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The backscattering of a uniform plane wave by a conductor in a semi-infinite dissipative
medium is discussed. The conductor is assumed to act as both an electric and a magnetic
dipole with moments which are obtained from the electric and magnetic polarizabilities of the
conductor, respectively. Using these induced moments, expressions are derived for the
backscattered electric field at a point on the surface of the dissipative half-space directly
above the dipoles. Both harmonic and transient excitation are considered.

1. Introduction

The scattering of electromagnetic waves by conductors in an infinite homogeneous dis-
sipative medium has been treated by various investigators in recent years. The classical
problem of the scattering of a plane wave by a spherical object is reviewed by Stratton [1941].
Wait [1951, 1960] has considered the response of a conducting sphere to a uniform time varying
magnetic field and to the fields of electric and magnetic dipoles. The scattering by an infinite
inhomogenous conducting cylinder under the influence of a time varying magnetic field has
been investigated by Negi [1962].

[n many practical situations, it is of interest to consider the scattering of electromagnetic
waves by conductors in a semi-infinite homogeneous dissipative medium. Recently, Galejs
[1962], using a dipole approximation, treated the problem of the scattering from a conducting
sphere in such a medium when the sphere is excited by a surface wave or by fields from vertical
electric or horizontal magnetic dipoles in the lossless half-space. The analysis, however, is
restricted to field points with horizontal ranges from the sphere which are much greater than
a wavelength in the dissipative medium.

The present paper considers the scattering of a uniform plane wave by a conductor of
finite dimensions embedded in a semi-infinite dissipative medium. The frequency of excitation
and the conductivity of the medium are such that the displacement current can be neglected.
A dipole approximation, in which the electric and magnetic dipole moments of the conductor
are obtained from the electric and magnetic polarizabilities respectively, is used to evaluate
the backscattered electric field in the interface directly above the conductor. The electric
field step response is obtained from the response to harmonic excitation by transforming the
Fourier integral into a convolution integral. Graphs of the electric field step responses are
presented for the backscattering from both electric and magnetic dipoles.

2. Dipole Approximation

A uniform plane wave is assumed to propagate vertically in a semi-infinite dissipative
medium having a horizontal planar interface. The displacement current in the dissipative
medium is considered to be negligible compared with the conduction current. The upper
half-space is assumed to have the properties of free space. A perfectly conducting body (or
one with negligible field penetration), which is embedded in the dissipative half-space, will
have a surface current induced on it by the incident plane wave. The resulting scattered
electromagnetic field may be approximated by that from a horizontal electric dipole and a
horizontal magnetic dipole if the vertical dimension of the conductor is much smaller than a
wavelength in the dissipative medium and if the dimensions of the conductor are small compared
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with the distance to a field point. In this approximation, the electric field of the plane wave
induces a horizontal electric dipole moment in the conductor while the magnetic field induces
a horizontal magnetic dipole moment. Both of these moments act as a source of electro-
magnetic field which can be determined from the propagation equations for horizontal electric
and magnetic dipoles in a semi-infinite conducting medium.

2.1. Induced Electric Dipole Moment

Referring to the rectangular coordinates shown in figure 1, the surface of a semi-infinite
dissipative medium is located at z=0. A uniform plane wave, with harmonic variation e’
propagates in the medium in the positive z direction. The electric and magnetic fields are
given by F,(z, ) and H,(z, w) respectively. If the incident electric field is substantially uniform
over the height (z-dimension) of a perfect conductor at a depth z=d, the conductor will acquire
an induced electric dipole moment, P,(d, »), which may be expressed as

4 =
P, o) =[ ¢ (1452 ) |l o, 1)
where
e=permittivity of the dissipative medium,
o=conductivity of the dissipative medium,
a,=electric polarizability of the perfectly conducting body,
FE,(d, w)=incident electric field at a depth d.

The quantity enclosed in brackets represents the complex permittivity of the dissipative
medium. If the displacement current in the dissipative medium is neglected (¢>">we), then
(1) reduces to

Py(d, ©)=-> 0, E,(d, ). (2)
Jw

The current moment P,(d, ») may be obtained by multiplying the right side of (2) by
jow. Thus,
Pr(d, w)=joP(d, w)=oa.:(d, w) (3)

and the induced electric current moment is seen to be in phase with the incident electric field.
Multiple reflections between the conducting body and the surface of the half-space will be
considered later in this section.
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2.2. Induced Magnetic Dipole Moment

The permeability of the dissipative medium and the conducting body is assumed to be
that of free space. If the incident magnetic field is substantially uniform over the height of
the conductor at a depth d, then the conductor will acquire an induced magnetic dipole moment,
M ,(d, »), which is opposite in direction to the inducing magnetic field. The dipole moment is

expressed as

M,(d, w)=a,H,(d, »), (4)
where

a=magnetic polarizability,
H,(d, w)=incident magnetic field at depth d.

