JOURNAL OF RESEARCH of the National Bureau of Standards—D. Radio Propagation
Vol. 67D, No. 3, May-June 19€3

Analysis and Synthesis of Nonuniform Transmis-
sion Lines or Stratified Layers'

G. Latmiral, G. Franceschetti, and R. Vinciguerra

Contribution from Istituto Universitario Navale, Naples, Italy
(Received August 22, revised November 16, 1962)

Nonuniform lossless or lossy transmission lines or layers used as broadband matching
or absorbing devices are studied.

When the refraction index, n(x), and the characteristic impedance Zy(x), are given, the
reflection spectrum, po(n) = po(47/N), for =0 can always be computed by solving numerically
a Riccati differential equation (RDE). (Analysis)

Conversely, not only for n=const [Bolinder, 1950, 1956] but also for n(x) real and p= puq,
a tapered transformer can be synthesized starting from a given po(n) speetrum by using
Fourier transform techniques. (Synthesis)

For broadband absorbers, the synthesization procedure can be approximately applied,
under certain conditions, to only the part of the spectrum which represents the reflection of
the matched (lossy) line.

1. Introduction

The first part of this paper deals with the problem of matching two uniform transmission
lines (or layers) by means of a nonuniform line (or layer) in such a way as to “minimize the
reflections.”

A variational solution of the problem does not seem to exist, and, therefore, instead of
trying to minimize the average value of the reflection over a given frequency band, we will
solve the problem of keeping the reflection lower than a given value over the largest possible
frequency band, for a given length of the matching line.

To find an acceptable solution for this problem, two methods can be followed. The
first one (Analysis) consists in varying tentatively the parameters of the line in such a way
as to obtain a satisfactory reflection spectrum, i.e., reflection coeflicient versus wavelength.
According to the second method (Synthesis), we start from a favorable reflection spectrum and
find the corresponding law of variation of the parameters of the line.

The second method is made possible by the fact that, in a number of cases, the line
parameters can be obtained operating on the inverse Fourier Transform of the reflection
spectrum.

In the last paragraphs of this paper (par. 6 and 7) some tentative techniques are described
to utilize even in the case of absorption the synthesis method, which is rigorously appliable only
in the case of matching.

Let us now recall the basic equations to which recourse will be made.

For monochromatic waves, the two wave equations describing the propagation of em
waves along an inhomogenous line or a stratified medium can be condensed into the single
Riceati differential equation (RDE)

g ZF
Z' vty 5 =0 (1.1)

1 The research reported in this document has been sponsored by the European Office, Office of Aerospace Research, USAF, under Contracts
AF61(052)-36 and 589.
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where

Z=input impedance at abscissa z,
7'=its derivative with respect to z,
Zy=intrinsic impedance of the line or layer at abscissa x,
2 .
Y=jn (x)=propagation constant, and
n(x) =n,(x) —jns(x) =relative refraction index.

Equation (1.1) can be written in terms of the reflection coefficient p(x), which can be de-
fined in the “Schelkunoft form”

Z(x)—Zy(x)
=" 1.2
PO=Z)% 7u(a) {2
obtaining the following RDE:
’ Z,O 2\ ¢
P “2’)’9‘*‘2*2(‘) (1—p*)=0. (1.3)

Let us note here that (1.1) and (1.3) are valid for layered media not only under normal
incidence, but also under all conditions of incidence and polarization, provided the normal
equivalent wave is considered.

If we multiply both w,(z) and ¢ (x) by a constant (', the first and last terms in (1.3) remain

, .4
unchanged, while the second becomes —j %(,’n(x)p(x). It follows that we find the same

reflection coefficient p(z), for the wavelength X\, that we found previously for the wavelength
N C; that is, on the average, the reflection coefficient is lowered. This property cannot be, in
general, easily utilized in the design of inhomogeneous layers, since high values of u, are usually
accompanied by still higher values of ¢,. 'The above remark shows, however, that an increase,
even if gradual, of y, (which is generally a complex quantity), increases the effective length of
the line, and lowers, consequently, p(x).

When w=-const, and only e varies with , a single function is sufficient to describe the
inhomogeneous line: either y(z), or Zy(z), or n(xz). Equation (1.3) can then be written in the
form

S
p'—jmp—g (1—p*)=0, (1.4)
where
n=4m/\.

