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The backscattering of a uniform plane wave by a conductor in a semi-infini te dissipative 
medium is discussed. The conductor is assumed to act as both an e lectric and a magnetic 
dipole with moments which are obtained from the electric and magnetic polarizabilit ies of the 
conductor, respectively. Using these induced moments , expressions are derived for the 
backscattered electric fi eld at a point on t he surface of the dissipative half-space directly 
above the dipoles . Both harmonic and transient excitation are considered. 

1. Introduction 

The scattering of electromagnetic waves by conductors in an infinite homogeneous dis­
sipative medium has been treated by various investigators in recent years. The classical 
problem of the scattering of a plane wave by a spherical object is reviewed by Stratton [1941]. 
Wait [1951 , 1960] hfts considered the response of a conducting sphere to a uniform time varying 
magnetic field and to the fields of electric and magnetic dipoles. The scattering by an infinite 
inhomogenous conducting cylinder under the influence of a time varying magnetic field has 
been investigated by Negi [1962]. 

In many practical situations, it is of interest to consider the scattering of electromagnetic 
waves by conductors in a semi-infinite homogeneous dissipative medium. Recently, Galejs 
[1962], using a dipole approximation, treated the problem of the scattering from a conducting 
sphere in such a medium when the sphere is excited by a smfftce wave or by fields from vertical 
electric or horizontal magnetic dipoles in the 103s1ess half-space. The analysis, however, is 
restricted to field points with horizontal ranges from the sphere whi ch are much greater than 
a wavelength in the dissipative medium. 

The present paper considers the scattering of a uniform plane wave by a conducLor of 
finite dimensions embedded in a semi-infinite dissipative medium. The frequency of excitation 
and the conductivity of the medium are such that the displacement current can be neglected. 
A dipole approximation , in which the electric and magnetic dipole moments of the conductor 
are obtained from the electric ftnd magnetic polarizabilities r espectively, is used to evaluate 
the bftckscattered electric field in the interface directly above the conductor. The electric 
field step response is obtained from the response to harmonic excitation by transforming the 
Fourier integral into a convolution integral. Graphs of the electric field step responses are 
presented for the backscattering from both electric and magnetic dipoles. 

2 . Dipole Approximation 

A uniform plane wave ]s assumed to propagate vertically in a semi-infinite dissipative 
medium having a horizontal planar interface. The displacement current in the dissipative 
medium is considered to be negligible compared with the conduction current. The upper 
half-space is assumed to have the properties of free space. A perfectly conducting body (or 
one with negligible field penetration), which is embedded in the dissipative half-space, will 
have a surface current induced on it by the incident plane wave. The resulting scattered 
electromagnetic field may be approximated by that from a horizontal electric dipole and a 
horizontal magnetic dipole if the vertical dimension of the conductor is much smaller than a 
wavelength in the dissipative medium and if the dimensions of the conductor are small compared 
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with the distance to a field point. In this approx~mation, the electric field of the plane wave 
induces a horizontal electric dipole moment in the conductor while the magnetic field induces 
a horizontal magnetic dipole moment. Both of these moments act fl,S a source of electro­
magnetic field which can be determined from the propagation equations for horizontal electric 
and magnetic dipoles in a semi-infinite conducting medium. 

2.1. Induced Electric Dipole Moment 

Referring to the rectangular coordinates shown in figure 1, the surface of a semi-infinite 
dissipative medium is located at z= O. A uniform plane wave, with harmonic variation ejwt , 

propagates in the medium in the positive z direction. The electric and magnetic fields are 
given by Ex(z, w) and H y(z, w) respectively. If the incident electric field is substantially uniform 
over the height (z-dimension) of a perfect conductor at a depth z= d, the conductor will acquire 
an induced electric dipole moment, Px(d, w), which may be expressed as 

where 
e= permittivity of the dissipative medium, 

O" = conductivity of the dissipative medium, 
a e= electric polarizability of the perfectly conducting body, 

E x(d, w) = incident electric field at a depth d. 