Since M ,(d, w) is opposite in direction to H,(d, ), the polarizability a,, will be negative. The
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magnetic current moment, M, (d, w), is defined as

M (d, w) =jouM,(d, w) =jwpa,H,(d, w), (5)
where
wo=permeability of free space.

The polarizabilities, «, and «,, are functions of the volume and shape of the conductor
and the relative orientation of the conductor with the inducing field. The expressions for the
current moments given by (3) and (5) agree with those given by Galejs [1962] for a conducting
sphereof volume » if the well-known values a,=3v and «,,— —3/2vare used for the polarizabilities.

2.3. Perturbing Effect of Reflections

The incident plane wave at the conductor will be perturbed by reflections of the back-
scattered electric and magnetic fields from the surface of the dissipative half-space. The
perturbing effect of a single reflection on the electric and magnetic current moments of spheres
and certain cylinders will be approximated and shown to be small.

After a single reflection from the surface of the dissipative medium, the reflected electric
and magnetic fields, £,,(d, ») and H,,(d, w), respectively, induce electric and magnetic current
moments in the conductor. The moments are given by

P (d, w)=0cal,(d, w) (6)
and
M, (d, w) =jopoandd,, (d, o). (7)

The reflected electric and magnetic fields in (6) and (7) may be expressed in terms of the current
moments £ ;(d, ») and M}, (d, ») which are induced in the conductor by the incident plane
wave. Because of the large impedance mismatch at the surface of the dissipative medium, it
is assumed that the backscattered electric field is totally reflected in phase and that the back-
scattered magnetic field is totally reflected in opposite phase. In returning to the conductor
at a depth d, the reflected wave will have experienced a spherical spreading over the distance 24.
Using these approximations, the reflected fields may be obtained from the well-known propaga-
tion equations for the electromagnetic fields from electric and magnetic dipoles in an infinite
dissipative medium. The electric dipole contributes to both the reflected electric and magnetic
fields. Similarly, the magnetic dipole also contributes to both fields. The reflected fields are
therefore written

Pri(d, w)

B (d, w)=— 32mwod® (1+2yd+4y*d?) e ="
__‘l[l,“(([’ “’) —2vd )
Lomd® (1+2vd)e (8)
and
PLid, )
Hy(d, )=—"288) (14 gy e
M,:(d, o
+352489) (1 2y adye, (©)
where ’

v=(jouo)?.

For |yd| > 1, the exponential attenuation factors in (8) and (9) will ensure the smallness of
the perturbing electric and magnetic fields. For |yd|< <1, the perturbing moments in (6)
and (7) may be expressed as
P, (d,w) 1
Po(d,w)  32xd

(ae —f' 2'Ydam> (10)
and
M, (d, 1
MZ((; ::)) ~ 3g s (@m—2det), ChE

where use is made of the expressions in (8) and (9) and of the definitions in (3) and (5).
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The ratios in (10) and (11) may readily be shown to be small for spherical conductors
and for cylinders which are neither extremely needle nor extremely disk shaped. For a sphere

of volume » and radius a, a,=3v=4ma* and a,,=— —3%a,. Theratiosin (10) and (11) then become
P, (d,
P, ((1 ::)) 5<d> (1=xd) (12)
and .
M, , 1 ‘
AT%(((I—Lt’)):—E<3> (1+4d). (13)
e UANA)

Since it has been assumed that a<<d and that |yd|<<1, it follows that the perturbations
in the electric and magnetic moments are small for a single reflection.

The electric and magnetic polarizabilities of a right circular cylinder are given in table 1.
The subseript / denotes longitudinal excitation, i.e., with the particular field vector of interest
along the axis of the cylinder. The subscript ¢ denotes an excitation which is transverse to
the axis of the eylinder. The values in table 1 are obtained from Taylor [1960a, 1960b]. The
entries for a/b=0.1 represent values which have been extrapolated from the results in the above
references. In the dipole approximation, the dimensions of the cylinder must be much smaller
than the depth at which the cylinder is embedded, so that »<<{d?. It is therefore evident
from (10), (11), and table 1, that the moments due to the singly reflected electromagnetic field
are small compared with the moments due to the incident plane wave for cylinders which are
neither extremely needle nor extremely disk shaped.