2. Analysis of an Em Line or Layer

The problem of analyzing the behavior of an em line or layer can be summarized as [ollows:
For given y(z) or n(x) and Zy(x) functions (i.e., for given €, (x) = ¢, (x) —je(z) and p,(2) =, (x) —
Jus(x) functions) and length L of the layer, find the reflection coefficient at abscissa x=0,
p(0, n)=po(n), as a solution of (1.3) or (1.1) plus (1.2), with a given limit condition p(n, L).
Obviously, when p=-const it is sufficient to start from only one of the previous functions, e.g.,
from the refraction index n(z).

In the case of matching, p(n, 1.)=0; in some cases of absorption, p(n, L.)=—1, i.e., the line
is short circuited at the far end. It must be pointed out that (1.1) is more general than (1.3),
since it allows an initial discontinuity. If there is such a discontinuity, only il both this one
and p, are very small, the overall reflection coefficient can be approximately calculated by
adding the two reflections.

Generally, it is not possible to have analytic solutions of (1.1) and/or (1.3), and it is neces-
sary to carry out computations by means of digital or analog computers.
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Equation (1.4) can be linearized as follows:

mn’

’ 0 b ¢
p —Jnnp—%—ﬁ, (2.1)

provided that |p(z)[*<<<1 everywhere. This condition is generally fulfilled in a matching
device, at least in the n region of low reflection.

In the case of matching and for w,=1, ten different real n(x) functions were tested, and the
corresponding py(n) computed from (2.1), by means of a PACE-TR-10 analog computer.

Assuming 7n(0)=1, the “transformation rates” n(L)/n(0)=2, 5, and 10, were considered.
It was shown [Franceschetti, 1962] that, for n(0)#1, the results are still valid, provided that
we refer to wavelengths measured in the medium of refraction index n(0), i.e., to the wavelength
An(0). The scattering matrix (S) of the lossless matching junction can be easily deduced
qtarting from the knowledge of py(n) =S}, computed by means of the linearized (2.1). Actually
it is possible to express the coefficient Sy, in terms of py(n), and, by means of the matrix equation
(S)(?)*f (1), to caleulate (S), obtaining the following expression [Franceschetti, 1962]:

) Vi=lanexp [ 73 [ aarde |

V1= po(m)[*-exp l:_l 5 f rl:r:l —pi(n)- exp l:—jn .f)L n,(x)(lx]‘?

where pif(1) 1s the complex conjugate of py(7).

(S)=| (2.2)

The results of the py(n) calculations, in the ten different cases considered here, are referred
to under table 1, where the ratio £=X\/L up to which |p(n)| % is less than 10 percent is given
for the ten n(x) functions, and the three transformation rates 2, 5, and 10. This means that,
for wavelengths A<L¢, the matching junctions under consideration give a power I(’ﬂ(,bthll
less than 1 percent. It is apparent from this table that, assuming |po(n)|< 10 percent, a
generally “optimizing”” n(x) function cannot be defined, since the behavior of each function
depends on the transformation ratio. For example, the best matching function seems to be
n(z)=exp [kx/L], for n(L)=2 (£=3.85); and n(x)=exp [k(x/L)?], for n(L)=5 (£=2.82), and
n(L)=10 (£=2.18).

TaBLE 1. Values of £=N/1i such that for X<LE, |po(1/N) | < 10 percent (matching case)

exp exp exp 1 exp cosh
Functions n(r) [kz/L] [k(z/L)?] [k(z/ L)3] 1+kz/L 1+-k(z/L)2 | 1+4+k(z/L)3 1-kz/L [ekz/L~1] [kz/L)

1+k
| (1-coswz/L)

I

n(L)=2 3.85 2. 60 2.04 3.78 3.35 2. 62 3.57 3. 64 ‘ 3.08 2.94
n(L)=5 1. 36 2.0 2.82 <5120 2.50 1’899, 1.58 2.41 | 2.41 1.33
n(L)=10 1. 44 1.89 2.18 <10 1.61 1. 46 1.45 .80 ! N7 =)

o]

It must be pointed out that values of n up to 8 are easily attainable by means of metal
powders suspended in paraffin wax [Kelly et al., 1953].

In the case of absorption, ten different nonmagnetic and magnetic functions n(x) were
tested, and their behavior computed, solving (1.1) and (1.2) (i.e., the nonlinearized equation)
by means of the IBM 1620 digital computer of the Faculty of Science of the University of
Naples. An initial discontinuity was often assumed.

