, Re E(t’,d) reach a crest in approximately 5 cycles or 52 usec,
at which point the field amplitude envelope, |E(t’, d)|,is ~1.9(107) v/m, d=2125 km, for the

assumed dipole current moment, /;/=1. This corresponds to a radiated power, 7, [Johler,
1961]

P,=1.6(10")w*(Llol)/2, W
which at f,=100 kc/s, z,~120m,
P,=1.7(10"*) w peak radiated power.

Obviously the field will increase linearly with dipole moments greater than unity or increase
as to the square root of the power radiated, ;. The groundwave pulse used with the blackout
model ionospheric wave was, of course, not affected by the condition of the ionosphere by
definition of the groundwave pulse. The differences between the pulses are due only to the
effect of distance and, hence, a greater or less effect of conductivity and earth curvature on the
pulse. The vertical lapse factor, «, and the dielectric constant would only exhibit secondary
effects; hence known approximate values for these parameters were assumed.

The next pulse to arrive at the receiver, figure 6, after considerable ionospheric wave delay
(20 to 40 usec) is the ionospheric wave pulse. The local time scale is now transformed to ¢'=t,’,
i.e., the earliest time the ionospheric pulse can arrive at the receiver over the ray, j=1, figure 1,
is #,/=0. The pulse corresponding to the 2125 km distance reaches the crest of the envelope
in approximately 5 cycles or 58 usec as compared with 52 usec for the corresponding ground-
wave pulse, ficures 5 and 6.

The composite pulse can be formed since the pulse observed at a distant receiver is never
a pure groundwave pulse or a pure ionospheric-wave pulse. There are areas of overlap [Johler,
1962]. Writing the groundwave plus the ionospheric-wave pulse,

Re E(t', d)=Re [E(¥', d)+E, (", d)],

or using the same time scale, ¢/, the pulse appears as illustrated in figure 7. The amplitude
envelope |E(t’,d)| is also shown. The ionospheric-wave delay is shown. Note the short iono-
spheric-wave ‘delay (23.73 usec) for the blackout model. This is a consequence of the lowering
of the ionosphere, ficure 2.

The amplitude envelope minus the time derivative of the amplitude envelope function,
F(t',d), (34) is illustrated for the three pulses for the groundwave pulse, figure 8, for the iono-
spheric-wave pulse, figure 9, and for the composite pulse, figure 10. The zero crossings were
determined numerically for these pulses and the various points, C,/Cy, tagged with precision
are tabulated, tables 1, 2, 3, for the three models. The physical reality of the groundwave is
obvious from a comparison of the pure groundwave tagged points-in-time 10.06 to 39.07 usec,
table 1 for example, with the first tagged point on the composite pulse. Since these columns
are identical there is no ionospheric wave contamination. However, when the pure ionospheric-
wave pulse column is compared with the second tagged point-in-time on the composite wave,
the contamination of the ionospheric-wave pulse by the ground-wave pulse can be noticed.
The amount of signal delay for each tagged point-in-time on the ground and ionospheric-wave
pulses is shown as a variable in the difference column as result of a change in the pulse dispersion.

Table 2 corresponds to a high-geographic-latitude model which is characterized by the
local ionosonde blackout during which ionization extends to lower levels. The first tagged
point-in-time becomes contaminated quite early on the leading edge of the composite pulse
with the ionospheric-wave pulse. Thus, the point, 24.57 usec includes some of the ionospheric
wave pulse. It is necessary to back up to 16.19 usec to obtain a pure ground wave. It should
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Ficure 9. The amplitude envelope minus the time
derivative of the amplitude envelope, illustrating a
theoretical procedure for tagging a point-in-time on
the leading edge of an ionospheric-wave pulse;
Models 1, 2, 3.
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Ficure 10.  The amplitude envelope minus the time
derivative of the amplitude envelope, illustrating a
theoretical procedure for tagging points-in-time on
the composite ground and ionospheric-wave pulses
and precisely defining an ionospheric-wave signal
delay time, t,, Models 1, 2, 3.



TaBLE 1. Model 1: low-latitude, daytime-noon ionosphere

d=1609 km (1000 statute miles)

g=5mhos/m  f.=100 ke/s  ¢1=3 (10)¢ $a=270°
=80 1=60° fo=2.5Kke/s h=65km
Composite ground-ionospheric wave
Ionospheric | Tonospheric tagged point-in-time
Ca/Cy Groundwave wave wave 41.162
First Second Difference
t,usec usec
10.06 52.13 10.97 10.06 ||
16. 35 59.02 17.86 16.35 60. 67 44.32
25. 11 67. 88 26.72 25.11 69. 48 44.37
30.69 73.41 32.25 30. 69 74.87 44,18
34.34 77.15 35.99 34.34 78. 54 44, 20
37.04 79. 84 38.68 37.04 8L.16 | 44.12
39.07 81.86 40.70 39.07 83.15 ‘ 44.08

2 JTonospheric wave delay relative to the groundwave—41.16 usec; continuous wave:

Amplitude Phase
Ground_______________ 6.6213(10-9) v/m  —2.1255 radians
Tonospheric_._._______ 6.1096(10-8) v/m 1.7517 radians

