JOURNAL OF RESEARCH of the National Bureau of Standards—D. Radio Propagation
Vol. 67D, No. 3, May-June 1963

Reflection of VLF Radio Waves From an Inhomogeneous

Ionosphere. Part L.
Model’

Exponentially Varying Isotropic

James R. Wait and Lillie C. Walters

Contribution from Central Radio Propagation Laboratory, National Bureau of Standards, Boulder, Colo.

(Received January 3, 1963)

The oblique reflection of VLF radio waves from a continuously stratified ionized medium

is considered.
form.

The profile of the effective conductivity is taken to be of an exponential
This is a fair representation for the actual D layer of the ionosphere.

It is shown

that the gradient of the conductivity change has a marked effect on the reflection

characteristics.

1. Introduction

In the study of VLF radio wave propagation it is
often assumed that the ionosphere can be regarded
as a sharply bounded medium on its underside.
This step may be considered reasonable in view of
the long wavelength and the relatively rapid change
of the electron density of the D region. Further-
more, experimental data are often in accord with
calculations based on this model. The general
agreement is particularly good at highly oblique
incidence provided that appropriate corrections are
made for earth curvature. Nevertheless, there are
many occasions when the sharply bounded model
appears to be inadequate. Therefore, it is worth-
while to consider a more realistic model of the lower
ionosphere.

On examining much of the recent literature on the
characteristics of the lower D) layer, it appears that
the effective dielecti.. constant of the medium can
be well approximated by an exponential function.
Then, to within this approximation, the relative
permittivity may be written in the form

K(z):Ko@—i% s Bz): (1)

where K, is a reference permittivity, and L and g
are constants. The level z=0 may be defined as the
reference level and thus

K(())=K0<1—oj:‘}~>; )
which is a familiar form.
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Under the assumptions that the angular frequency
w is much less than both the collision frequency »
and the plasma frequency e, it is known that [Wait,
1962]

K,=1 and L=%, (3)

Wo

provided that the earth’s magnetic field can be
neglected. The latter assumption is strictly valid
only if » is somewhat greater than the gyrofrequency
wg. In actual cases, however, the isotropic assump-
tion is useful even when » is of the order of wy,
provided the magnetic field is not transverse to the
direction of propagation [Crombie, 1961 ; Johler and
Harper, 1962]. For the purposes of the present
paper, the influence of the terrestrial magnetic field
18 not considered.

The constant g8 in the exponent of the equation for
K(z) is a measure of the sharpness of the gradient.
For example, when g=1 km™, it means that the
ratio «j/v or N/v increases by a factor 2.71 for each
km of vertical height. The best available informa-
tion on expected values of g can be found in the
recent work on pulse cross modulation [Barrington
et al., 1962] and from recent rocket measurements
[Kane, 1962]. From these results it appears that
g8 1s of the order of !4 km™' for quiet daytime
conditions although it may differ by a factor of two
or more at certain times. In the present study it
appears to be desirable to allow 8 to vary from 0.3
to 3.0 to encompass most cases of interest.

2. Background Theory

The propagation of electromagnetic waves in a
medium whose permittivity e(z) varies in an expo-
nential manner has been studied extensively. The
usual case considered is for horizontal polarization
where the electric vector is parallel to the stratifica-
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tion. For example, if the electric vector has only a
y component f7, it is a simple matter to show that
[Wait, 1962]

I:rl~2+k2(K Z)= SQ:IEU¥0 (4)

when the field varies in the x direction according to
exp (—wkSxz), where S is a dimensionless constant.
Here k=1 euow is the free-space wave number and
e, and pe are the permittivity and permeability of
free space, respectively.

At a sufficiently large negative value of z, the
relative permittivity K(z) becomes unity, and thus,
E, satisfies

P |\ pecr) =0 (5)
([22 “y— Yy .
where C?*=1—8% The general solution of this
equation has the form
]4‘1/:[( ( zACz+l) ()+sz )( Ll\br (6)

when [, and I, are constants. Recognizing that
the solution of (4) must reduce to (5), for z tending
to — o, it may be shown that [Wait, 1962]

) - WV )‘
R,=— > = j,T)VB 0

(v)!
where »,=21kC/B.

The term [Ke~*%~#*52 may be regarded as an
imcident wave whose direction of propagation makes
angle 6 with the z axis where C=cos 6 or S=sin .
Then FE Ret®*C%~ %5 can be interpreted as a reflected
wave and 2 can be defined as the reflection coeffi-
cient of the exponential layer. It should be stressed
that this reflection coeflicient, while referred to the
level z=0, is only valid in the free space region at
large negative values of z.