Higher order perturbations, resulting from multiple reflections, will be even smaller than
the perturbation due to a single reflection.

TaBre 1.  Electric and magnetic polarizabilities of a right circular cylinder of diameter a, length b, and volume

™
v=-ab

4
a ‘ el ! o\t am,l m,t
’7 ‘ 727 ‘ v v 1
0 ‘ @ ‘ 2.00 —1.00 —2.00
1 ’ 60. 00 2.13 —1.06 —1.94
10 |
1 15.1 983> =il,11 =il
4
1 7.10 2.61 —1.31 —1.74
2
1 3.86 | 317 | —L59 —1.58
2 2.43 agm || =34 — il ¢l
4 | L% 6. 18 | —3.09 —1.27
@ 1.00 — —1.00

3. Backscattered Electric Field at the Surface

In this section, expressions will be derived for the backscattered electric field at the surface
of the dissipative half-space for a field point directly above the conductor. The electric field
contributions from the induced electric and magnetic dipoles will be treated separately and
both harmonic and transient excitation will be considered.

3.1. Electric Field From an Induced Electric Dipole

a. Harmonic Excitation
Von Aulock [1952] has derived expressions for the electric field in a semi-infinite dissi-
pative medium in a region directly above an embedded horizontal electric dipole. As is shown
in figure 1, the dipole is situated at the point (0, 0, d) and is directed along the X-axis. The
dipole is excited at an angular frequency w. At the coordinate origin in the surface, the electric

field ££°(0, w), is directed along the X-axis and is written
Pi(d, w)

drod®

where yv= (jow,o)! and K,(yd) is the modified Bessel function of the second kind. Using (3)

436

(0, w)= [V’ Ko (vd) —2e 7" (2+2yd++%d) ], (14)



and the plane wave relationship
E,(, @:}Hy(o, w)e (15)

which relates the electric field incident at the conductor to the magnetic field at the surface of
the half-space, (14) may be written

Ex(0, )= H,(0, o)e™"[yd?Ky(yd)—2¢ "2+ 2yd+vd)). (16)

4rd® o

b. Transient Excitation

The backscattered electric field in the time domain, Z#(0, ¢), may be expressed as a Fourier
integral’ and written

By (0, t)=% f_m E(0, w)e’*'do. (17)

The Fourier integral may then be transformed into a convolution integral involving the back-
scattered electric field response at the surface of the half-space, directly above the dipole, when
a unit step of magnetic field is applied at the surface in the y direction. The steps of the
transformation are given in appendix 1. Equation (17) then reads

B0, 1) = fl AL(0, t—N)H (0, N)dA, (18)
0

where

A%(0, t) =backscattered electric field step response at the surface from an induced
electric dipole.

(0, t) =time derivative of the transient magnetic field applied at the surface.
The step response may explicitly be written

. ) 2 ) > 1 iy P
A0 == 19+ (Bgt) | s
where 6:ﬁ and
0 “
VBIES f V[ Na(v)cos v-+J,(v)sin v]e = dy. (20)
JO

The above expression for /(8) is convenient for large values of 8.  With further manipulation,
it can be shown that 7(8) may also be written

»2

1 (4 3 3 B

1(6):~7r—1,§_£ [[?E‘I'B 1‘/2V+Bl/2u3i| (*—»)"2e " dy. L
This form is convenient for small values of 8. The leading terms of an asymptotic expansion
for small 8 obtainable from (21) are

1

—¢ B
I(B):§i~/56—2 (1+1.687508-+0.955083%40.162968° —2.2488554-. . .). (22)
-1
From the exponential factor ¢ # in (19) and (22), it is evident that the backscattered electric
field, £5°(0, t), is quite small for t< < d’u,o. For large g, it can be shown that A%(0, ¢) falls
4rod!

off as t7/2. A graph of the dimensionless quantity —A%(0, ¢)- is shown in figure 2. The

e

integrals were evaluated on the IBM 7090 using Gaussian integration.

