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An asymptotic expression is obtained for the current distribution on the outside sur-
face of an infinitely long, perfectly conducting, hollow c¢ylindrical antenna that is fed by an
infinitesimally narrow circumferential gap. This asymptotic expression involves two
series. The first series is expressed in reciprocal powers of log (2|z|/jI2ka?), where |z| is
the distance from the gap, log T' is Euler’s constant, & is the propagation constant, and a
is the radius of the antenna. The second series is a similar series multiplied by 1/(k|z|).
The first series is dominant and its first five terms yield values for the magnitude and phase
of the current that for even moderately thick antennas (circumferences as large as \/3)
are accurate to within about one percent in as close as A\/3 of the gap. This is shown by
a comparison of the values of the current obtained from these terms with the numerically
computed values of Duncan [1962]. Asymptotic expressions for the current found in the
literature resemble the first term of this dominant series and are accurate only at rela-
tively large distances from the gap—except for very thin antennas.

1. Introduction

Consider the usual model of an infinite antenna composed of a hollow circular cylinder
with its axis lying along the z-axis of a cylindrical coordinate system with coordinates (p, ¢, 2).
The cylinder is cut in two at z=0 and the antenna is assumed to be excited by a sinusoidal
generator producing an oscillating electric field /.¢7“* (that is independent of ¢) across the
gap in the cylinder formed by the cut. The voltage across the gap is

=—| E.dz
oJ gap
which may be held constant while the gap width is allowed to approach zero. As is well
known this limiting process of allowing the gap width to go to zero leads to a singularity of
the quadrature component of the current 7(z) on the outer surface of the cylinder. The
effect of such a gap has been considered, among others, by Infeld [1947], King [1956], Wu
and King [1959], Chen and Keller [1962], and Duncan [1962].
The current on the outer surface of the cylinder is given by the formula *

_kaV [ H® (Ba)e " "dy
I&=57)_ .~ BHP @)

k=221
N=wavelength in free space
a=radius of antenna
e
Zoz\/#—/f
e=dielectric constant of free space
w=permeability of free space
B=(—?)
H? (Ba)=Jy(Ba)—jY,(Ba)
H? (Ba)=d(Ba)—jY:(Ba).

(1)

where

1 See formula 13 of Duncan [1962].
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The last two functions are Hankel functions of the second kind, the time factor having been
taken as ¢’“’.  The path of integration in (1) is along 'in figure 1 and is thus along the real
axis except at y=—Fk where it is downwardly indented and aty=# where it is upwardly indented
to avoid the branch points of g aty=-+%. The angle of g, written £8, is chosen so that £3=0
for —k<y<k.

Duncan [1962] has recently derived expressions for /(z) that permit its computation for
very small values of z and has obtained accurate plots of the real and imaginary parts of /(2)
as one approaches the singularity at z=0. While this approach also makes possible accurate
values of 7(2) out to {=Fk|z| of 5 or 10, the work involved increases and the accuracy decreases

as { becomes large.
This paper develops an asymptotic series for the current

27V _ 5 &
I > 2
e = 1(10 p?)’L+§7;2 (log ps“)" @
where A, and B, are constants and
2 5
P= o ®)

It 1s shown that the first five terms of the first series yield a value of 7(z) that is remarkably
accurate even for rather small values of {=/%|z| and for thick antennas. Thus, for example
(see figs. 2 and 3), [Z(2)] is given within an accuracy of 1 percent for all antennas thinner than
a=27a\"'=0.30 for all {=2x|z|]\"">>1.8 (approx.).