The reflection coeflicient 12, given by (7), may be
conveniently written in the form

- (@)

Ry=exp <—m (! > exp 1P, (8)
where
2T 47(C
arg —1 e
= Coe () etz une[ (=i 75 ) ]
where Ny=27/k 1s the free-space wavelength. Thus,

the amplitude of the reflection coefficient is given by
the very simple form

[r— <_ﬁ (*) )

which is independent of L. On the other hand, the
phase factor @ is relatively complicated since it in-
volves the factorial function of imaginary argument.
Nevertheless, (8), for the complex value of R, can

be used to obtain quantitative results for exponential-
type layers.

3. Extension to Vertical Polarization

In the VLF radio problem one is mainly interested
in vertical polarization such that the magnetic vector
is parallel to the stratification. For example, if the
magnetic field has only a 3 component, 77, and
assuming again that the fields vary in the x direction
according to exp (—ikSx), it follows that [Wait, 1962]

d?

dz?
Intrinsically, this is a more complicated form than
(4) for horizontal polarization.

In the region of large negative
to the elementary form

1 (IK()
S K(z) dz

i s”)]n,, 0. (10)

z the (10) reduces

d? B - .
<(~[é2+k () H,—0, (11)

and thus

I,I”:I{n((?—i}.’C:+[l)l;(4+7’k(72)e—iI.‘SI" (12)
where H; is a constant and £, is, by definition, the
reflection coeflicient for vertical polarization.
Unfortunately, for the exponentially varying
permittivity of the form defined by (1), it does not
appear to be possible to obtain a closed form expres-
sion for 12,. For this reason, the required quantita-
tive results were obtained by a numerical method.
Essentially, the procedure is to replace the contin-
uous A (z) profile by a finite number of steps. The
situation is illustrated in figure 1 where the function

1 1 :
e Bz, (13)

is shown plotted versus z along with its step approxi-
mation. Thus, between thelimits z=—z,and 2=+ T,
the medium is divided into M homogeneous layers of
width Ay, by o o o by, . firi1, . The value of
L(z) in each of these slabs is then replaced by a

1/L(2)
I
fromes t Zo
I \
.
L o
i T
M
T ) e z
—fhy =1 —ih— |
I
by -
Ficure 1. The step approrimation to an exponential profile.
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constant value L,,. The method is really equivalent
to the usual method [Budden, 1961] of numerically

integrating the basic differential equations.
The problem now boils down to finding the wave
impedance 7, at z=—2z, in terms of the properties
© which is to

Here 7,= ﬁ

The reflec (1011 c ()ofhmont R,
is then found

of all the individual slabs.

be evaluated at z=—z,.
which is referred to the level z=0,

from
/711) l: :l
R,= ,-ﬂ ] — Cz
( + /1/714» exp 2

for z=—2z;, and where ny=+u/e(e=1207. Here z, is
chosen sufficiently large that 1/L(z) may be regarded
as zero. (Strictly speaking, zy—>.)

(14)

4. Tterative Process

From the theory of wave propagation in stratified
media [e.¢., Wait, 1962], it is known that Z, can be

obtained by a series of iterative processes. Thus

ZI:KI(JD (lS)
where

K, 1Q,+tanh D, .
Qlil—i»Kz Qs tanh D) (16)
K, 2(2 —kt;mh D, ~
(22 1+K; )(\)f; 7(1”}1 1) (1 I)
0, = Entrn@npttanh Dy, (18)

1+A/n+1 //1(Jm+] 1‘“”] I)ru

and so on. The various [actors are defined below.

The parameter 1),, which is a measure of the thick-
ness ol an individual slab is defined by

y _i2wh S2\ % .

[) m- —= ]\Ym < T XTo ) (19)

k[) Z\J‘I.I?l ’

where N, 1s the refractive index of the mth slab

aiven by ?
15
T —
Np=(1—+
" < 14m>

The quantity K,.1,, 18 the ratio ol the wave im-

pedances of layer m-+1 and layer m. Thus
K
K1, =2t (20
+1, » ) )
" KUL
where
2\ 1%
Mo ISZANE
K (15,
‘NT”[ ‘N I(:I

2 The square roots are defined such that D, = (gh;hn,
0

i27hm . —i
D= ( - ;r? )C if Nwo1. Furthermore, Npm=(1/Ln)1/2¢~ {7/ 4t |Nm|>>1and
Nm=1if Lm> .

Nn if Np—>o, while

is the wave impedance in the mth layer.  Alternately,

; I
=N
( ]4m> - Lm—{—l )

KnH,—l,m: T o ; (21)
(1#'7> m_
]4m~41 l‘m

Finally, because the quantities ¢, are given in

terms of €),,;, it is necessary to know the initial value
Qursr at z=T. For example,

O [X,”*’ 1,77{&{+1+(‘lnh Du (22)
1+ Ko, ultanh Dy Qs

and suml(ulv el I O\pwssod in terms of ¢,,. The
process 1s (011t1nuo([ until ¢ 1s obtained.

