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Nonulliform lossless or lossy t ran smission lines or layers used as broadba nd matching 
or absorbi ng devi ces a rc s t udied. 

\\Then the refraction indcx , n (x), and t he cha racterist ic impeda nce Zo(x) , a rc give n, t hc 
re fl ection spec trum, po(-r, ) = po( 411-(11) , for x=o can always be compu ted by solvin g numeri call y 
a R iccati diffe rcntial equat ion (RDE) . (An alysis) 

Co nversely, not o nly for n = co nst [Bolindcr, 1950, 19561 bu t also for n (x) real a nd p. = J.Lo , 
a tapcred t r a nsformer can be sy nt hes ized star t ing from a given po(1J) spectrum by lIsing 
F ourier t ransform tcc h niq ues. (Syn t hes is) 

For broad band a bsorbcrs, t hc sy nt hcsization procedurc can bc approxima tcly a ppli cd, 
undcr certain condi t ions, to only t hc par t of the spcctrum wh ich rcprcscnts th c rcflcc ti on of 
t he matchcd (lossy) li ne. 

1. Introduction 

The first part of this paper deals with the problem of matchin g two uniform t rans mission 
lin es (or layers) by means of a nonun iform line (or layer) in such a way as to "minimize t he 
reflec tions. " 

A variational solution of th e problem does not seem to exis t , and , th erefore, instead of 
trying to minimize the average valu e of the r eflection over a given frequ ency band, we will 
solve th e problem of keeping the reflection lower than a given value over the largest possible 
frequency band , for a given length of the matching lin e. 

To find an acceptable solution for this problem, two meLhods call be roJlowed. The 
first one (An alysis) consists in varying tentatively t he param eters of the line in such a way 
as to obLain a satisfactory refl ec tion spectrum , i .e., reflection coefficient versus wavelength. 
Accordin g to the second method (Synthesis), we start from a favorable reflection spectrum and 
find th e conesponding Jaw of variation of the parameters of the Jin e. 

The second method is made possible by the fact that, in a number of cases, the line 
parameters can be obtained operating on tb e inverse Fourier Transform of th e reflection 
spectrum . 

In the last paragraphs of this paper (par. 6 and 7) some tentative techniques are described 
to utilize even in the case of absorp tion the synthesis method , which is rigorously appliable only 
in the case of matching. 

Let us now recall t he basic equations to which recourse will be made. 
For monochrom atic waves, the two wave equations describing the pl'opagaLioll of em 

wa ves along an inhomogenous line or a stratified medium can be condensed into Lite single 
Riccati differential equation (RDE) 

(1.1 ) 

I T he resea rch reported in t his documcnt has been sponsored by t he Europea n Omce, Offi ce of Aerospace Research, USAF, undcr Contracts 
A F61(052)-36 and 589. 
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where 

Z = input impedance at abscissa x, 

Z' = its derivative with respect to x, 

Zo = in trinsic impedance of the line or layer at abscissa x, 

.271" ( ) . 1 ,,(= .]-->:n x = propagatlOn constant, anc 

n (x) = 1£) (x) - j112 (X) = relative refraction index. 

Equation 0.1) can be written in terms of the reflection coefficient p (x) , which can be de
fined in the "Schelk:unoff form" 

obtaining th E' following RDE : 

p(x) 
Z(x)-Zo(x) 
Z (x) + Z o(:r)' 

, 2 + Z' 0 ( 2) P -"(P ~ 1-p = 0. 
2Zo 

(1.2) 

0.3) 

Let us note here that (1.]) and (1.3) are valid for layered m ed ia not only under normal 
incidence, but also und er all conditions of incidence and polarization , provided the normal 
equivalen t wave is considered. 

If we multiply both JJ. r(x) and Er(X) by a constant C, the first and last terms in (1.3) remain 

unchanged, while t he second becomes -.1 4; Cn(x) p(x). It follows that we find the same 

reflection coefficient p(x), for the wavelength A, that we found previously for the wavelength 
A/e; that is, on the avera.ge , the reflection coefficient is lowered. This property canno t be, in 
general , easily utilized in t he design of inhomogeneous layers, sin ce high values of JJ.r are usually 
accompanied by still higher values of Er . The above remark shows, however , that an increase, 
even if gradu al , of JJ. r (which is generally a complex quantity), increases the effective length of 
the line, and lowers, consequently, p(x). 