2. Modification of the Integral for /(z) by Contour Integration
This integral for 7(z) given in (1) may, by reference to figure 1, be written

kaV - . HP (Ba)e= 7"
I(2)="% Lim [ 2L PVe "7 5 4
Oz o) srp e &

By distorting the contour € between A and B into €7, one sees that €' in (4) can be replaced
by €. It can readily be shown that in the limit of e—>0 and R->« only the portions of the path
C’ lying along branch cut 1 contribute to the integral, and hence

i@l/ k—joo H<2>(6@) H?® (Bae=m) s
10="7" |, Latip G raae 7 )" )

Decreasing the angle of the argument ga of the Hankel functions by = leads to the following
equations:
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H® (Bae™'m) = —Ju(Ba) —j Yo(Ba) = — H" (Ba)
H{? (Bae='m) =J1(Ba) +jY1(Ba) = HP (Ba). (6)

These together with the substitution y=Fk(1—jy) and the well-known identity
2
T@Y o) — o) V1) = Q)

makes it possible to write (5) in the form

~jéLVe “‘f e~ Ydy 5
1&="27" ), 77t 1 30)] ®)

where
¢=Fkl|z|, a=ka, and n=+/y (y-+2)). 9)

The change in the contour of integration thus leaves us with a more manageable integral for
large values of ¢ in that only the small argument behavior of the Bessel functions is important.

3. More Tractable Expression for the Asymptotic Behavior of /(z)

We may write (8) in form

2Ve % .,
I(z )—7Z* i (10)
where
T:%i @ e du (11)
d $Jo lJi(na) +Y5(na)]
an
|
:Ev’u(u—{ﬂjg“). (12)

Within the region |na|< b, where b is a small positive number, the Bessel functions may be
replaced by their small argument approximations. 'This amounts to setting

1 1 1-+e€(na)
D(na)  Ji(na) +Y3(na) 1+<2 Ina

(13)

and neglecting € (na). This leads to a maximum relative error in the approximation that is a
function of . For b=0.5 this maximum error is about 1 percent.
Letting %; be the value of » for which

o] =z i +-27¢[=b (14)

we have

(T}

It is therefore seen that for any choice of « and b one may make u; as large as one chooses by
taking ¢ large enough. A tabulation of € for b=0.5 and various values of « is given in table 1.

where

TaBre 1
a Cfor b=0.5 7 71 0.0667~1 U3
(R()> Se— 24.96 6.34 10451 1576¢ 104¢ 2
0.08____._.___ 6.09 1.02X10-2¢-1 98. 5¢ 6. 508 2t
0.30--______ S19; 0. 143¢-1 7.00¢ 0.462¢ 0. 462¢
0.60-_ .- 0.34 L571¢1 1.75¢ .116¢ . 116¢
15202 eres .09 2. 28¢-1 0. 44¢ . 029¢ . 029¢
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From (11) and (13)

2_7J' (14¢€) e “du f

==t 17
$Jo n° |:1+<210 T'na :I CJuym 2D(17a) )
Since it is possible to choose an A such that [D(na)|>(Aa|n|)* for all |pa|>b, we may make

use of (12) to obtain the inequality
2Aaf
< d <A (AT 18
2. D S E S ey e Gl

which, using (15), can be written
e~ “du 2 . —cr
Ll 1 D(na) \/;’e ’ (19)

Thus with the neglect of ¢ in (17) and exponential term in ¢ we may write

Tg%;—?fM g;udurna . (20)
0 — o el
772[1+<7r10g 2 ):l

where M is 4, or any quantity very large compared to 1. Since the integrand of the first integral
in (17) has nearly a constant angle, the percentage error in dropping the integral involving

€ is certainly not much more than the maximum error in dropping ¢ in (13).
Expansion in (20) of [(#/¢)+27]7' by the binomial theorem leads to a series in reciprocal

powers of ¢

e~ “du,

TS (l)”Tn 21
E) 2 ) (21)
where
T —J‘J\I un—le—udu '
" Jo 1 IMn2a®\? (22)
(g™

At this point to insure uniform convergence of the binomial series, M is to be taken slightly
smaller than u,, where u, is the smaller of %, and 2¢.
From (12)

1
= 773—1 'h (23)

WET (24)

Consider now a function f of »? in the range in which u<<¢. By a Taylor expansion

where

Sy =f iy — n L7 (25)

Since, however,

df _dudf __jcdf

dyg dnidu 2 du
(25) may be written

Foar)e2f ) o 1) (26)
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Applying (26) to (22), we have

M un-—le—udu ] M d 1
T gf 2 yrtle—4 — du
"=Jo 1 IMnga\? 2s“ﬁ du[ 1 Mo\ ’

