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The radiation from a radial electric dipole on the surface of a corrugated sphere is
treated. It is shown that the power radiated in a given mode depends eritically on the
surface reactance and the circumference of the sphere. In fact, for certain values of these
parameters, particular modes are strongly excited and contain most of the power. Such a
structure can be regarded as an external resonator and its resonant characteristics are a
function of the refractive index of the surrounding medium. This opens the possibility that
a surface-wave spherical resonator may have important applications to refractometry.

1. Introduction

A corrugated surface on a dielectric-coated plane surface will support a nonradiating
surface wave [Zucker, 1961]. In fact, even if the surface is partly curved, it has been shown
that the wave excited on the structure bears a close resemblance to that of a lossless plane
surface [Wait, 1962]. The curvature of the guiding surface tends to produce some leakage
of energy in the normal direction although most of the energy is still guided tangentially
around the periphery of the structure. Consequently, a corrugated regular shaped body,
which is closed on itself, should be able to support circulating surface waves. For certain
critical dimensions it can be expected that some interesting resonant phenomena will result.

The possibility that a closed corrugated cylindrical structure (of infinite length) will
exhibit resonance phenomena has been considered on prior occasions [Cullen, 1960; Wait and
Conda, 1960]. It is the purpose of the present paper to extend these arguments to a spherical
body which has the practical advantage of being a finite structure.

2. Formulation
The model chosen is a sphere of radius @ which is corrugated by shallow concentric grooves.
Choosing a spherical coordinate system (7, 6, ¢), a radial dipole Ids is located at 7=4 with respect
to the sphere at 7=a and, of course, b=a. 'The situation is illustrated in figure 1. The bound-

ary conditions at the surface of the sphere are

Ey=—iXH,),—, (1)

—.

Ircure 1.  The latitudinally corrugated sphere excited
by a radicl electric dipole at the pole.
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where X is the surface reactance. If the grooves are rectangular in cross section, with peri-
odicity d, width w, it is known that [Zucker, 1961]

X9, % tan kl (2)
where 7,=1207 and k=2r/wavelength. This formula is valid provided that kd< <1 and kl
is not near an odd multiple of /2.

For the presently posed problem, symmetry considerations indicate that the resulting
field is purely TM (transverse magnetic). Consequently, the individual field components
may be derived in terms of a single scalar function U as follows:

o? S
E~(k+55) 00 3)
1 @F
= 7 Orof () (4)
Hy=—iew 50"- (5)
while £,=0 and H,=H;=0.
3. Solution

The fields of the dipole in the presence of the sphere can be expressed in the form
=0?-U° (6)

where U? is the primary influence and U® is the secondary influence. Now

U?=—Ce~ *E|(47R) 7)
where R=[r?-+b>—2br cos 6]'? is the distance from the source to the observer at (r, 6) and
0:%9. Making use of an addition theorem for spherical wave functions [Morse and Feshbach,
1953]

zkﬂ Jo (kRSP (kb); for r<b

l*p
h$P (kr)j(kb); for r>b

(8)

where 7, and A are spherical Hankel functions and P,(cos 6) is a Legendre polynomial. Since
(V4 U'=0 ©)
and because U* must be an outgoing wave at infinity, it follows that

U @Z (2g-+1)P, (cos ) AL (kr) (10)

where
l .
AL - log [],(2)]+G

=T
hq)(k(l) d%log [$h‘<12)(1)]_!_g

h (kb) (11)

and where G=X/n,. The veracity of this equation may be confirmed by seeing that it satisfies
the required boundary condition at r=a.
In order to simplify matters, the source dipole is located on the sphere (i.e., b=a) and
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the observer is in the far field (i.e., kr—). It then follows without difficulty that
LTl o gD Peoss)

Sdrraz = (;;[ ah® ()4 Qzh P (x)]

e—ikr

where z=Fka.
In obtaining this result, use has been made of (5), the Wronskian relation

Wiaj,(x), 2hg’ (x)]=—
the asymptotic formula

2 (k/)~ @("“)e‘”" for kr— o,
and the derivative relation

3 P, (cos 8)=—P(cos ).

4. Power Radiated

(12)

(13)

(14)

(15)

In the present pr oblem, a meaningful quantity is the total power P supplied by the dipole.