'iiVhen JJ. = const , and only E varies with x, a single function is sufficient to describe the 
inhomogeneous line: either ,,( (x), or Zo (x), or n (x) . Equation (1.3) can then be written in the 
form 

,. n' ? 
p - 7rtnP - - (1- p-) = 0 

. 271 ' 
(1.4 ) 

wJlCre 
TJ = 4Tr/A. 

2. Analysis of an Em Line or Layer 

The problem of analyzing the behavior of an em line Ol" layer can be summ arized as follows: 
For given "( (x) or n (x) and Zo (x) Jun ct ions (i.e. , for given dx) = Erl (x) - .fEr, (X) and JJ. r(x) = JJ. ri (x) 
jJJ.12(X) functions) and length L of the layer, find the refl ection coefficiel1 t at abscissa X= 0, 
pea, TJ )= Po( TJ ), as a solution of (1.3) or (1. 1) plus (1.2) , with a given lilllit condit ion p(TJ , L ). 
Obviously, when JJ. = const it is sufficien t to s tart from only one or the previous functions, e.g., 
from the refraction index n (x). 

Tn the case of matching, p(TJ , L) = O; in some cases of absorption , p(TJ , L )= - 1, i .e. , tJl e line 
is short circui ted at the faJ" en d . Jt must be pointed out that (1.1 ) is more general than (1.3) , 
since it allows an initial discontinuity. If there is such a discontinuity, ollly if both this one 
and Po are very small , the overall reflection coefftcient can be approximately calculated by 
adding the two reflections. 

Generally, it is not possible to have analytic solutions of (1.1) and /or (1.3), and it is neces
sary to carry out computat ions by means of digital or ana.]og co mputers. 
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Equation (1.4) can be linearized as follows : 

,. n' 
P -J1/np-2n= 0, (2.1 ) 

provided that Ip(x) 12< < 1 everywhere. This condition is generally fulfilled in a matching 
device , at least in th e 1/ region of low r eflection . 

In the case of matching an d for J.1. r= 1, ten difl'erent real n(x) functions were tested, and the 
corresponding Po(1/ ) computed from (2.1), by means of a PACE- TR- I0 analog computer. 

Assum ing n(O)= I , the " transformation r ates" n(L) /n(0)=2, 5, and 10, were consid ered. 
It was shown [Franceschetti , 1962] that , for nCO) ~ 1, the results are still valid , provided that 
we refer to wavelengths m easured in t he medium of refraction index n(O), i.e. , to the wavelength 
A/n(O) . The scattering matrix (8) of the lossless matching junction can be easily deduced 
starting from the ]mowledge of Po(1/ )=811 , computed by means of the bnearized (2 .1 ). Actually 
it is p ossible to express the coefficien t 822 in terms of Po(1/) , and, by means of the matrix equaLion 
(8) (8) *= (1) , to calculate (8), obtaining the following expression [Franccschctti , 1962J: 

po( 1/ ) , 'l - lpo( 1/ )12·exp [ -j~ .[\I(x)dx] 

(8) = (2.2) 

, /l - lpo(1/W·exp [_j~iL n(x)dx] - P6(1/ )·exp [ - j 1/ i Ln(X)dX] 

where P6( 1/ ) is the complex conjugate of Po(1/ ). 

The results of the Po(1/) calculations, in tbe ten different cases considered here, are referred 
to under table 1, where th e ratio ~= A/L up to which /Po(1/) 1 % is less thftn 10 percent is given 
for the ten n(x) functions, and the tru:ee tmnsformation rates 2, 5, and 10 . This m eans tIMt, 
for wftvelengths A <L~, th e matching junctions under consideration give a power reflection 
less tha n 1 percen t. It is appfl,I'ent frol11 this table that, assuming IPo(1/ ) I ~ 10 percent, a 
generally "op timizing" n(x) function cannot be defined , since th e b eha vior of each function 
depends on the transform fttion r atio. For exam ple, the best matching function seems to be 
n(x) = exp [kx/L], for n(L) = 2 (~ = 3.85); and n(x) = exp [k(x/L )3J, for n(L )= 5 (~= 2 . 82), }wd 
lI(L)= ]Q (~= 2. 1 8). 