The application of (26) in the outer part of the range 0 <u <M will not be very accurate, but
since the integrand drops off as ¢™*, one may ignore this. Integrating the last integral by parts
and neglecting the term containing ¢~ in the integrated part, we have

Tn%T2+§ZS:[(n+1)T2+1—T2+2] (@)

where the superscript zero indicates that » is to be replaced by 7,.
If in (21) one neglects terms of (1|¢)? and higher, then one may write that
T Tyt T,
~ 5
By (27) this becomes
T~ T3+—2]—S_ [2T3—T3]. (28)

Equations (10) and (28) provide us with an asymptotic expression for 7(z) involving

integrals of the form
To_fM un—le—udu
0—
0

1 I2nga®\?
1—}—(7—rlog —4 >
__J'M u e~ 4du
o 1—{—(110 u ')2
x CBUTI (29)
where use has been made of (24) and where
I'2a?
T:‘2—§_“ (30)
4. Asymptotic Series for 1(z)
Integrating (29) by parts using the function
A(x) =g+arctan % (31)
we have
1 To=| ume—*A (l log urj>:|M+fM (ur—nur1)e *A <—1- log urj) du
™ " T 0 0 ™ ’
Since A(}r log urj)%O as w —0 and M is large, this reduces to
T W,—nW, _ -+ Mre—¥ A C—r log M- j>
=W,—aW,_, (32)
where
2 1 .
W,=n| wu'e *4 (;;log ur j> du. (33)
0
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Collecting our results thus far, we have from (10), (28), and (32) that

I(t: )_ZZL[WmL AW, —2W,— m)] (34)

Corresponding to the expansion of the arctangent in reciprocal powers of the argument,
one has

1 k+1 1 A —(2k+1)
A< logur]> Z(Zlc—)H ( logur]> . (35)

=0
This series converges for

>1

Logurj
708 UT]

and thus will converge when
—log 1n>%§7ror u<0.0667". (36)

Let u; be the smallest of the quantities u;=C¢, 2¢, and 0.0667~' then (35) converges
uniformly for 0 <u <M< us, and with neglect of terms of order ¢~

gé "k+2Ink (37)
with
M yre v du
fn'»:—ﬁ (og ur) ™" o

This follows from the fact that a uniformly convergent series may be integrated term by term.

It is here understood that M is to be taken only negligibly smaller than us. It is seen from

table 1 that us, and hence M, can be taken as large as one desires by increasing ¢.
Equation (38) may be written

7 f w'e ™ “du
" (log Ty)”‘“ [ 14 Jogu u]“““' (39)
log 77

Using Taylor’s series with a remainder term to expand the denominator, we have (see Widder
[1961])

li1+1°g “.]_(Qk“)_i\ @1y (L8 “>S+R_V (40)

log 77
where {s} as a superscript is a pseudoexponent defined by the equation
If(2k+1)(2k+2) eoo Ck+s), >0
@k+1)W=+1,  s=0 (41)
[(@k)(2k—1) ... (Ck+s+1)]!,  s<0

and

|: log u ]N
Ry (Zk-i—l)w‘*'l’f logr] log 7] Ji. (42)

— )N+

Letting t=—log v/log 77 in (42), one may write

(43)

N!(log 7j)¥+! log vy \*+o+2 o
log Tj

Ry DI (e5) 4
=
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On substituting from (40) into (39), one obtains the equation

k+1 O,
o s g ] -
where
M
O,,s:(~—1)sf w"e~"(log w)sdu (45)
0
and
M
Bz’v(n)zf ue ~“Rydu. (46)
J O

It will be shown later in section 5 that as {—« and hence 7—0 the remainder term £y (n)
approaches zero as |log 77|~¥*P,  This insures that (44) is a legitimate asymptotic expansion
of 1.

It is convenient to replace (45) by the equation

(= (——l)sfw w e~ *(log w)*du (47)
0

which involves again only the neglect of a term proportional to ¢~ and to write (44) in the form

—1 @ (on, O,

L=~ (log 77)%H1 = s! (log 77)*

(48)

to indicate an asymptotic series that must be terminated at some finite but unspecified term.
The remainder term is then very roughly indicated by the first neglected term. A precise
determination of the overall error is made later in section 7 by comparing the results obtained
from our asymptotic series with those obtained numerically by Duncan [1962].