The results are summarized under tables 2 and 3, where the power reflection coefficient
[po|?% 1s given for several values of the parameter \/L.
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TasLE 2.  Power reflection coefficient |po(1/N) |2 percent, for several values of N1 (absorbing case)
e=Aexp [2(m—je)z/L] p=Bexp [2(n—j¥)x/L]

A.m. ¢ 1.0 1.0 0.7 1.5 1.0 0.7 1.5 1.5 0.6 1.5 1.0 0.7 OO0
By 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.6 0.6 1.0 1.0 0.6 1.0 0.5 0.5
AL=1.0 0.30 0.75 e e e e e RS 0. 054
2.0 1.20 1L,(0) 2.31 0. 61 .29
3.0 2.30 2.70 2.92 .60 .45
40 .80 2.90 3.07 .82 .59
5.0 8. .50 4.12 .80 . 66
6.0 3. 3.75 4.95 .80 1.06
7.0 14.8 5. 60 .72 1.99
8.0 30.16 6.04 .59 3.45

TasLe 3. Power reflection coeflicient |po(Li/N) |2 percent, for several values of N/1. (absorbing case)

e=A [cos 2¢ %—j % sin 2¢ /L) exp [2m z/L]  p=Bexp [2(n—j¥) 2/ L]

4. m.o 1.5 1.0 0.7 1.5 1.5 0.3 1.5 1.5 0.3 1.5 1.5 0.3 1.50 1.5 0.3
B.m.y 1.0 0.0 0.0 1.0 0.4 0.4 1.0 0.4 0.4 1.0 0.6 0.4 1.0 0.6 0.4
N 5 3 5 3 5
NL=1 | 1.70 ! 1.83 1. 56 1.75 1.58
2 .46 2.13 2.24 1. 91 2.01
3 5. 90 2.99 3.26 2.92 2512
4 2.90 3.87 3.76 3.12 3.34
5 .50 5.46 5. 51 3.94 3.76
6 4.50 7.47 7.52 5. 36 5.20
7 12. 4 9.35 8.21 7.03 6.45
8 22.3 3BL{0) 8.26 8. 74 7.03

The values of the parameters are listed in the tables under each case.

In table 3 the conditions for physical realizability (i.e., the Kramers-Kronig equations)
[Latmiral et al., 1961] have been taken into account for the electric losses (purely conductive
electric losses have been assumed).

Cases 1, 2, and 6 are nonmagnetic; besides, for z—L, they present values of the rate
e/e o high as to be difficult to obtain practically.

(Clases 3, 4, and 5, and particularly the last, approach too closely to Heaviside conditions;
they assume values of u, practically unattainable in the microwave range.

Cases 7, 8, 9, and 10 are probably those which may be realized without excessive diffi-
culties; the electric losses are purely ohmie, and the rate o/we; seems to be everywhere realizable.

3. Problem of the Synthesis

The problem of synthesizing an em line (or layer) can be summarized as follows:

Starting from a given (generally complex) reflection spectrum py(n) at the beginning of
the line of length L and from given limit conditions, find the two corresponding v(z) (or n(x))
and Zy(z) functions. If u,=const, only one real function, e.g., n(zx), must be found. In the
case of matching, obviously, the limit conditions are the values of 7.(0) and n(L).

In the following sections it will be shown that the synthesizing problem for the match-
ing case, at least for nonmagnetic lines, can be completely solved by means of the Fourier
transform techniques.

On the contrary, in the case of absorption (except for some special cases), only the follow-
ing problem can be solved: for a given Z(5) function, and length L of the line, find a com-

plex function 7 (z) such that its reflection coefficient p,(n) is more favorable, on the average,
than the given ().

4. Synthesis in the Matching Case

As was pointed out in section 2, in the case of matching the linearized RDE,

, Zy
P 2‘Yp+2*20—0 (4.1)
may be considered instead of (1.3).
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Solving (4.1) for p(y, L) =0, we have

(n)= fL Z ex )I:—— ' frn(;r)(lt]'lx (4.2)
Pok 7 J. 27, X .l77‘ ,re)ar i 2

When n=const (this is the case of TEM guided waves), and, e.g., n=1, (4.2) becomes

L7 .
po(n)=f0 oy oD [l d (4.3)

Equation (4.3) shows that py(n) i1s the Fourier transform [Bolinder, 1950, 1956] of the

function (of x) 57 which is zero out of the interval (0, ) in which the inhomogeneity is con-

fined, and which in turn can be represented as an inverse Fourier transform as follows:
) p
Zy 1 (t° .
57 o po(n) expljnz] dy. (4.4)
0 SHURE 6y

r/

The fact that py(n) and 24 are a transform pair provides the argument for making the
0

synthesis of a broadband matching line with n=const.