TABLE 1. Values of ~ = AIL such that for A S: L ~, IPo(L/A) IS: 10 percent (matching case) 

exp exp exp 1 exp cosh 1+k 
Functions n(x) [kxIL] [k (xI L )'] [k (xl L )3] HkxlL Hk(x1L )2 t+k(xIL), 1-k xl L [,kxIL -I] [kxIL] (I -cos" xIL ) 

n(L) ~2 3.85 2.60 2.04 3.78 3.35 2.62 3.57 3.64 3. 08 2.94 
n(L) ~5 J. 36 2. 0 2.82 <1.0 2.50 J. 99 1.58 2. 41 2.4 L 1. 33 
" (L) ~l0 1. 44 1. 89 2. 18 < 1.0 1. 61 1. 46 1. 45 1.80 1. i7 < 1.0 

~ It must be poin ted out that values of 11 up to 8 are easily atta inable by m eans of m eL}\1 
r powders suspended in paraffin wax [Kelly et rtl. , 1953] . 
I Tn the case of ftbsorption, ten different nonmagnetic and Ilul.gnetic funcLions n(x) were 

tested , and their b ehavior cOlllPu ted , solving (1.1) and (1.2) (i.e., t he nonlineal'ized equation) 
by means of the IBM 1620 digital computer of the Faculty of Science of the University of 
Nnples. An initial discontinuity WftS often assumed. 

The results are summ ftl'ized und er tables 2 and 3, where the power r eAection coefficient 
IPoI2% is given for several values of the parameter AIL. 
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T A B LE 2. Pou'el' l'efl ect ion coeffic ien t I po (L/~) I' percent, f or several values of ~/L (absorbing case) 
. = Aexp [2 (m-j'/')x/L j I' =B ex p [2 (n-N)x/L j 

A .m . '/' 1.0 1.0 0.7 1. 5 1.0 0. 7 1. 5 1. 5 0.6 1. 5 1. 0 0. 7 1. 0 1. 0 0. 7 
B .n . >/- 1.0 0.0 0. 0 1. 0 0. 0 0. 0 1. 0 0.6 0. 6 1.0 1. 0 0. 6 1.0 0. 5 0.5 

X/L =1.0 0. 30 0. 75 -- ---- -- -- - - -- - -- .- - - - - - - -- - -- - - - - O.OM 
2.0 1. 20 1. 0 2.31 0.61 . 29 
3. 0 2.30 2. 70 2. 92 . 60 . 45 
4 n .80 2.00 3.07 . 82 . 59 
5.0 8.2 .50 4. 12 .SO . 66 
6.0 23. 8 3. 75 4. 95 .SO 1. 06 
7.0 - -------- - - ------ 14.8 5.60 .72 1. 99 
8. 0 - ------ -- -- ---- - - 30. 16 6. 04 . 59 3. 4.\ 

TABLE 3. Pou'er l'efl ecti on coeffic ien t I po(L/~) I' percent, for several values of A/L (absorbing casp) 

. =A [cos 2'/' 1,-j '; sin 2", x/Lj · cx p [2m x/Lj p = B exp [2(n-N )x/Lj 
A 

A . m .", 1. 5 1.0 0. 7 1.5 1. 5 0. 3 1. 5 1. 5 0. 3 1. 5 1.5 0. 3 1. 5 1. 5 0. 3 
B .m. >/- 1.0 0. 0 0. 0 1. 0 0. 4 0. 4 1.0 0.4 0. 4 1.0 0.6 n. 4 1.0 0. 6 0. 4 

>:" 5 3 5 3 5 

X/L = 1 1. 70 I. 83 1. 56 I. 75 1. 58 
2 . 46 2. 13 2.24 1. 91 2. 01 
3 .5. 90 2. 99 3. 26 2. 92 2. 12 
4 2. gO 3.87 3. 76 3. 12 3. 34 
5 . 50 5. 46 5.51 3.94 3.76 
6 4. 50 7.47 7.52 5.36 5.20 
7 12.4 9.35 8. 21 7. 03 6. 45 
8 22.3 11. 0 8.26 8. 74 7. 03 

The vfllues of the parameters are listed in the t ables under each case. 
In table 3 the conditions for physical realizability (i.e ., the Kramers-Kronig eqlw tions) 

[Lfttmiral et al. , 1961 ] have been taken in to account for the electric losses (purely conductive 
electric losses 11ftve been assumed). 

Cases 1, 2, and 6 are nonmagnetic; besides, for x-7L , they present values of the- rate 
€2/ €] so high as to be diffIcult to ob tain practically. 