Since the structure is ]osdess P can be obtained by integrating the real Poynting vector over

a concentric spherical smiacc of infinitely large radius. This readily leads to

P—Tim 12 " [H H5)2mr* sin 60d
0

T=>® 2

(16)

where the asterisk denotes a complex conjugate. To perform the integration, it is noted that

T eIl
f Pl (cos )P, (cos ) sin 0(10=f Pi(z)PLi(2)dz
0 =il

=01if g#¢’
_2(g+Dg,
2+1 9=q’.
The resulting expression for the total power is then
(lds)* &
D
P=n, Smats? = Dy
where
q(g+1)(2¢+1)

q

A ()] G )

This result may be written in more convenient form for calculation if one notes that
h(1(2) (x) =7, (x) _7.7/11(1')
where 7, and y, are real. Thus

_ ¢(q+1)(2g+1) -
P+ Ga) o (@) Ty @+ Go) ya (2) oy, (@)

In some instances it is convenient to define a radiation resistance R such that
P=1I2R/2.
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(18)

(19)

(20)

(21)
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Then

R 3
where
Ry=80(kds)? (24)

is the radiation resistance of the same dipole if it were located in free space.
5. Alternative Derivation by EMF Method

The expression for the total power given by (18) can also be found by the so-called “in-
duced emf method” [Carter, 1932]. The procedure is not particularly rigorous but it does
lead to correct results. The derivation is outlined very briefly here. The reader should
have no difficulty filling in the steps.

By making use of (8) and (9) and the Wronskian relation (13), it follows that, for b=a,

Ids &\ (2q+1)hy(kr)
== - 5
r 4miewa qZ=o) alhy (2)+Ghy ()]

P,(cos ) (25)

where z=*Fa and
by () =2h ) (x). (26)

Using (3) and the basic differential equation

2 A
ete= L o=, (27)
it 1s found that

_lds &\ q(q D) (2 1)hy(kr)
Amiewtr®i= g () +Ghy (2)]

Py(cos 6). (28)

T

An expression for the radiation resistance R is now found from the prescription

?—Re [E"l‘s’] (29)
Z 0—0

roa

where Re signifies that the real part is to be taken. To effect this limiting process, it is

noted that
Rel:A —diie) S (30)
ho(x)+Gho(2) ] [hg () +Ghy(2)[?

which is valid if ¢ and z are real. The latter identity can be established by making further
use of the Wronskian relation (13). The final result for R is identical to (23), which is to
be expected.

6. Discussion of Numerical Results

To illustrate the resonance phenomena, the function p, is plotted as a function of the
normalized surface reactance G for z=3 and several values of ¢. The results are shown in
ficure 2 where the ordinate is the quantity 10 log,op, in decibels. It is evident that each mode
has a strong resonance for a particular value of . This resonance occurs when the denominator
of (21) passes throuzh a minimum. Because the y functions are much larger than the 7 func-
tions it turns out thit the minimum coincides almost exactly with a zero of the second factor in
the denominator. Therefore, the condition for a resonance is

(14 Gr)y,(x) +xy, ()]0,
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or
_1oy(x)
z Y,(z)

It is seen that the resonance peaks in ficure 2 become progressively sharper as the order ¢ of
the mode increases. Unfortunately, however, the value of the surface reactance to achieve
resonance becomes larger. For example, the resonance condition at ¢=S8 requires that (/=2.456
or X=920 ohms. It is quite difficult, in a mechanical sense, to achieve a purely inductive
reactance of this magnitude with a corrugated structure. On the other hand, the realization of
a corrugated sphere to exhibit resonance for the lower order resonance would not be quite so
difficult. For example, the resonance at ¢=6 occurs when (/=1.693.