=)
2Zn
constant in the interval (0, L) (and zero out of it). Analogously, if py(n) is the square of the

bl

For example, if we choose for p,(n) the well known “sampling function,” we must have

7’

sampling function (which is a very favorable ‘“‘spectrum’ of reflection), — will become a

) ()/
“triangular pulse” in the interval (0, L) [Bolinder, 1950, 1956]. 0
When p=const, we can get a transform pair even when 7 is not a constant, but a real
function of x.
The constancy of u allows us to start with (2.1) instead of (4.1), so that (4.2) becomes

L o/ r
po(‘r)):—ﬁ ‘IZIn, exp [—jn ﬁ 11(1:)(/1'] dr. (4.5)

As n(z) is always positive, the integral function

;I/Zg/(w):ﬁj n(x)dx (4.6)

1s always increasing and admits, consequently, the inverse function x=ux(y).
Let us introduce in (4.5) the new variable of integration 3. We obtain

puln) == [ Gl T exp (= dy, (4.7)

where ¥, =y(L), and the derivative is with respect to z.
As (4.7) shows, py(n) and

n'[z(y)] ,
@(y):—m (4.8)
is a Fourier transform pair.

As a matter of fact, even when 7, is finite, the function ¢(y) is zero out of the (0, v,) in-
terval and therefore the integration can always be understood as extending along the whole
positive y axis.

If the py(n) function is given, the ¢(y) function result determined by means of the inverse
transform and the n(z), which is the datum of practical interest, can be obtained by solving

the integral DE
n ()
2n2( (J n(x) h) (4.9)

672865—63———6



T
which becomes a DE of the second order in the unknown y= f n(x)de and, precisely,
J 0

rr

1 )
— ;y,2=¢<y>. (4.10)

Let us start from a family of spectra py(n, 4, 7.), whose inverse transforms are zero out of a
finite interval ; the parameter ¥, represents the extent of said interval.
Equation (4.10) becomes

7

A
2y/2 §0<:I/7A} yL)y (411)

where the derivatives are with respect to .

This is a DE of the second order containing two parameters (A, 1y,).

Integrating the above DE with the two initial conditions %(0)=0 and %’(0)=n(0), we
get a solution which contains the parameters A, y.:

y=y(x, 4, yo). (4.12)

The parameters must be chosen in such a way that
y=y(L, 4, yz), (4.13)
n(L)=y'(L, A, y.). (4.14)

Obviously, for —0, i.e., for very long wavelengths,.the reflection coefficient p,(3) must
approach the value [%(0) —n(L)]- [n(0)+n(L)]™:. However, it must be pointed out that we
do not deal here with the complete RDE, but with the linearized one, and that the latter does
not require the above condition, which will be satisfied only for low “transformation rates.”

n(x)

P y)=Alyy —y?3)

Ficure 1. n(x) functions referring to table 5, 1st
row,

The various curves are related to different values of the transforma-
tion ratio n(L)/n(0) =n(L)/1=n(L).
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In some special cases, the problem can be solved analytically [Latmiral et al., 1962].
For example, when p,(n) is of the type of the “sampling function,” the corresponding n(z)
function becomes of the type proposed by Jacobs [1958] on the basis of empirical arguments.

Analogously, when p,(n) is an exponential integral (which is a very convenient type of
reflection spectrum), the corresponding 7n(z) function becomes the well-known exponential
one [Latmiral et al., 1962].

In general, however, the problem admits of only numerical solutions, and it is necessary
to solve (4.11) under conditions (4.13)—(4.14) by means of analog or digital computers.

Five different types of ¢(y) functions (to which favorable spectra of reflection are related)
were chosen, and the corresponding n(z) functions computed, for several rates of transformation,
by means of the above procedure.

The n(x) functions are traced in figures 1 through 5, under each of which the corresponding
¢(y) function is referred. The first four cases were computed by means of an IBM 1620 digital
computer, and the last one by means of a PACE-TR-10 analog computer.

Besides, in table 4, the ratio ¢=\/L, up to which the reflection coefficient |p,(n)| is less
than 10 percent, is given for the computed n(xz) functions and three transformation rates
(2, 5, and 10). The complete p,(5) function can be easily computed as the Fourier transform
of the corresponding ¢(y) functions, and are referred, together with the numerical values of
the parameters, in table 5.