Cases 3, 4, and 5, and par ticulflrly the last , approach too closely to H eaviside conditions; 
th ey assume val ues of f.1 r practically unattainable in the microwave range. 

Cases 7, 8, 9, and 10 are probably those which ma.y be realized without excessive diffi
cuI ties; the electric losses are purely ohmic, and the ra te u/ w€ ] seems to be everywh ere realizable. 

3. Problem of the Synthesis 

The problem of synth esizing an em line (or lftyer) can be summarized as follows: 
Starting from a given (genernlly complex) reflection spectrum Po("" ) at the beginning of 

the line of length L and from given limit conditions, find the two corresponding 'Y (x) (or n(x)) 
and Zo(x) functions. If ilr= const, only one real function, e.g. , n (x), must be found. In the 
case of matching, obviously, the limit conditions are the values of n CO) and n(L ). 

In the following sections it will be shown tha t the synthesizing problem for the mn tch
ing case, a t least for nonmagnetic lines, can be completely solved by means of the Fourier 
transform techniques . 

On the contrary, in the case of absorption (except for some special cases), only the follow
ing problem can be solved: for a given ~o ( 1J ) function, and length L of the line, find a com
plex function n(x) such thftt its refl ection coefficien t Po("") is more favorable, on the average, 
than the given ~o("") , 

4. Synthesis in the Matching Case 

As was pointed out in section 2, in the case of matching the linearized RDE, 

, " + Z~ 0 P - L-'YP 2Z o = 
may be considered instead of (1.3) . 
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Solving (4. 1) for per] , L ) = 0, we ha ve 

Po( r] )= i L ;io cxp[ - JryiLn(x)d.x:}Zx. ( 4.2) 

When n = const (this is the case of TEM g uid ed w,wes), and, e.g., n = 1, (4 .2) becoilles 

f L Z ' 
pO(r] )= J o 220 exp [-Jrp;]dx. (4.3) 

Equation (4.3) shows t hat Po( ry ) is the Fourier transform lBolind er, 1950, 1956] of th e 

function (of x) ;Z~ , which is zero out of the interval (0, L ) in which the inhonlogeneity is con-
~ 0 

fined, and which in turn can be represented as an inverse Fourier tnll1sform as follows : 

Z' 1 I +oo 
2'"'Zo =-2 Po( r] ) cxp[J ry x] dr]. 
~o 7r - Ol 

( 4.4) 

Z' 
The fact that Po( r]) and 220 are a transform pail' provides t he argument for making the 

synth esis of a broadband matching line with n = const. 

For example, if we choose for Po(r]) t he well known "sfl illpling fun ction," we m ust have {;io 

constant in Lhe in terval (0, L ) (and zero out of it) . A IMlogo usly, if Po(r] ) is the sq ua re of t he 

sampling function (which is a very favorable "spectrum" of reflection), {;io will become a 

" triangular pulse" in the interval (0, L ) [Bolinder, 1950, 1956]. 
"When J.t = const, we can get a transform pair even wh en n is not a constant, but a real 

function of x. 

The const<mcy of J.t allows us to star t with (2.1) instead of (4.1), so that (4.2) beconles 

Po(r] )= - i L ~~ exp [ - j ry ,foX n(x)clx] dx . 

As n(x) is always positive, the integral function 

y= y(x) = i X n(x)dx 

is always increasing and admi ts, conseq uently, the inverse function x= x(y). 
Let us introduce in (4.5) the new variable of integration y. We obtain 

where YL = y(L), and the derivative is with respect to x. 
As (4.7) shows, Po(r] ) and 

is a Fourier transform pair.. 

n' [x(y)] 
cp(y) = 2n2 [x( y) ] 

(4.5) 

( 4.6) 

( 4.7) 

(4.8) 

As a matter of fact, even when YL is finite , t he function cp(y) is zero out of the (0, y~) in
terval and therefore the integration can always be understood as extending along the wltole 
positive y axis. 

If the Po(r]) function is given, the cp(y) function resul t determined by means of the in verse 
transform and the n(x) , which is the datum of practical interest, can b e obtained by solving 
the integral DE 

n'(x) (fL ) 
-2n2(x) =:p Jo n(x) ix ) (4.9) 

672805- 63- 6 335 



which becomes It DE of the second order in the unknown y = f: n(x)dx ltnd, precisely, 

y" -
- 2y'2- CP(y). (4.10) 

Let us star t from a family of spectra Po(T/, A, YL), whose inverse transforms are zero out of a 
finite interval ; the parameter YL represents the extent of said interval. 