Integrating (47) by parts, we have

o ) H1T® @
(—1)“0,1.\v=|_u"“e‘“ (10:12 ‘I +0J171 r [urt'— (n+1)urle~*(log w)*+idu
e AL = 1) ol L Jo
or
On+1, s+1:(n+‘1)0n, s+1_(8+1>0n,s'
Thus
(jn,,s:non—l, s"8011—1,x—1 (49)
and, in particular,
0132003_800'5_1 (50)
02322013—801,3—1
=2C5,—38Cy, s—1+8(s—1) Cp, s—». (51)

From (37) and (48), since in (37) W, can be approximated by a truncated series,

Wo—l- [4W1 2W,—We]

@ (1% 7 \EF(E@) (2k4-1)1)
o ,g(;’ 2k+1 \log 7']) 5=0 s! (]Og 79)°

and thus, finally, by (34), (41), (50), and (51)

[a,s+ (40— 20— 023)] (52)

20V QLR (D e .
It S S e ettt | Gk (Crrts—1)Cd | (5)

where
O, =Cp=(—1)° ﬁ " ¢~ u(log u)*du. (54)
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Equation (53) may be written

27I'V6 43 ] ) Bn ]
I(z)= [ (logpn" ¢ 24 (log po" (55)

where A’s and B’s are constants and —log 77 is replaced by log p¢; thus

p r2 2"

(56)

These are the same equations as (2) and (3) in the introduction. Vainshtein [1959] has obtained
a similar type of expansion for a related integral.

The second series in (55) is not, strictly speaking, a part of an asymptotic expansion of
I(z) since terms in 1/¢ fall off faster than any power of (log p¢)~%. It can, however, be used
to increase the range of ¢ over which (55) is a valid approximation.

By direct comparison of (53) and (55) we see that

A1=O[)
A2='—01 B2:% CO
)
A3=—% Co+Ce By=—(C,+0C)) (57)
T )
A=mC—C; 1?42'—5 Co+3(~1+’2' C;

A5=’§00—27202+a By—22%(Cy+Cy)—6Cs—2C;

5. Magnitude of the Remainder Term Ry (n)

If % is in the range 0 <u <7~ then from (43)

0e2) T
[

Since [log v7j| in (43) for real v is always greater than 7/2, we have

T . |2

(@k+1ven | 0875

(2k—+1) (NHUQZ+N+2 | [og | N+
]RNI< 1 | i
N!|log 77|11

(NTDlilog gt (58)

lo;,T-l— 9]

(ZhA D) ¥+ log i+ log !

2k+N+2
N—H)'( )
even outside the above range.
These inequalities applied to (46) yield an upper bound for Ry(n) expressed by

| Bl (59)

, (2k+1) N+ e
| By(n)|< N+D! log 7g|N+1

12
f uwe~*|log u[N*t1du
0

o +4|%+1 M
_}_“Oh 7'.7] "f_ une—ul log u|N+1du}. (60)

T 2k+N+2
(%)

~12 and thus for small 7 (large ¢) is negligible. One

The second integral approaches zero as e™"
sees therefore that Ry(n) goes to zero as

constant
Tlog 737+ o
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6. Computation of the C,
From (54)

C,=(—1)" fm e *(log w)"du=P,+(—1)"Q, (62)
where ’
=(— 1)” "‘”(log w)"du>0 (63)
and
Q= f " e~4(log u) du>0- (64)
In (63) let 2= —log u; then 1
P= Owe‘“"(‘””’x"e‘zdx
=pz:()) (:Z—)l,)ij; e~ PtVzdy —p) ZMZT(Z;_I—I% (65)
and one obtains a convenient alternating series for P,.
To obtain the @, we set
Q.= lﬂw‘“(log w)"du—+e, (M) (66)

where the truncation error ¢, (M) in using M rather than infinity as the upper limit is given by

e(M)= f “(log u)"du=¢ ‘Mf "l:low M+ (H— {[):]"r/.z'. (67)