In all computations we have chosen n(0) =1, but this assumption does not cause any loss
of generality (see sec. 2).

As in the case of analysis (see sec. 2), it is apparent that a generally “optimizing” function
n(z) cannot be defined. It is interesting to point out the very good results obtained for high
“transformation rates.”” For example, for n(L)/n(0) =10, the n(z) function synthesized starting
from the function o(y)=A sin[zy/y.l, presents a value of £¢=3.80, i.e., wavelengths up to
about four times the length L of the matching junction are almost completely transmitted.

n(x)

= Py =Alyy -y2)2

o
X o 0.5 .0 x
Ficure 2. n(x) functions referring to table 5, 2d Ficure 3. n(x) functions referring to table 5, 3d
row. row.
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n(x)
10
n(x)
10
@ (y) : TRIANGULAR PULSE
B
5
|
|
I
I
[0} | I I
(o] 0.5 IFO; X
)
X
Frcure 4. n(x) functions referring to table &, jth Ficure 5. n(x) functions referring to table 5, 5th
row. row.
TaBLE 4. Values of £=X\/L, such that for N=L &,| po(L/\) | 2= 10 percent (matching case)
Funections ¢ () AlyyL—y2] Alyyr—y2)? A(—cos 27 ylyL)| AsinzylyL Triangular pulse
between 0-yr,
n (L)=2 2,90 2.0 2.02 2.90 987
n (L)=5 3.20 2.£0 2.50 3.20 2.63
n (L)=10 3.70 o) 2.63 3.80 3.03
|
TaBLE 5. Malching case: Functions ¢(y), po(n), and numerical values of the parameters
) o(y) n(L)
Fig. py(m) (exact = | yL
O=ysyr ! values)
2.05 |—0.64 | 1.5
24 - L 2.94 | —66 | 1.7
1 A(yyL—y? = qm ﬁ—y: COoS —] exp [—Jn ) ] 5.05 | —. 61 2.0
n* Ln o 2 6.99 | —.55 | 2.2
1.0 | —.46 | 2.5
2.01 [-1.95 | 1.4
“ 44 nyL_6yL  omyr_ o "I.UL] [ !/L] A [Siad || L
2 A . —y2)? = ———yssini——=lRex] —jn = 4.95 |—0.75 2.0
(yyr—v?) o n” B) 5 VL B P | —in% e[S a5
9.85 | —.53 | 2.3
2.01 | —. 1.
2y ‘ sin "_L ][ sin ][_+,,:| L} sin [[U n} 1/271‘:”‘ T 2.39 _gg lé
3| A(lécos'—) AyL 2 +3 o .o\p[ Jn %5 4.97 | —.40 2.0
‘ 2 'l“ 2m ULl yL 2 7.01 | —.49 | 2.0
+n ——71
2| vL 2 10.07 | —.52 | 2.20
™ ) x|y 1.99 | —.36 | 1.50
wy S“‘[{?ﬁ" Dl [{ ) ?]] e .10 | —.5¢ | 1.68
4 A sin — o exp | —jn & 5.20 [ —.65 2.00
23 2 1 [IL+,,1 UL] [L_.,, ﬂ] ] 2 6.68 | —.68 | 2.20
lve vz 2 10.90 | —.75 | 2.50
2.0 | —.50 | 1.35
; 42 3.0 | —.704 | 1.60
5 | Triangular pulse of | Ayr [Mﬁ] - exp [—jn y)'} 5.0 —. 864 1.86
height A ‘ 8 nyL4 2 7.0 | —.936 | 2.11
10.0 |—1.02 | 2.28
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5. Quarter Wavelength Law

Let us now define the interval Ay according to the following relation (analogous to the one
defining the “radius of gyration” in mechanics, or the root-mean-square error in error theory) :

N N )
(n=p [ wtloimli, (5.1)
where

+e .
1= [ omtin (5.2)

Let Ay be the analogous interval for the function ¢(y).

It is apparent that the two functions po(n) and ¢(y) will be noticeably different from
zero only inside the two intervals Ay and Ay.