The influence of a small change of frequency [rom its resonance value is also of interest.
For example, if the relative change of frequency is § the value of ka changes from 3 to 3(1-44).
If the sphere is corrugated the inductive reactance is also approximately proportional to fre-
quency. Thus, ¢ changes from 1.693 to 1.693(1-+4). The effect of such a change is illustrated
in figure 3. As expected, the shift of frequency will cause a certain amount of “detuning.”
For a gross change of frequency, the structure will become resonant at another mode. For
example, at a 10 percent change of frequency, the mode at ¢=7 has a resonant peak. Actually,
for a realistic structure the detuning effect is probably more severe than shown in figure 3,
because the frequency dependence of the surface reactance is more pronounced than a linear law.

Of particular importance is the behavior of a resonant peak when the refractive index of the
surrounding medium changes. In this case, the surface reactance parameter ¢ can be regarded
as a constant but the value of ka changes to ka(1-+A) for an incremental refractive index change
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reactance for a sphere whose circumference is 3 gated sphere.
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Fraure 4. The effect of changing the refrastive index Ficure 5. The Legendre polynomial P& (cos 0) for
of the surrounding medium. various orders.

These characterize the radiation patterns for the various modes.

of A. The situation is clearly illustrated in figure 4 where ka is again taken to be 3. The
curves in ficure 4 apply to the case where the environment changes and, consequently, the
resonant sphere could be regarded as a refractometer. The possibility that such an external
resonator could be used as a method of measuring the refractive index of various gases should be
investigated. The method may have some merit in the probing of plasma from spherical
satellites.

In the foregoing discussion attention has been restricted to the radiated power of the various
modes. As indicated, the structure may be designed so that most of the power goes into only
one mode. The radiation pattern of such a mode is described by the function P,'(cos ) as can
be indicated by (12). Although these functions are very well known, their behavior is sketched
in figure 5 for convenience of the reader. As indicated, the number of lobes in the radiation
pattern increases with the mode number ¢. It is interesting to note that the radiation pattern
has a null in the axial directions as expected. Also, it is observed that nulls occur in the
broadside direction (i.e., 6=90°) for the even modes. On the other hand, the even-ordered
modes have a lobe maximum in the broadside direction. This fact may be helpful in certain
practical schemes which are used to detect the resonances by measuring the radiation pattern.

7. Comparison With Cylindrical Model

There are certain aspects of the present problem which must bear close resemblance to
the resonance with corrugated eylinders. The cylindrical analog is an axial slot (line magnetic
source) on the surface of a longitudinally corrugated cylinder of radius @, Such a mode!
was considered in a previous paper [Wait and Conda, 1960] so theoretical details need not be
elaborated on. Leaving aside constant factors, it was shown that the total power radiated
was given by

o
Pi=2_ pn
m=0
where

€n 1

Pn=2 (H® ()1 GHD (@)
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ka =3(1+38)
G = 1.6487(1+3)

20

Frcure 6. The “deluning” effect for a corrugated
cylinder shown for purposes of comparison with
figure 3.
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where ¢=1, ¢,=2 for m=234, . . ., H} (z) is a cylindrical Hankel function, 2=ka, and
(7 is the normalized surface reactance. The radiated power p,, in db is shown in figure 6 for
ka,=3(1+6) and (=1.649(1-+6). This is the cylindrical analog to the resonance curves in
figure 3 for the corrugated sphere. The similarity between these curves is really quite striking.
This provides a good check on the calculations since, from a physical standpoint, the resonance
occurs from an interaction of peripheral surface waves.

8. Conclusion

On the basis of the results given here it is apparent that a spherical-shaped body, which
has latitudinal corrugations, may be strongly resonated by a radial electric dipole located at
the pole. It may be mentioned that the same state of affairs exists when the excitation is by
a small annular slot which is also located at the pole.

We thank Mus. Lillie Walters for her able assistance in carrying out this work.
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