Now log <1+ \[) 7 for all z>0 and hence ¢,(M) is less than

=M [
L, (M) E(j/ﬁ fo e *(Mlog M~+z)" 'z

which on successive integration by parts reduces to

e 2 (Mlog M)
n! S e s ot /88
M) =g 25

= (log M)re= n(n—1) L] "
(ot []+‘110° M log T Y neg (68)

Setting n=5 and M=16, we have

E,(16)=(2.77)%~19[1.124]=2.08 X 10~.
For smaller n the error is even less. Thus, we may with negligible error set

16
Q.= | e “(logu)"du, =0, 1,2, - (69)
J1
and evaluate these integrals by numerical quadrature. Actually, one knows that
= f e “du=1 (70)
J O

and from standard integral tables that

G:f e~ *log udu=~=KEuler’s constant. (71)
0

Hence numerical integration is not required in (69) for n=0 and n=1.
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A table of the (', and the A, and B, obtained from

them by (57) is given below:

TABLE 2
n | (64 A, B

1. 0000 [

0.5772 1.0000 |

1.9781 |  —0.5772 0. 5000

5. 4449 —1.3118 —1.5772
23. 561 0. 2520 —0. 2360
117.84 3. 9969 8.3743

7. Accuracy of Results Obtained Using Asymptotic Series

Since several approximations were made in deriving the asymptotic series (55) for the
current on an infinite cylindrical antenna, it is important to check the results against the very

accurate results obtained by Duncan [1962] by numerical integration.

the first five terms of the A coefficient series were used.
thick antennas, a=0.02, 0.08, 0.30, 0.60, and 1.20,
figures 2 to 10.

For this purpose only
The computations were made for rather
and some of the results are shown in
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Ficure 3.

Magnitude of the current for a=0.30.

‘“Asymptotic’ refers to first five terms of the A series in (55).
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‘““Asymptotic’ refers to first five terms of the A

Magnitude of the current for a=1.20.

series in (55).

The results for «=0.02 are not given since at a=0.08 (see figs. 2, 6, and 9) the results are

already quite accurate even as close as a quarter wavelength from the gap.
antennas the agreement would be even better.

For thinner
One observes (see figs. 4, 7, and 10) that for

a=0.60 the asymptotic series begins to give accurate results only when ¢ is greater than 3.5
or 4. For a circumference approaching one wavelength (e=1) the asymptotic expansion
ceases to be even approximately valid for determining the magnitude of the current as can be

seen from figure 5 (a=1.2).

Surprisingly enough figure 8 shows that the phase angle of the

current for a=1.2 is somewhat better predicted, being less than 20 deg off from the true value.

680071—63——3
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Ficure 9. Imaginary part of the current for a=0.08.
‘“ Asymptotic'’ refers to first five terms of the A series in (55).
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Ficgure 10. Real part of the current for a=0.60.

“Asymptotic” refers to first five terms of the A series in (55).

The first term of the asymptotic expansion (55) taken alone yields the asymptotic formula

oV g~ kil
Zy lo ﬁf,m @2)
& T2hq?

I(2)~

which is accurate for antennas of the thickness here considered only for rather large {=Fk|z|.
This is shown in figures 9 and 10. Even for the a=0.08 case the plot of the first term fails to
give close agreement even at a { of the order of 10. These two figures illustrate, in addition,
the degree to which the first five terms give the real and imaginary parts of the current. Since
the accuracy is approximately the same for each part, we have given only the imaginary part
for «=0.08 and only the real part for «=0.60. In the latter, of course, the agreement is not
too good.

Formulas similar to (72) have been obtained by others. Chen and Keller [1962] obtain the
same formula but with the argument of the log the negative of that in (72). Northover [1958]
derives a formula in which the argument of the log is z/2ke®. Hallén’s [1956] formula agrees
with (72) except that I' is to the first power. All of these formulas are correct in that they lead
to the right functional behavior for {—c. It has been checked, on the other hand, that in
the case a=0.08, at least, formula (72) is more accurate for finite { than any of these variations
of it.

We have also determined that for «=0.08 and 0.60 the error remaining after taking the
first five terms of the A coeflicient series is given for intermediate ¢ very nearly by the first
two or three terms of the B coefficient series of (55).
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