Equation (4. 10) becomes 
y" 

- 2y'2= CP(Y , A, YL), (4.11) 

where the derivatives are with respect to x. 
This is a DE of the second order containing two parameters (A, YL)' 
Integrating the above DE with the two initial conditions yeO) = 0 and Y' (0) = n(O ) , we 

get a solution which contains the parameters A, YL: 

y = y(x, A, YL)' (4.12) 

The parameters must be chosen in such a way that 

n(L) = y'(L, A, Yr.) . 

(4.13) 

(4.14) 

Obviously, for 1)--')0, i.e., for very long wavelengths", the reflection coefficient PO(1) ) must 
approach the value [nCO) - n(L) ] . [nCO) + n(L) ]-1. However, it :must be pointed out that we 
do not deal here with the complete RDE, but with the linearized one, and thltt the latter does 
not require the above condition, which will be satisfied only for low "transformation rates." 

n{xl 

10 

0 '----'-_"----'-_-'----'_--'-_"----'-_"----'-__ 
o 0,5 1.0 x 
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FIGURE 1. n (x) !,unctions referring to table 5, 1st 
row. 

The various curves are related to different values of the transforma· 
tion ratio n ( L )/n(O) ~n(L)/ 1 ~n(L) , 
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In som e special cases, t be problem can b e solved analytically [La tmiral et a1. , 1962J. 
For example, when Po(T/ ) is of the type of th e "sampling function ," the corresponding n(x) 
function becom es of th e type proposed by J acobs [1958] on the basis of empirical arguments. 

Analogously, wh en Po(T/ ) is an exponen tial integral (which is a very convenien t type of 
reflection spectrum), th e corresponding n(x) fun ction b ecomes t he well-known exponential 
one [Latmiral et £11. , 1962]. 

In general , however, the problem admi ts of only numerical solu tions, and i t is necessary 
to solve (4.11 ) under condi tions (4.13) - (4.14) by m eans of an alog or dig ital compu ters. 

Five differ en t types of cp(y ) fun ctions (to which favora ble spec tra of r efl ection are r ela ted) 
were chosen, and tbe corresponding n(x) functions computed, for several rates of transformation, 
by means of the above procedure. 

The n (x) functions are tra ced in figures 1 through 5, under each of which the correspollding 
'P(y ) funct ion is r eferred . The first four cases were computed by m eans of an IBM 1620 d ig ital 
computer, and th e last one by m eans of a PACE - TR- 10 an alog computer. 

Besides, in table 4, the rat io ~= 'AIL , up to which the refl ection coefficient IPo(T/) I is less 
than 10 percent , is given for th e computed n(x) fun ctions and three transformation rates 
(2, 5, and 10) . The complete Po(T/ ) fun ction can b e easily computed as the Fourier transform 
of th e corresponding cp(y ) fun ctions, a nd ar e referred , together with the num erical values of 
the paralll eters, in table 5. 

In all cOll1pu tations we have chosen n(O) = ] , but this assump tion does no t cause any loss 
of genen1li ty (see sec. 2) . 

As in t he case of aJ1ttlysis (see sec. 2), i t is apparent that a generally " op timizing" function 
11 (x) canno t b e d efined. It is in teresting to poin t out th e very good r esults obtained for high 
"transforma tion rates." For example, for n(L )/n(O) = 10, the n(x) fun ction syn thesized starting 
from the fun ction 'P(y) = A sin [1TY!YL] , presents a value of ~ = 3.80 , i.e., wavelengths up to 
about four times th e length L of the m a tching junction a re almost completely trHnsmitted. 

n( x ) 

10 

FIG URE 2. n (x) Junctions TeJe1Ting to table 5, 2d 
TOW . 
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~(YI:Asen7TY 
YL 

0.5 1.0 

n ( :.. ) 

10 -

r.p (yl . T RtANGUlA R PULSE 

5 -

0 . 5 1.0 

FIGU RE 4. 11 (x) functions referring to table 5, 4th 
row. 

FIGURE 5. n (x) ,(1tnctions referring to table 5, 5th 
1'0 10. 