1 Although the Fourier integral implies high frequencies for which the displacement current in the dissipative medium becomes significant
compared with the conduction current, the fields at these frequencies are severely attenuated and centribute negligibly except at points very
near the surface.
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3.2. Electric Field From an Induced Magnetic Dipole
a. Harmonic Excitation

Von Aulock [1952] has also derived expressions for the electric field directly above a hori-
zontal magnetic dipole in a semi-infinite dissipative medium. As is shown in figure 1, the mag-
netic dipole is situated at the point (0,0,d) and is directed along the Y-axis. The dipole is ex-
cited at an angular frequency . At the coordinate origin in the surface, the electric field,
ES (0, ), is directed along the X-axis and is written

M,(d, ) _ 3., 3 ‘
B, o) =000 ik o)+ 3Kutud) 204 (vt 242425 ) | (23)

where v= (jwuoo)'/? and K, (vd), K;(yd) are the modified Bessel functions of the second kind of the
first and second order, respectively. Using (5) and the plane wave relationship

H,(d, w)=H,(0, w)e= "%, (24)
equation (23) may be written

En(0, w)— 7;"“?;'" H0, w)e— [ydKl (vd) + 3K, (vd) — 26~ <7(1+ 2+7%+ 72%)] 25)

b. Transient Excitation

The backscattered electric field in the time domain, £57(0, #), may be expressed as a
Fourier integral similar to that in (17). The Fourier integral may then be transformed into a
convolution integral of the form given in (18), where A7(0, ) is now the backscattered electric
field step response at the surface from an induced magnetic dipole. The steps of the trans-
formation are given in appendix 2. The step response may be written explicitly as

A0, 1)— 4“'”[-[31]( )—I.z(a)—ﬁ@%iﬁé) -8 12 ot (6”2)] (26)

where
B= dz’ erf (r)= ,I: e~ Vdy,
1, (B)= f [N 3(v) sin v—dJ5(v) cos v]e F2dy, (27)
and '
1(8)— f AN L) sin v—dJ, () cos v]e=2dy. (28)
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The above expressions for /,(8) and I,(8) are convenient for large values of 8.  With further
manipulation, it can be shown that

1 (=[/ 8 14 — bt oG 14?7\ 20241
]1(6):_2+m ﬁ' [(E,ﬁ‘}“@ﬁﬂT)Z)F 8 +—(1+ t]f( 61/2 ):I (li )1/,111/ (29)
and
a+2?%?
L,(B)= 1/260/2 f (1422)322¢” /3—) o a0

=
where erfc (x)zf ¢ v*dy. These forms are convenient for small values of g. The leading
J I

terms of the asymptotic expansions obtainable from (29) and (30) are

,—1/8
I,(B):—2+;IT6 (1+1.937508-+0.4394582—0.0286873+1.976778'+ . . .) (31)
and
e—1/8
1,(B)= 21/132 (140.187508—0.0761728*-+0.100713*—0.230113*+ . . .). (32)

It can be shown that A7(0, #) behaves as ¢ '/# for small 8 and is thus very small for (< <"d*u,0.
For large 8, the step response can be shown to fall off as 732 A graph of the dimensionless

4
quantity —A7(0,t) B LLith is shown in figure 3. The integrals were evaluated on the IBM

Xy

7090 computer using Gaussian integration.
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4. Relative Importance of the Electric Field Contributions From Electric and
Magnetic Dipoles

The relative importance of the contributions by the induced electric and magnetic di-
poles to the backscattered electric field at the surface will depend on the relative magnitudes
of the electric and magnetic polarizabilities of the conductor. An estimate of the relative
importance may be obtained by determining the ratio of the incident electric field at the
surface from the magnetic dipole to that from the electric dipole. The incident electric field
from the magnetic dipole, £7(0, w), is

B30, 0)="05L9) (1 4 1) (33)
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and that from the electric dipole, £2(0, ), is

B0, 0) =28 (1 g piye (34)

Using the definitions in (6) and (7), the ratio of the electric field contributions is written

E70, )| _|aw vd+v'd | (35)
E: 0, w)| |, 14+vyd+~y2d? ’
When |yd|< <1, the ratio is small, provided
m 1
o< < &)
From (35), it is evident that .
7(0, w)|_|am|
E2(0, @) |, (87)

The contribution of the magnetic dipole to the electric field will, therefore, also be small when

<< 1. This is the case for a cylinder with a small diameter to length ratio when ex-

Ay
(e 2]

cited longitudinally by an electric field. On the other hand, when

is sufficiently large,

@,
the contribution of the magnetic dipole will be larger than that of the electric dipole. This
is the case, for example, for a cylinder with a large diameter to length ratio when excited
longitudinally by a magnetic field.

5. Appendix 1
By substituting

H,(0, &) — f H,(0, A)e"'w*(lxzjiw f H,(0, N) =) (A1)
JO 0

in (16), the inverse Fourier transform in (17) may, upon changing the order of integration,
be written

B0, 0~ [ 4300, =00, M, (A2)
J O
where .
o =
A2(0, t):;:% . 5—7—[72d2K2(7d)—26”"’(2—1—27(1-%—72612)]ej”‘dw, (A3)

v=(Jwuye)?, and K,(yd) is the modified Bessel function of the second kind. For conver-

gence, arg +jo= j:;r Thus,

o Ze v .