(1) 

The quantity enclosed in brackets represents the complex permittivity of the dissipative 
medium. If the displacement current in the dissipative medium is neglected (0"> > we), then 
(1) reduces to 

(2) 

The current moment P~ (d, w) may be obtained by multiplying the right side of (2) by 
JW. Thus, 

(3) 

and the induced electric current moment is seen to be in phase with the incident electric field . 
Multiple reflections between the conducting body and the surface of the half-space will be 
considered later in this section. 

CONDUCTOR 

FREE SPACE , 
EO ,jL 0 

DISSI PATIVE 
ME DIUM FIGU RE 1. A conductor embedded in a semi-infinite 

dissipative medium. 

2 .2 . Induced Magnetic Dipole Moment 

The permeability of t he dissipative medium and the conducting body is assumed to be 
that of free space. If the incident magnetic field is substantially uniform over the height of 
the conductor at a depth d, then the conductor will acquire an induced magnetic dipole moment, 
];[y(d, w) , which is opposite in direction to the inducing magnetic field. The dipole moment is 
expressed as 

where 
(4) 

a m= magnetic pol ariz ability, 
H y(d, w) = incident magnetic field at depth d. 

Since M y(d, w) is opposite in direction to H y(d, w), the polarizability am will be negative. The 
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magnetic current moment , M~(d, w), is defined as 

(5) 
where 

J..Lo= permeability of free space. 

The polarizabilities, a c and am, are functions of the volume and shape of the conductor 
and the relative orientation of the conductor with the inducing field. The expressions for t he 
~urrent moments given by (3) and (5) agree with those given by Galejs [1 962] for a conducting 
sphere of volume v if the well-lmown values cx e= 3v and cxm = -3/2vare used for t he polarizabilities. 

2.3. Perturbing Effect of Reflections 

The incident plane wave at the conductor will be perturbed by reflections of the back­
scattered electric and magnetic fields from the surface of tbe dissipative half-sp ace. The 
p erturbing effect of a single r eflection on the electric and magnetic cmTent moments of spher es 
and certain cylinders will be approximated and shown t o be small. 

After a single r eflection froTYl the smface of the dissipative medium, the r eflected electric 
and magnetic fi elds, EXT(d, w) and H yT (d, w), respectively, induce electric and magnetic current 
moments in t he conductor. The moments are given by 

and 
(6 ) 

(7) 

The refl ected electric and m agnetic fields ill (6) and (7) may be expressed in terms of thc current 
moments P~ i (cl, w) and l\,f~ i (d, w) which are induced in the conductor by the in cident plan e 
wave. B ecause of t he large impedance mismatch at the smface of the di sip ative medium, it 
is assumed t hat the backscattered electric fi eld is totally reflected in phase and that t he back­
scattered magnetic field is t otally r eflected in opposite phase. In returning to t he conductor 
at a depth el, t he reflected wave will have experienced a spherical spreadin g over the distance 2d. 
Using these approximations, the r eflected fi elds may be obtained from the well-known propaga­
tion equations for the electromagnetic fields from electric and magnetic dipoles in an illfinite 
dissipative medium. The electric dipole contributes to both the reflected electric and magnetic 
fields. Similarly, the magnetic dipole also contributes to both fields. The reflected fields are 
therefore written 

(8) 

:and 

(9) 

where 
'Y = (j WJ..Locr)! . 

For l'Yel l > > 1, the exponential attenuation factors in (8) and (9) will ensm e the smalln ess of 
t he perturbing electric and magnetic fields. For hdl< < 1, the perturbing moments in (6) 
and (7) may be expressed as 

and 

P~T(d, w) 
P~i(cl, w) 

(1 0) 

l\1I~T(cl,w) 1 ( 'Jcl) (11 ) 
M~i (cl, w) 327rcl3 am-~'Y a e , 

where use is made of the expressions in (8) and (9) and of t he definitions in (3) and (5) . 
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The ratios in (10) and (11) may readily be shown to b e small for spherical conductors 
and for cylinders which are neither extr emely needle nor extremely disk shaped. For a sphere 
of volume v and r adius a, ae= 3v= 47ra3 and a",= -tae. The ratios in (10) and (ll) then become 

P~T(rl , w) l(ay (12) 
P~,(rl, w) -8 d (I-I'd) 

and 
M~T(d, w) 

1 ey (13) 
M~t(d, w) -16 d (1 + 4'Yd). 