The product of the intervals Ap and Ay cannot be less than a given positive value K, which,
according to the adopted criterion of the square mean, equals 27 [Persico, 1950]:

An-Ay>2m. (5.3)

If we refer to the positive half interval, Ag=4x/\,.., where X\, is the longest wavelength
almost completely transmitted, and if we put Ay~y,=nL, where 7 is the mean value of n(z)
in the interval (0, L), (5.3) becomes

47 -

9 - nlL>2m WA by (5.4)

When n=const=1, the two Fourier related functions are p,(n) and Z,/27, (see sec. 4),

and inequality (5.4) becomes
Nar AL (5.5)

This last inequality shows that, for a given length L (in air), the matching line becomes
ineffective for wavelengths beyond 4L, whatever the function Z;/27, may be.

On the contrary, when 7 is a function of , at least in nonmagnetic cases, an improvement
can be expected according to (5.4).

For further improvements due to magnetic properties, see section 1.

6. An Approximate Solution of the RDE in the Case of Absorption

For the synthesis of a broadband termination, an empirical method may consist of adding
an arbitrary imaginary part to a purely real n(z) function, found according to the above tech-
niques (see sec. 4), in such a way as to make the phase vary linearly with z; a numerical checking
is then obviously necessary. Another way may consist of planning an absorbing device com-
posed by a broadband transformer with a high n(ZL)/n(0) rate (table 4, n(L)/n(0)=10), followed
by a thin “Heaviside” absorber, probably realizable without excessive difficulties in these
conditions.

We will now find an approximate solution of the RDE in the case of absorption, with the
limit condition p(y, L)=—1.

As is well known, a RDE can be transformed into a Bernouilli one, once a particular
integral is known. We may consider as such the solution of the RDE for the condition
which corresponds to perfect matching at the far end, i.e., to p(y, L)=0.

Calling ¢(z) such a solution, the substitution 7=p— o transforms (1.3) into a Bernouilli DE
in which the further substitution y=7"" yields to a linear equation whose general integral is the
following :

) L Z(’) 1 a7 Z(; i L Z(; ] ; .
y=exp [£ (27—!—0 Z) (lx] {—5 A exp [—ﬁ (27+<r 70) d.c]-a’x+( } (6.1)
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As y=(p—o) ! must become (—1—0)"'=—1 at the end of the shorted line, (' must equal
—1. Consequently, we can write:
L
exp [ ’ (9'y+a 7z ) (Ix]

O

For =0 we have
7 i
exp I:— f (27—|—<7 7) (]x:l
<0/

po(n)=ao(n)— f “ e\p[ f <7+(, 70) ({r] «IJL

As o(z) vanishes at the end of the line, contrary to p(z) which equals —1 at the same point,
the RDE for o(z) can be linearized, neglecting |o(z)[* in comparison with unity; consequently,
we can consider o(x) as the solution of the following linear DE:

dzr |- dx

(6.3)

1Z;
i —207:—520' (6.4)
AL

Multiplying (6.4) by o and neglecting % we have

I dd

dan—Z: odr. (6.5)
By integration we obtain
—f 2 dx=—c*(x). (6.6)
Consequently )
exp I:—LL o %dr]zexp [—d(x)|~1—d*(x), (6.7)
and, analogously
exp [ f (lf]—e\p [—ai(n)]>~=1—a3(n). (6.8)

Substituting (6.7) and (6.8) into (6.3) we obtain

[1—a5(n)] 0\p[ f v(h:l

po(n)=ao(n)— Z’ T
1—5 A [1—d*(x e\p[—"f 'y(lz] (]1

&
.

(6.9)

Neglecting ¢ we get the following approximate value for py(n) :

e\p[ JE “] "‘I’[_,,)[ ad (6.10)

=) =15

pol(m)=ao(n)— 1_ 1 76 p[ f 7(11] dr

L / 4
U(J(n):-%% é e [ f’y(/x:l (6.11)

and o,,(L) is the reflection coeflicient in z= L for a wave which proceeds from right to left in the
layer matched at 2= L [Latmiral et al., 1962].
When [o,,(n)|< <1, (6.10) can be further simplified as follows:

where

mou(m)—exp | =2 iz | (6.12)
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even when v is complex, and w is not a constant but a complex function of z.

It must be pointed out that (6.12) is the solution of the RDE (1.3) linearized by neglecting
|p?| against unity and solved with the condition p(L)=—1.

This simplification is, however, possible only as a consequence of the considerations which
haveled to (6.10) by splitting the solution of the RDE into two parts by means of the particular
integral o(z), which vanishes for x= L.