TABLE 4. Values of ~ = A( L , such that f o?' A~ L ~, I Pa(L / A) 1 2 ~ 10 percent (matching case) 

FWlctions '" (y) A LVYL-y'l ArYYL-V']' A(J-cos 2,,- vIYL) A sin ,,- ylYL rl'riangular pulse 
bet ween O·y L 

-
n (L )= 2 2.90 2. 08 2.02 2.90 2.2i 
11 (L )=5 3.20 2. to 2.50 3.20 2.63 
" (L)= JO 3. 70 2.80 2.63 3.80 3.03 

TABLE 5. M~atching case: Functions I" (y), PO(lJ ) , and numerical values of the pammeters 

", (II ) ,, (L ) 
F ig. O~.V~YL poe") (exact A VL 

values) 
- -- ------ - -

2.05 -0. 64 1. 5 

2A [2 . "!II, "YI, ] [ . VI, ] 
2. 94 - . 66 1. 7 

1 A (YYL-Y') - -Slll - -YLCOS - ·exp -J" - 5.05 -.61 2.0 
"," 2 2 2 6.99 - .55 2.2 

11.0 - . 46 2.5 

2.01 - 1. 95 1.4 

4.4. [ 12 . "'vI. 6Yt "'vL , . "YL ] [ . YL ] 
2.97 -1.56 1. 6 

2 A (YYI.-Y')' - - Sill - - - cos ~-y~ SILl - . cxp -Jl1 --- 4.95 -0.75 2.0 
", ", 2" 2L 2 2 7.20 -.n 2. 1 

9. 85 -.53 2.3 

[ "YL 1 {r"- ] YL} . [ {Z,,- I YL ] ) ] 
2.0J -.25 1.4 

A( I- cos 2,,-Y ) 
Sill '2 1 SiO ~+" '2 SIll ~-" '2 . [ _. 1!!: ] 2.99 -. 32 1.7 

3 
AY L "~L +2 { [ ~~+" ] ¥} + [ {~_"} ¥] . exp J" 2 

4.97 -.40 2.0 
YI, 7. 0J -.49 2.0 

10.07 -.52 2.20 

AYL 1 sin [ {~+"} ¥] Sin [ {~-"} ¥ ]l . [ . 1/L ] 
1. 99 -.36 1. 50 

ASin ~ 
3.10 -.54 1. 68 

4 
2 - [ {~+"} ¥] + [ {~_"} ¥] J' ex p -J" '2 

5.20 -.65 2.00 
YI. 6.68 -.68 2.20 

10.90 -. 75 2.50 

2.0 

-
50

1 

1.35 
AYL [Sin l1YL !4 J 2 . [ . YL J 

3.0 -.704 1.60 
5 'Triangular pulse of 8 - --- . exp -J" -- 5.0 -.864 1.86 

heigh t A 7JYL ,14 2 7.0 -. 936 2. 11 
10.0 -1.02 I 2.28 
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5. Quarter Wavelength Law 

Let us now define the interval t."/) l1ccording to the following rell1tion (annlogous to tho OliO 

defining the "radius of gyration" in mechanics, or the root-mel1n-square error in erro r t.heory) : 

(5. 1) 

where 

(5.2) 

Let t.y be the l1nnlogous in terval for the function cp(y). 
It is apparent that the two functions PO('Y/) and cp(y) will be noticeably difl"erent from 

zero only inside the two intervals t.'Y/ and t.y_ 
The product of the intervnls t.ry and t.y cannot be less than a given positive value K, which , 

according to the adopted criterion of the sqUl1re mean , equals 27f [Persico, 1950] : 

(5.3) 

J( we refer to the positive half interval, t."/) = 47r/Amax , where Amax is the longest wn,velengLh 
almost completely transmitted, and if we put t.y::::::::'YL= nL, wbere n is the mean value of n(x) 
in the interval (0, L ), (5.3) becomes 

(5.4) 

vVhen n = const = 1, tbe two Fourier related functions are poe "/)~ Hnd Z~/2Zo (sec sec. 4), 
and ineq un,lity (5 .4) becomes 

(5.5) 

This In,st inequality shows that, for a given length L (in air), the Jnl1tching linc becoili es 
ineffective for wavelengths beyond 4L, whl1tever the function Z~/2Zo ml1y be. 

On the contrary, when n is l1 function of x, n,t least in nonml1gnetic cases, nn improveill ent 
can be expected according to (5.4). 

For further improvements due to magnetic properties, see 80ction 1. 