Since it has been assumed that a< < rl and that l'Yd l< < 1, it follows that the perturbations 
in the electric and magnetic moments are small for a single reflection. 

The electric and magnetic polarizabilities of a right circular cylinder are given in table 1. 
The subscript l denotes longitudinal excitation, i.e., with t he particular field vector of interest 
along the axis of the cylinder . The subscript t denotes an excitation which is transverse to 
the axis of the cylinder. The values in table 1 are obtained from Taylor [1960a, 1960b] . The 
entries for a/b=O.l represent values which have been extrapolated from the results in the above 
references. In the dipole approximation, the dimeIBions of the cylinder must be much smaller 
t han the depth at which the cylinder is embedded, so th at v< <cf3. It is therefore evident 
from (10), (11), and table 1, that the moments due to the sin gly reflected electromagnetic field 
are small compared with the moments due to the incident plane wave for cylinders which are 
neither extremely needle nor extremely disk shaped. 

Higher order perturbations, resulting from mult iple reflections, will be even smaller than 
the perturbation due to a single reflection. 

TAB LE 1. Electric and magnetic polU1'izabilities of a l'ight circular cylinda oj diameter a, length b , and volume 

v=~a2b 
4 

a a t,1 0: ~. t a m.l am .t 
ij V V V 

" 

'" 2.00 - 1.00 - 2.00 
60.00 2.13 - 1.06 - l.94 

10 
1 15. 1 2. 32 - 1.16 - 1. 85 

"4 
1 i.1O 2.6 1 -1.31 - 1. i4 
2 

1 3. R6 3.1 7 - 1. 59 -I. 58 
2 2.43 4.22 -2. 11 - 1.41 
1 1. 75 6. 18 - 3.09 - l. 27 

1. 00 - I. 00 

3. Backscattered Electric Field at the Surface 

In t.h is section , expressions will be derived for the backscattered electric field at the surface 
of the dissipative half-space for a field point directly above the conductor. The electric field 
contribu tions from the induced electric and magnetic dipoles will be treated separately and 
both harmonic and trallsient excitation will be considered. 

3 .1. Electric Field From an Induced Electric Dipole 

a . Harmonic Excitation 

Von Aulock [1952] has derived expressions for the electric field in a semi-infinite dissi­
pative medium in a region directly above an embedded horizontal electric dipole. As is shown 
in figure 1, the dipole is sit uated at the point (0, 0, d) and is directed along the X-axis. The 
dipole is excited at an angular frequency w. At the coordinate origin in the surface, the electric 
field E ;C (O, w), is directed along the X-axis and is written 

E~e (o, w) (14) 

where 1' = (jW J.1.oCT)} and K 2('Yd) is the modified Bessel function of the second kind. Using (3) 
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and t he plane wave relationship 

(J 5) 

which relates the electric field incident at the conductor to the magnetic field at the smface of 
the half-space, (14) may be written 

(16) 

b. Transient Excitation 

The backscattered electric field in the time domain, E~" (0, t), may be expressed as a Fomier 
integral I and written 

1 f a> E~e (o, t )= '27r _a> E~e (o, w)e iwtdw. (17) 

The Fourier integral may then be transformed into a convolution integral involving the back­
scattered electric field response at the surface of the half-space, directly above the dipole, when 
a unit step of magnetic field is applied at the smlace in the y direct ion. The steps of the 
transformation are given in appendix 1. Equation (17) then reads 

where 

E~e(o, t) = ( t A~ (O , t- ).. )H~(O, ).. )d).., Jo (18) 

A~(O , t) = backscattered electric field step response at the surface from an induced 
electric dipole. 