In some problems of this kind it is not necessary
to know precisely the value of ¢,.,. However, tho
economy of the calculations is greatly unplovod il a
cood starting value of @y, is known. Recognizing

that the wave impedance at z="T"1s given by
’ I{\r+[ .
AAIH“: - Q,w+1v (23)
Mo
and utilizing the condition [N, | >>1, follows

from previous work [Wait, 1962] that

~ 2 2
Kn l:\ (U~ ]VMH B:I
Qnrp 12— . })_”_ - (24)
K [\ (s )\r M41 B]

where K, and A, are modified Bessel functions.

In a practical sequence of calculations it is neces-
sary to choose 7T large enough that the final result for
2, is insensitive to further changes in 7. For ex=-
ample, if =1 km~! and \y=15 km, it was found that
T=4 km was sufficiently large to obtain four-figure
accuracy in [, Furthermore, for some values of 8
and Ao, 1t was found that 7, approaches a constant as
zo was increased to 20 km. In general, for smaller
values of B8 it was necessary to increase 7" and z, to
larger values in order to achieve stability of the final
results. The width of the steps, h,, must also be
chosen sufficiently small to achieve an adequate
simulation of the smooth profile. Generally, it was
found that |D,,|<107? was a satisfactory criterion.

5. Discussion of Reflection Coefficient
Calculations

Using the basic definition of the reflection coeffi-
cient I?,, given by (14), the amplitude and phase of
R, were calculated for a wide range of conditions.
While, strietly speaking, I, is defined as the limit
for z=—z, where z—>, it is of interest to first
demonstrate how R, approaches this limit. An
example of such calculations is shown in figures 2a
and 2b. Here (C=0.1, corresponding to highly
oblique incidence, and N=15 km, or f=20 ke/s.
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Ficure 2. The reflection coeflicient as a function of height for
an exponential profile and a fired angle of incidence.

Various values of g are shown on the curves. It is
immediately apparent that for sufficiently negative
values of z (i.e., sufficiently far below the layer),
iboth the amplitude and phase of £, approach a
imit.

Actually, the curves in figures 2a and 2b have more
than just a mathematical interest. Physically, the
R, corresponding to z=—z, where z; is finite, is the
;‘eﬂection coefficient for a permittivity profile of the
orm

E(2)=K, [1—% o | for 2>~z

=0 for z<<—2z,. (25)

Therefore, these curves describe reflection from a
sharply bounded ionosphere which behaves expo-
nentially above its lower edge. Of course, as z
tends to «, the discontinuous profile becomes a
continuous exponential. It is rather interesting to
observe that as the discontinuity is moved from
above the reference level (2=0) to below, the
reflection coefficient passes through a minimum.
This is related to a Brewster angle phenomenon
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Ficure 3. The amplitude of the reflection coefficients for

vertical and horizontal polarization as a function of C which
2s the cosine of the angle of incidence.

since to the right of this minimum in figure 2a the
reflection is metalliclike while, to the left, the
reflection is dielectriclike.

For the remainder of the present paper, attention
will be confined to the limiting value of R, far below
the reference level z=0 (i.e., z2~—2z~— o). On
the other hand, it should be emphasized that R, is
always referred to the level z=0.

The magnitude of the reflection coefficients R, and
R, are shown plotted in figure 3 for vertical and
horizontal polarization, respectively. The values
of |R,| were obtained from (14) using the multislab
model described. The values of |, were calculated
directly from (9) and, on this log-linear scale they
are merely straight lines. As an important check,
the value of |R,| was also obtained from a multislab
model using the same procedure as described for
vertical polarization. Within four-figure accuracy,
the values of |, obtained by the two methods were
the same.
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A number of significant features are evident in
ficure 3. In the first place, |, exhibits a Brewster
angle phenomenon, provided g is sufficiently large.
Here the reflection process is dielectriclike at grazing
angles and is more or less metalliclike at normal
incidence. Of course, |R,| does not exhibit this
phenomenon. However, for very small values of g,
corresponding to a relatively slowly varying medium,
the curves for |,/ and |R,| become rather close to
one another. This is consistent with the optical
behavior of waves in an inhomogeneous medium.
In fact, by a direct application of the phase integral
method of Eckerskey, the equation for |12, is found
also to be applicable to [R,). The use of the phase
integral method for such applications is necessarily
restricted to slowly varying media [Wait, 1962]. It
1s apparent, that for VILF radio waves, where g is of
the order of 0.5, the phase integral method is
inapplicable to vertical polarization.

Another interesting feature of figure 3 is the near
linear dependence of all the curves for small values
of (", Fortunately, it is just these values which are
important in the long-distance propagation of VLE
radio waves. The linearity of the phase curves for
R, are indicated in figure 4 for the same conditions.
Here, it is evident that they all approach —180° at
grazing incidence. The phase curves for R, exhibit
a similar property but they are not shown here since
they have only an academic interest at VLF.