ABLE 2. Model 2: high-latitude disturbed tonosphere
d=1416 km (880 statute miles)

o=>5 mhos/m =100 ke/s  e1=3(10%) $a=270°
=80 I=60° fr=25ke/s h=45km
Composite ground-ionospheric wave
Ionospheric | Ionospheric tagged point-in-time
Cy/Ch Groundwave wave wave-23.73 2 \
First Second | Difference
|
i, usec usec
16. 19 46.00 22.27 16.19 || __
24. 98 54. 84 31.11 24.57 58.97 34.40
30. 52 60. 36 36. 63 29.28 64.45 35.17
34.21 64.09 40. 36 30. 61 68.09 37.48
36. 89 66. 77 43.04 31.04 70.71 39. 67
38.92 68.79 45.06 31.40 72.67 | 41.27

aJonospheric wave delay relative to the groundwave—23.73 usec.; continuous wave:

Amplitude Phase
Ground._._________________ 1.1060(10-8) v/m —1.8410 radians
Tonosphere________________ 3.7966(10-8) v/m —2.8235 radians

be noted that the composite wave after the arrival of the ionospheric wave contains some ground
wave. This contamination with ground wave has been observed experimentally by Doherty
[1963] in the Aleutian Islands and in the North Atlantic at distances between 600 and 900
statute miles employing the Loran-C radio navigation/timing system. Since the ionospheric-
wave delay is, in general, less in the arctic regions or northern latitudes, a reflection process
at a lower altitude is indicated. The consequence of a low-level ionosphere reflection as far
as the automatic equipment is concerned is illustrated by figure 10. Note the tagged point
for the Blackout Model (107%), for example. The null-seeking devices which search for the
zero crossing of the amplitude envelope minus the time derivative of the amplitude envelope
function would never find such a point on the ionospheric pulse unless the operator reset
C5/Cy to 2(107%).  Indeed, the equipment would, if an automatic search were permitted, lock
onto the ground-wave near =16 psec during such a blackout.

Table 3 illustrates the low-geographic latitude quiescent ionosphere at great distance of
2125 km which is beyond the geometric-optical horizon, figure 1. Here the amount of ground-
wave contamination of the second point tagged on the composite pulse becomes smaller as a
result of the high attenuation of the groundwave pulse, if a point is selected quite high on
the pulse, C,/C,=6(107%) or t'=80.82 usec.
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Ficure 11.  The zero crossings of the cycles on the tonospheric-wave, ground-wave, and composite pulse, illustrating

cycle distortion or apparent cycle time shift on the composite pulse, Models 1, 2, 3.
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TaBLE 3. Model 3; low-latitude, daytime-noon ionosphere
d=2125 km (1321 statute miles)
fe=100 ke/s ¢1=3(10%) fp=2.5kefs  I=67°

Ground wave o=>5mhos/m, e1=80 Pa=66°
Ionospheric wave o=0.005 mhos/m, =15 h=65km
Composite ground-ionospheric wave
Ionospheric | Ionospheric tagged point-in-time
C3/Ch Groundwave wave wave—41.132
First Second Difference
t, usec usec

10. 58 56. 00 14. 87 R e e
16.73 62. 22 21.09 (G731 | S| "
25. 55 71.17 30. 04 25. 55 64. 60 39.05
31.12 76. 67 35. 54 31.12 71.39 40. 27
34.79 80. 46 39. 33 34.79 75. 64 40. 85
37.41 83. 11 41. 98 37.40 78. 62 41.22
39.45 85.12 43. 99 39.70 | 80. 82 41. 12

& Jonospheric wave delay relative to the groundwave—41.13; usec continuous wave:

Amplitude Phase
Ground.______________ 1.7311(10-9) v/m —2.8871 radians
Tonospheric._.________ 7.5309(10-9) v/m —1.1389 radians

The corresponding time-harmonic wave solution for the ground and ionospheric wave is
shown at the bottom of each table (1, 2, and 3). The phase lag of the groundwave on table
1 in microseconds is [|-2.1255/6.28318]10=3.382 usec for the groundwave to which 10 usec
or 2r radians can be added, getting 13.382; 23.382 . . . usec. This phase is ambiguous by
+ 27 without the pulse detection procedure outlined in this paper, i.e., without a precise method
for tagging a pulse in the time domain. The phase of the continuous time-harmonic wave
becomes even more obscure when applied to the composite ground and ionospheric wave.
Finally the zero crossings of the individual cycles under the envelope of the pulse are illustrated,
figure 11. The curves are approximately straight lines with a 45° slope. Indeed, this would
be the case without cycle distortion. However, the composite wave exhibits some cycle
distortion in the vicinity of overlap of the two pulses. Also, at early times on the pulse, the
first cycle is distorted appreciably as shown in the 2125 km example, for both the ground and
the ionospheric wave pulses.

6. Conclusions

The methods which employ the direct analytic or numerical procedures for the evaluation
of the Fourier transform-integral for the groundwave pulse can be applied to ionospheric
wave pulses. The form or shape of the composite pulse compares very well with those ob-
served in practice. The phenomenon of time separation of pulses observed experimentally
has been demonstrated mathematically. The complete detailed analysis of pulse dispersion,
signal velocity, and ionospheric wave pulse or groundwave pulse timing requires precise methods
for tagging a point-in-time on the pulse—both mathematical and experimental. One such
mathematical method has been successfully applied in this analysis.
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