Otherwise, the two assumptions [p|*<Z<1 and p(L)=—1 would have been almost un-
justifiable.

7. Special Techniques for the Synthesis in the Case of Absorption

The splitting of the solution of the RDE into two parts (6.10), the first of which refers to
the condition ¢(L)=0, allows us to extend the transform techniques (under the conditions
pointed out in sec. 6) even to the case where the layer is not matched at the far end and par-
ticularly to the case where p(L)=—1. KEquation (6.10) shows, as a matter of fact, that to
minimize |py(n)| is equivalent to minimizing |ay(y)|, provided that ~(z) :JZ n(x) 1s chosen in a
class of functions which satisfies the condition -

3 L A L
(R('ul part ()1'[ ‘yt/.f)zg f ny(x)de >H, (7.1)
JO / — )

where /1 is a given positive quantity.

According to (6.12), this means that the wave reflected from the metal must not exceed a
reasonably low value.

Obviously, in the case p(L)=—1, n,(L) and n,(L) are not given, and only 7,(0), 7.(0) and

/2,
f ny dr (see 7.1) are given.
JO

The above considerations allow us to extend, at least in some special cases, the synthesizing
procedure referred to under section 4, to the oy(n) function [Latmiral et al.,; 1962].

For example, when the refraction index is of the type n(z)=n,—jK/y, with n, and K real
positive constants with respect to both 7 and z, the Fourier transform pair (see sec. 4) becomes
po(n) and (7 exp [—Kzx])/27,. This case occurs, e.g., when very low ohmic losses are present
(0< < we), and e and ¢ do not depend on .

Another case in which the extension is possible is n=n,—jn,=const, with #, and n, both
independent of z and 7. py(n) are then the values that the Laplace transform of the function
Z4/27, takes on the straight line of complex equation

p= (na-+-jn), (7.2)
with 7 in the interval (0, «).
When the refraction index is z-dependent, the synthesizing procedure is still applicable
in some special cases.
For example, when the refraction index is of the type n(z) =n,(x) —jK/n, with K constant
with respect to both n and z, (4.11) becomes, under the hypothesis that e, .. is pot too high
(for example, € na < 16),

Y e Ki—a (y). (7.3)

This DE must be solved according to the method explained in section 4. The above
case occurs when very low ohmic losses are present, and the quantity o(z)/ve (x) (proportional
to the loss angle) is constant with respect to z.  Another case is the following:

n(x) = (nm—jns)f (), (7.4)
with 7, and 7, real constants with respect to both n and x.
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Let

y:ﬁff(x)(lx; Z/L:fo J@)da; Zolz(y)=Zo(). (7.5)

The values of py(n) are those which the Laplace transform of the function Z;/QZ-O takes
on the straight line of complex equation [Latmiral et al., 1962]

p= (natjni)n. (7.6)
8. General Techniques for the Synthesis in the Case of Absorption

Let us now consider the general problem of synthesizing a nonmagnetic absorber; we will
solve this problem by means of an approximate method.
It must be pointed out that, in the absorption problem, not four but only three conditions,

L
71(0), n(0), andj 1y dx, are given in a nonmagnetic absorber. The following approximate
JO

procedure, based on transform techniques, may be helpful. For u=const and small values of
p(x), the linearized (1.3) (see sec. 6) gives:

15 i
Uo(n):—;lj f 1_ ].m exp l: f 7(1x:| exp [— ]nf nldr] da. (8.1)

Let us compare the above equation with the following:

1 (% ni—jns I: .f’ :I
o(n)=—=% = exp | —gn | nmdz | de. 8.2
== [ #LEexp | —ja [ m (52)

If some exceptional cases are excluded, the value of Z4(5) are, on the average, less than the
values of ay(n).

Consequently, if n;(x) and n.(x) are such as to keep =, small in a given interval of 7, the
same functions can give a convenient oy.

Introducing the new variable of integration

y»-:j:n] (z)dz, (8.3)

Sum=—y [ I (m—ju]- exp [ mildy. (8.4

Thus 24(n) is a Fourier transform.
Once Z,(n) has been chosen, and indicating its inverse transform by o(y) = ei(y) —je(y),
we have

f;— I (n— )] =g () —Giea (9, (8.5)

5 (0 () — s (]I 1 (O) = OD = [ enpdy—i [ eut (8.6)

1.e.,

In Iy () —gms () (2 f "o )y I ) 12(0) )

—J<f¢z y)dy+arctg (0)> Vi (y)—J¥o(y). (8.7)
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As 7,(0) and 7,(0) are given, the values of 7,(y) and n.(y) can be obtained in terms of v,
solving (8.7), 1.e.,

M*‘PZ(U)-

m(y) (8.8)

Vi (y) 3 (y) =exp [W,(y)]; arctg

By substituting y(x) in (8.8), ni(x) and 7n,(x) are obtained. Finally it must be tested that
inequality (6.3) is verified. To enable us to comply with (6.3), the quantity 7, may be intro-
duced as a parameter in Z,(n).