H~(O , t ) = time derivative of the transient magnetic field applied at the smface. 
The step response may explicitly be written 

t 
where (3=-cl2 and 

/loU 

A e(o )--~ [ 1 ((3)+ _ 2- (2+~+~) - I /~J x ,t - 47rucl4 (7r(3) 1/ 2 2(3 (32 e , (19) 

(20) 

The above expression for 1((3) is convenient for large values of (3. With further manipulation, 
it can be shown that 1((3) may also be written 

v' 
1( ) - 1 ~ a> [41'3 + 3 + 3 J( 2 )1 /2 -~d (3 - -[""'2 (37/9 (3'6/2 (31 /2 3 V - v el'. 

71' I • 1 - V V 
(21) 

This form is convenient for small values of (3. The leading terms of an asymptotic expansion 
for small (3 obtainable from (21) are 

1 

-e fJ 
1((3) = 21/2(32 (1 + 1.6875013+ 0.95508(32+0.16296(33-2.24885(34+ ... ). 

-\ 

(22) 

From the exponential factor e Ii in (19) and (22), it is evident that the backscattered electric 
field, E~e (o, t), is quite small for t < <d2/lou . For large (3, it can be shown that A~(O , t ) falls 

off as t- 1/2 • A graph of the dimensionless quantity -A~(O , t)· 47rud4 is shown in figme 2. The 
Ct' e 

integrals were evaluated on the IB:M 7090 using Gaussian integration. 

1 Although the Fourier integral impl ies high frequencies for which the displ3eemcnt current in the dissipative m edium hecomes Significant 
compared with the conduction Clll'rent, the fields at these frequeucies arc severely atten uated and ccntribute negligibly except at pOints very 
ncar the surface. 
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FIGURE 2. T he backscatlered electric fietd seep re­
sponse at the smj ace j1-om an induced electric 
dipole. 

3 .2 . Electric Field From a n Induced Magnetic Dipole 

a . Harmonic Excita tion 

Von Aulock [1 952] has also derived expressions for the electric field directly above a hori­
zontal magnetic dipole in a semi-infinite dissipative medium. As is shown in figure 1, the mag­
netic dipole is sit uated at the point (O,O,d) and is directed along the Y-axis. The dipole is ex­
cited at an angular frequency w. At t he coordinate origin in the surface, the electric field, 
E~m (0, w), is directed along the X-axis and is written 

E~m (o , w) = M~~:j}w) [ 'YelK l ('Yel) + 3K 2('Yd) - 2e -"Yd ( 'Yd+ 2+ 'Y~l+ 'Y~l2) } (23) 

where 'Y = (jW J.i.oO") 1/ 2 and K l ('Yd) , K 2('Yel) are the modified Bessel functions of the second kind of t he 
first and second order, respectively. Using (5) and the plane wave r elationship 

(24) 
equation (23) may be wr itten 

b. Transien t Excitation 

The backscattered electric field in the time domain , E~m (o , t), may b e expressed as a 
Fourier in tegral similar t o that in (17). The Fourier integr al may t hen be tr ansformed into a 
convolution integral of the form given in (18), where A~(O , t) is now the backscattered electric 
field step response at the surface from an induced magnetic dipole. The steps of the t rans­
formation are given in appendix 2. The st ep r esponse may b e writ t en explicit ly as 

wh ere 

and 

t , I X (3= --2' erf (x) = e-V2dy , 
J.i.oO"d 0 

I l({3)= fu'" v[N2(v) sin v-J 2(v) cos v le - ~v2elv, 

I 2({3)= fu'" v2[Nl(v) sin v-J l(v) cos v]e - /lv2dv. 
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'I'he above expressions for I) ((3) and I 2 ({3) are conven ient for large values of {3. With furth er 
manipulation, it can be shown that 

and 

(30) 

where erIc (x )= Jx'" e- y2dy. These forms are convenient for small valu es of (3. The leading 

terms of the asymptotic expansions obtainable from (29) and (30) are 

and 

(32) 