6. An Approximate Solution of the RDE in the Case of Absorption 

For the synthesis of a broadband termination, an empirical method lTll1y consist of adding 
an arbitrary imaginary par t to a purely real n(x) function, found according to the above tech
niques (see sec. 4), in such a way l1S to make the phase vary linearly with x; a numerical checki ng 
is then obviously necessary. Another way may consist of planning an absorbing device com
posed by a broadband trl1nsformer with a high n(L) /n(O) rate (table 4, n(L) /n(O) = 10), followed 
by a thin "Heaviside" l1bs01"ber, probl1bly realizable without excessive difficulties in these 
condi tions. 

We will now find an approximate solu tion of the RDE in the cnse of absorption, with the 
limit condition p("/), L )=- l. 

As is well known, l1 RDE cnn be transformed into a Bernouilli one, once a particular 
integral is known. We ma,y consider as such the solu tion of the RDE for the condition 
which corresponds to perfect matching at the far end, i.e. , to p('Y/, L ) = 0. 

Calling CT(X) such a solu tion, the substitution r= p- CT transforms (l.3) into l1 Bernouilli DE 
in which the further substitution y = r - 1 yields to a lin eal" equation whose general integrnl is the 
following: 

y= exp [I'" (2'Y+ CT ~:) dxJ { -~ LX ~: exp [ - iL (2'Y+ CT ~:) dxJ dx+C } . (6 .1 ) 
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As y = (p-a-) - I must become (-1 - 0)-1=- 1 at the end of the shorted lille, C must equal 
- 1. Con seq uen tly, we can write : 

exp [ - i L (2~+ a ~~) dxJ 

p(x) = a(x)- 1 1L Z' [[,L ( Z') ] . 1-- '-'0 exp - 2~+ a '-'0 dx . dx 
2 0 Zo . x Zo 

(6.2) 

For x= O we have 

(6.3) 

As a(x) vanishes at the end of the line, contrary to p(x) which equals - 1 at the same point, 
the RDE for a(x) can be linearized, neglecting la(x) 12 in comparison with unity; consequently, 
we can consider <T(x) ns the solu tion of the following li near DE : 

I 1 Z~ 
a -2a~=---' 

2Zo 

Multiplying (6 .4) by () and neglecting a2, we have 

By integration we obtain 

COllseq uently 

and, analogously 

exp [ - i L a ~: dx J =exp [- a2(x) ]~ 1 - a2(x), 

exp [ - i L a~:dxJ=exp[-ag( 1)) ] '"'-'1 - a6( 7] ). 

Substituting (6.7) nnd (6.8) into (6. 3) we obtain 

1 £L Z~ ? [J,L J.' 1- - - ·[l - a-(x )]· exp -2 ~dx · clx 
2 . 0 Zo x 

Neglecting a2 we get the following approxilllate value for poe 1)) : 

where 

(6.4) 

(6.5 ) 

(6.6) 

(6.7 ) 

(6.8 ) 

(6. 9) 

(6.10) 

(6.11 ) 

and uL(L ) is the reflection coefficient in x= L for a wave which proceeds from right to left in the 
layer matched ftt x= L [Latmiral et aI. , 1962]. 

When 100L (1)) 1< < I, (6.10) can be further simplified as follows: 

po ( 1) )~ao( 7] )-exp [ -2 i\dx} (6. 12) 
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even when "I is complex, and }J, is not a constant but a complex function of x. 
It must be pointed out that (6. 12) is the solution of the RDE (l.3) linearized by neglecting 

II I against unity and solved with the condition peL ) = - l. 
This simplification is, however , possible only as a consequence of the considerations which 

have led to (6.10) by splitting the solution of the RDE into two parts by means of the particular 
integral o- (x) , which vanishes for x= L. 

Otherwise, the two assumptions Ip12< < 1 and peL ) = - 1 would have been almost un
justifiable. 

7 . Special Techniques for the Synthesis in the Case of Absorption 

The splitting of the solution of the RDE into two parts (6 .10), the first of which refers to 
the condition o-(L) = 0, allows us to extend the transform techniques (under the conditions 
pointed out in sec. 6) even to tbe case where the layer is not matched at the far end and par
ticularly to the case where peL ) = - l. Equation (6 .10) shows, as a matter of fact, that to 

minimize IPo(1) I is equivalen t to minimizing h(1) I, provided that "I (x) = j ~ n(x) is chosen in a 
clftss of fun ctions wbi ch satisftes t he co ndi tion 

(7.1) 

where His a given positive quan tity. 
According to (6. 12), this means that the wave reflected from the metal mllst not exceed a 

reasonably low value. 
Obviously , in the case p(L ) = - l , n1(L ) and n2(L ) are not ~'iven, and only n 1(0) , n2(0) and 

SoL 11 2 dx (see 7.1 ) are given. 