The variation of the reflection coefficient R, as a
function of the gradient parameter g8 is illustrated
in figures 5a and 5b at oblique incidence. It is
rather remarkable that |R,| is relatively insensitive
to B if it is in the range from 0.7 to 3.0. Further-
more, it appears that [R,| has a broad maximum for
B approximately equal to 1.2.

The general behavior of the amplitude and phase
of the reflection coefficients at highly oblique inci-
dence suggests that, if 2, is written in the form

R,=—exp(al),

Pl e S B
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w |
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C
Ficure 4. The phase of the reflection coeflicient for vertical

polarization as a function of C.

the function « should be almost independent of C.
Writing

a=a;+1ay,

where «; and «, are real, it i1s a simple matter to
compute the complex coefficient « from the numerical
data of R,. The results are shown in figures 6a and
6b where (—a;) and a, respectively, are plotted as
a function of € in the range 0.05 to 0.30. It is
apparent that over this range of €| the coefficient «
can be regarded essentially as a complex constant.

For all the results given in the foregoing ficures, it
has been assumed that L=1/2 and \y=15. Actually,
the results for the magnitude of 2, and 2, do not
depend on L. In fact, |/,] and |7, are identical for
Bho=constant. Furthermore, the phase of the
reflection coefficients is also simply related although
the situation is slightly complicated by the choice of
the reference level where L is required to have a
special value. In fact, it is convenient to choose the
reference level (i.e., z=0) so that

]'_@41X]:3.

2
wy 2 )\0

In this way, the results can be readily compared as a
function of frequency or wavelength. At the refer-
ence level z=0, the effective conductivity parameter
w, or wy/v has the value 2.51 X107,

PHASE OF R, (DEGREES)

W e s 20 s w
B
Ficure 5. The reflection coeflicient as a function of the
gradient parameter B for an exponential profile.
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Ficure 6. The real and imaginary parts of the function «
defined by Ry=—exp(aC) for No=15 and various values of 8.

For wavelengths other than \y=15, it is also found
that /7, may be approximated by the function
exp(aC’) where « is approximately a complex con-
stant. To illustrate the wavelength dependence,
—ay and ap are plotted as a function of A in figures
7a and 7b, respectively. For these curves, ( is
chosen to be 0.16; the corresponding curves for other
values of C in the range 0.10 to 0.20 are almost
indistinguishable. The ordinate in figure 7a is
simply related to the magnitude of the reflection
coefficient and, thus, small values of —«, are associ-
ated with high reflection coefficients. It is apparent
that for small values of 8 corresponding to a diffuse
layer, the reflection coefficient becomes very small for
the shorter wavelength. On the other hand, for a

rapidly varying layer, corresponding to large values of
B, the reflection coefficient decreases with increasing
wavelength. For intermediate values of 8, the
reflection coefficient has a minimum in the wave-
length range between 10 and 30 km. For example,
when B=1.0, the optimum wavelength is about 17
km or approximately 18 ke/s.

The curves for a, n figure 7b also have a particular
significance. Noting that

arg R,=— 71+ a,C,

it 18 apparent that «(C is the phase shift resulting
from the imperfect reflecting properties of the
exponential layer. To attach a physical meaning
to this term 1t is often desirable to imagine the
reflection taking place at a height Az, below the
level z=0. In this case, Az is chosen so that the
arg of R, 1is always —7.  Clearly,

C(g:.?kAfl "'47FA21/)\(),

or
A\Zh = ag)\n/(‘iﬂ').

For example, at \q=15 km (i.e., 20 ke/s) and =1,
the effective height of reflection is depressed by
approximately 3 km. For smaller values of g,
it is seen from ficure 7b that Az, may be much
greater.

6. Final Remarks

The results, for the coefficients «; and a, given
here may be introduced into the waveguide mode
theory. In this way, attenuation rates and phase
velocities of the modes may be obtained. This is a
ralid subject for another paper.

The influence of nonexponential profiles also
appears to be a subject worthy of some attention.
Using the iterative method described in this paper,
it appears that any reasonably smooth profile
may be treated in a straightforward manner. Also,
with some modification, the technique may be used
to evaluate the effect of discontinuities in gradients
and local regions of excess ionization.

General conclusions about the influence of the
profile of the lower ionosphere on VLE propagation
must await completion of extensive and systematic
calculations. It is hoped to report such results
in the near future. Detailed comparisons of theory
and experiment are also deferred until these more
complete computations become available.

We thank Mrs. Carolen Jackson and Mus. Eileen
Brackett for their assistance in the preparation of
this paper. In addition, we would like to thank
Douglass D. Crombie for his useful suggestions and
comments.
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The real and imaginary parts of the function a plotted as a function of the wavelength N, for C=0.16 and various values

of B.
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