It can be shown Lhat A~n(o , t ) behaves as e- 1/ i3 for small {3 and is thus very Sn1fill for t< < cl2 /J-or:J· 
For large {3, the step response can be shown to fall off as C 3/ 2• A graph of the dimensionless 

. A (0 ) 47r r:Jd4
• h . fi 'l' b . t I I d t 1- IB">'1 quantIty - ~. , t . -- l S sown 111 gure 3. .1 e In egra s were eva uftt e onne 1\ 

am 
7090 computer using Gauss ian integration. 

FIG URI': 3. The backscattered elect Tic field step Te­
sponse at the surface fTom an induced magnetic 
dipole. 

4. Relative Importance of the Electric Field Contributions From Electric and 
Magnetic Dipoles 

The relative importance of the contributions by the induced electric and magnetic di­
poles to the backscattered electric field at the surface will depend on the relative magnitudes 
of the electric and magnetic polarizabilities of the conductor. An estimate of the relative 
importance may be obtained by determining the ratio of the incident electric field at the 
surface from the magnetic dipole to that from the electric dipole. The incident electric field 
from the magnetic dipole, Er; (O, w), is 

Emx (0, w) -M~(cl, w) (1 + I) -"fd 
47i [2 'YG e (33) 
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and that from the electric dipole, E~(O , (,;), is 

E~ (O , w) = -~;;~~ w) (1 + rd+ r2d2)e -'Yd. (34) 

Using the definitions in (6) and (7) , the ratio of the electric field contributions is written 

IE';(O, w) 1 IIXm rd+ r 2d2 I 
E~(O, w) = IXe 1 + rcl+ r 2cl2 . 

(35) 

When Irdl < < 1, the l'atio is small, provided 

I::nl< <lr~ I ' (36) 

I~: (O, w) I<IIXml· 
Ex(O, w) IXe 

From (35), it is evident that 

(37) 

The contribution of the magnetic dipole to the electric field will, thel'efol'e, also be small when 

I :~ I < < 1. This is the case for a cylinder with a small diameter to length ratio when ex-

cited longitudinally by an electric field. On the other hand, when I :~I is sufficiently large, 

the contribution of the magnetic dipole will be larger than that of the electric dipole. This 
is the case, for example, for a cylinder with a large diameter to length ratio when excited 
longitudinally by a magnetic field. 

5. Appendix 1 
By substituting 

H (0 w) = r '" H (0 'A)e -jwAcl'A=~ r'" H ' (0 'A )e-jwAd'A 
y, Jo y , jwJo Y , 

(AI) 

in (16), the inverse Fourier transform in (17) may, upon changing the order of integration, 
be written 

E~e(o , t) = 1'" A~(O, t - 'A)H;(O, }..)d}.. , (A2) 

where 

A~(O, t)=8~;; f-~ e~'Yd [r2d2K 2(rd)-2e -'Yd(2+ 2rd+ r 2d2)]e jwtclw, (A3) 

1' = (jW/.LoU ) 1/ 2, and K 2(rd) is the modified Bessel function of the second kind. For conver­

gence, arg ± jw = ±~ . Thus, 

A~ (O, t)= 4IXe;Z03 Re r "' e-'Yd [r2clZK2(rd)-2e-Yd(2+ 2rcl+ r 2cl2)]ejwtclw . (A4) 
7r G Jo I' 

When t > O, w in (A4) is replaced by the complex variable z= w+ ju, and the integration is 
performed around the contour shown in figure 4. When E--70 and R --7oo, 

p2 t 

A~(O , t)=27r~;d4 Re 1'" e- jp[ -Jl2K z(jJl)- 2e- jp (2+ 2jJl-Jl2)]e - poQd2clJl , 

Jl2 

where u=-d2' Since 
/.Lor! 