Obviously, as the above procedure is purely mathematical, it must be verified “a poste-
riori” that the obtained values of n,(z) and n,(z) are practically attainable in a given fre-
quency range. Furthermore, for evaluating n:(x) and n.(z), digital computations will be
generally necessary. Only if the hypothesis n,<<n, is satisfied, the use of an analog com-
puter is practically possible. However, in some special cases, the above procedure can be
simplified.

Two different types of o(y) =e¢1(y) —je:(y) functions (to which a favorable =(5) spectrum
is related) were chosen, and the corresponding n(x)=mn,(x) —jn.(x) functions computed by
means of the above procedure.

The n(x) functions are traced in figures 6 and 7, under each of which the corresponding
o(y) function is listed. The first case was computed by means of an IBM 1620 digital com-
puter (see sec. 2), and the second one by means of a PACE-TR-10 analog computer (see sec. 2).

Table 6 gives the power reflection coefficient |p,(n)|* percent computed by means of the
RDE (1.3) and (1.1) plus (1.2), for the two considered cases, and for several values of the
rate L/X. Under table 6 the numerical values of parameters are, as well, referred.

In the second case, an initial discontinuity (7(0)=1.25) was considered.

The results summarized under table 6 seem to be rather poor. But it must be pointed
out that no interferential effect (at least for the second case) takes place between the two terms
of (6.12). Better results could probably be obtained by lowering the losses.

n,(x)
no(x)

Frcure 6. Graphs of the ny(x) and ny(x) functions
referring to table 6, 1st column.
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n;(x)

na(x)

¢ (y) =(TRIANGULAR —j RECTANGULAR) PULSE

Ficure 7. Graphs of the n(x) and ny(x) functions
referring to table 6, 2d column.

TaBLE 6. Power reflection coefficient |po(1./N)|2 percent for several values of L/N (absorbing case), and numerical
values of the parameters

2w
In y/n?4nZ=Asin Y Triangular pulse of height A A —
Funetions ¢(y) Voo vz —j rectangular pulse of height 113;(0)?32
3 2 yL=2 lf
22 m—— <¥<y :
arctg = B sin Tos Y 0<U<UL
L/x=0.1 59.9 76.9
.2 31.2 12.5
.3 0.55 3.3
.4 3.82 0.25
.5 1.14 .02
26 0.65
.7 .68

9. Conclusion

The possibility of linearizing the basic RDE allows us, in the case of matching, to make
easy use of both the analysis and synthesis procedures, the last being based on the Fourier
transform techniques. The extension of the method to the n=n(z) case gives it a large field
ol practical applicability.

In the case ot absorption, unfortunately, the transform techniques are, generally, applicable
only to a part of the solution of the RDE, and under rather restrictive conditions: x must be
a constant and n,(z) and ny(z) must be independent of frequency; owing to the conditions for
physical realizability, this can be (approximatively) true only in a limited frequency band.
Only the analysis procedure is, therefore, completely reliable.

Furthermore, the construction of a stratified layer closely approaching two given n,(z)
and ny(z) functions is a hard task, and, if the number of the strata is not sufficiently high,
noticeable disagreements with the theoretical values have to be expected. As for the match-
ing, a “band pass” rather than a “high pass” behavior has to be expected [Franceschetti, 1962].
An easy way to design and to construct a broadband absorber may consist of using a single
material of known and proper electric and magnetic characteristics €(w) and u(w), and by taper-
ing it “geometrically,” e.g., in the form of dyhedra or pyramids of such dimensions that a
sufficient number of them is included in a \* area. Under the above assumptions, the per-
formance of this absorber may be considered approximatively equivalent to that of a stratified
absorber, whose e(z) and u(z) parameters are functions of the ‘“geometrical tapering” and,
obviously, of the single used material.
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Special thanks are due to Dr. A. Murli for his cooperation in performing the digital
computations.
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