A4(0, t)zzhr?d'* Re o (V2K (vd) —2¢ =" (2+2vd+v2d?) ' 'd w. (A4)
0

When ¢>0, w in (A4) is replaced by the complex variable z=w-ju, and the integration is
performed around the contour shown in figure 4. When e—0 and R—,

v21

A5(0, H=—2_ Re f PR (r)— 26~ (22— e 0Py, (A5)
0

2mlod*

2

V .
where u=—-2- Since
wood

Ko(j9) =5 [N:() +3720)], (A6)

where N,(») and J,(») are the Neumann and Bessel functions of the second order respectively,
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Ficure 4. Contour in the z-plane.
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(A5) may be written

vt

Qe

A0 == 5 f Vo) sin v+ Na() cos vle 40y

v21

~% .ﬁ) [(2—»?) cos 2v-+2p sin 2V|e_“0”d2(/u (A7)
when ¢ 0. Performing some of jthe integration, (A7) is written
A0, ) =—-2¢_ I:I(B)+L <2+}_+l> o=1/8 |, (A8)
R 4rod* (wB)'? 28" B
t
where '8_;107(1? and
1(B)= f v J5(v) sin v N, (v) cos v]e #dy. (A9)
JO
Finally, since A5(0, £)=0 for <20,
_ t
(0, £)— f A2(0, t—N (0, N)dA. (A10)
JO
6. Appendix 2
By substituting ,
1,00, ) — f H,(0, NN (A1)
JO

in (25), the inverse Fourier transform may, upon changing the order of integration, be written

B0, 1) — f B2, t—N) H(0, N, (A12)
J 0

where

m ° € —-— « — 3 ) i «
B0, t)=—= fo'yzc 7“[7(11{[(7(/)—]—3[@(7(?)—26 7d<’y((—}—2+7—d—{—’7372>] e?etdw, (A13)

Smied?

v=(jouo)”?, and K, (vd) and K,(yd) are the modified Bessel functions of the second kind of the
first and second order, respectively. Noting that arg+jeo= 4+7/2, (A13) may be written

B0, )= 5=z Re f( | 72(7"7"I:'y(IKl(ytl)+3K2(7a’)—26‘”(7(1%—2—{—%—{—7212)]e“‘dw.
(A14)
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When {<0, the impulse response, B} (0, t), is equal to zero since it is assumed that /,(0, £) =0
for t<0. Integrating (A12) by parts, it follows that

_ t
(0, £)— f A0, t—N)H',(0, N)d, (A15)
0
where

A2(0, )=2%% Re f me-m[74K1<~,(1>+3K2(7<1)—ze—w<~,(1+2+7%+ : {2)] eotde.  (A16)

When ¢ >0, win (A16) is replaced by the complex variable z=w-ju, and the integration is per-
formed around the contour shown in figure 4. When e—0 and R—o |

A;’,‘(O,t)—TFRejf o ]”l:jVKl(]V)+3K2(Ju) 2~ “<]V~}—2+f-—->]e dv A17)
2 .
where u=——=- Since
wood
Ki(j)=—5 [J10)—N:(»)] (A18)
and

Kz(JV)—- [Ne(v)+3J2(v)], (A19)

where J;(v) and N,(v) are the Bessel and Neumann functions of the second order respectively,
(A17) may be written

Ay

o fm{&»[Nz(v) sin v—J,(v) cos v]—v [ N;(v) sin v—J,(v) cos »]

V2t
—-;ir [(21;——?) sin 2v— (»*—3) cos 2v:|} e ""dy.  (A20)

Performing some of the integration, (A20) is written

AZ0, )=

4200, 0 =2 | 36O~ BB — g (3ot ) otmeent (i) | a2

where
._L n: — ! —Lz
5*#00(]2, erf (r)= , e~ dt,
1,(B)= ]‘wu[ZVg(v) sin v—J,(v) cos v]e = dy, (A22)
JO
and
IZ(B)zf V[N, (») sin v—J,(v) cos v]e=#*dy. (A23)
0

The author is grateful to Dr. A. H. Van Tuyl of the U.S. Naval Ordnance Laboratory for
transforming the Fourier integrals into convolution integrals and for the analysis in prepara-
tion for the programing of the step responses for the IBM 7090 computer.
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