(A5) 

(A6) 

where N 2(v) and J 2(JI) are the Neumann a,nd Bessel functions of the second order respectively, 
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u 

FIGU RE 4. Contour in the ~-plane. 

(AS) may be written 

when t > O. P erforming some ofjthe integration , (A7) i'l written 

t 
where {3=-d2 and 

f.1oIJ 

I ({3) = fo oo p2[J2(v) sin v+ N 2(v) cos v]e - fl •2dv. 

Finally, since A~ (O , t) = O for t< O, 

By sub'ltituting 

6 . Appendix 2 

H y(O, w)= r oo H y(O, 'A) e- iwXd'A 
.J o 

w 

(A7) 

(AS) 

(A9) 

(A1O) 

(All) 

in (25), the inverse Fourier transform may, upon changing t he order of integration, be \vritten 

where 

E~m(o, 0 = r oo B r;(O, t - 'A )H y(O, 'A )d'A, 
.J o 

(A 12) 

B~'(O , t) = S:;;d2 fo OO _yZe - 'Yd [ 'YdKI (I'd) + 3K2('Yd) - 2e- 'Yd ('Yd+ 2+ 'Y~l+ 'Y~l2) ] eiwtdw, (A13) 

1' = (jWf.1oIJ) 1/ 2, and K I('Yd) and J{2('Yd) are t he modified Bessel functions of the second kind of the 
first and second order, respecti vely. Noting that arg ±.iw= ± 7r/2, (A13) may be wTitten 

B r;(O, t) = 47r~;d2 Re .Fa oo 'Y2e - 'Yd [ 'YdKl (I'd) + 3R:2('Yd)- 2e-'l'd ('Yd+2+ 'Y~+ 'Y2~2) ] eiu)tdw. 

(A14) 
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When t< O, the impulse response, B ;'(O, t), is equal to zero since it is assumed that H y(O, t ) = 0 
for t~ O. Integrating (A12) by parts, it follows that 

E~m (o, t)=.f A~(O, t-A)H~(O , A)dA, (A15) 

where 

A~(O, t) = :;~d2 R e 1'" e-1'd [ 'YdKI ('Yd) + 3K::(-yd) -2e -1'd ('Yd+ 2+ 'Y~l+ 'Y~2)] ejw1dw. (A16 ) 

When t> O, win (A16) is replaced by the complex variable z= w +'i'l~, and the integration is per­
formed around the contour shown in figure 4. ~Then €---70 and R ---7oo, 

2 

A~(O, t)=27r~;d4 Re j 1'" ve -j{ jvKI(jv) +3K2(jv)-2e -jv (jv+2+*-~)] e - ,,:.:2dv, (A17 ) 

v2 

where U=-- ' Since 
J.LorTd2 

and 

(AlS) 

(A 19) 

where J 2 (v) and N 2 (v) are the Bessel and Neumann functions of the second order respectively, 
(A17) may be written 

A~ (O, t) = 4:;~l4 1'" { 3v[N2(v) sin v-Jz(v) cos v]-v2[N1(v) sin v-J1(v) cos v] 

Performing some of the integration , (A20) is written 

A meO )-~ [ I ( )-J( ) _ _ 2_ (3+~+~) -1/f3+E 'f(_l)] 
x ,t - 47r rTd4 3 I {3 2 (3 (7r{3) 1 /2 2{3 {32 e 7r1 /2 el {31 /2 ' (A21) 

where 

t I X 2 (3=--z, erf (x) = e-! dt , 
J.LorTd 0 

(A22) 

and 

I 2({3) = r'" v2[NJ (v) sin v-J1(v) cos v]e -.sv2dv. Jo (A23) 

The author is grateful to Dr. A. H. Van Tuyl of the U.S. Naval Ordnance Laboratory for 
transforming the Fourier integrals into convolution integrals and for the analysis in prepara­
tion for the programing of the step responses for the IBM 7090 computer. 
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