The abovc considerations allow us to extend, at least in some special cases, the yn thesizing 
procedlll'e referred to under section 4 , to the 0-0(1) function [LatmirH.l et a1. , 1962]. 

For example, when the refraction index is of the type n(x) = 11 1 - jK./1) , wi th n 1 and K rcal 
positive constants with respect to both 1) and x, the Fourier tmnsform pair (see sec. 4) becomes 
PO(1) and (Z~ exp [- Kx]) /2Zo. This case occurs, e.g., when very low ohmic losses are prcsent 
(0-< < we ), and e and (J do not dcpend on x. 

Another case in which the extension is possible is n = 1l 1-jn2= const, with n1 fwd 71 2 both 
independent of x and 1) . PO(1) are t llen the values that the Laplace transform of the function 
Z~/2Zo takes on the stra ight linc of complex equation 

(7.2) 

with 1) in the interval (0, (0). 
When the refraction index is x-dependent, the synthesizing procedure is still applicable 

in some special cases. 
For example, when the refract ion index is of the type n(x) = n1 (x) - jK./7J, with K constant 

with respect to both 1) and x, (4. 11) b ecomes, under the hypoth esis tha t Er max is ~10t too high 
(for example, Erm ax:::; 16), 

y" . 
- - - e- Ax= o- (y). 2 , 2 v y 

(7.3) 

This DE must be solved acco rding to the method explained in section 4. The above 
Ctl,se occurs when very low ohmic losses are present, and the quantity o-(X)/ ,JEr(X) (proportional 
to the loss angle) is constant wi th respect to x. Another CRse is the following: 

n(x) = (nl - jn2).f(x) , (7.4) 

with 11] and n2 real constants with respect to both 1) and x. 

341 



L 

Let 

(7.5) 

The values of Po(TJ ) are those which the Laplace transform of t he function Z~/2Zo takes 
on the straigh t line of complex equ ation [Latmiral et aI. , 1962] 

(7 .6) 

8. General Techniques for the Synthesis in the Case of Absorption 

Let us now consider th e general problem of synthesizing a nonmagnetic absorber; we will 
solve this problem by means of an approximate method. 

It must be pointed out that, in the absorption problem, not four but only three conditions , 

111(0), n2(0), and SoL 112 dx, are given in a nonmagnetic absorber. The following approximate 

procedure, based on transform techniques, may be helpful. For }.! = const and small va lues of 
p(x), the linearized (1.3) (see sec. 6) gives: 

(S. l ) 

Let us com pare the above equation with the following: 

(8.2) 

If some exceptional cases are excluded, the value of ~o (TJ ) are, on the average, less than the 
valu es of CTo( TJ ). 

Consequently, if nl(x) and 112(X) are such as to keep ~o slllall in a given interval of 'Y/ , the 
sam e functions can give a convenient CTo. 

Introducing th e new variable of integration 

(S.3) 

(S.4) 

ThLls ~o( TJ) is a Fourier transform. 
Once ~o ( 'Y/) has been chosen, and indicating its inverse transform by CP(Y)= CPI(y)-jcpz(y), 

we have 

Le. , 

- j (2 f >2(y)dy + arctg ~:~~D='l!1 (y)- j'l!2(Y). (8.7 ) 
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As 1'1,1(0) and 1'1,2(0) are given, the values of nl(y) and n2(y) can be obtained in terms of y, 
solving (8.7), i. e., 

/ ? () 2 ( ) [()] . . 112 (y ) () "\ ni Y +n2 y = Cxp \IF1 Y ; arctg - (- )= \IF2 y . 
111 Y 

(8.8) 

By substituting y (x) in (8 .8), nl(x) and 1?z(x) are obtained. Finally it must be tested that 
inequality (6.3) is verified. To enable us to comply with (6.3), the quantity YL Illay be intro
duced as a parameter in 1:0 (7]) . 

Obviously, as the above procedure is purely mathematical , i t must be verified ",l, poste
riOl·i" that the obtained values of nl(x) and n2(x) are practic,l,lly attainable in a g iven fre
quency range. Furthermore, for evaluating nl (x) and 112 (x) , digital co mputations will be 
generally necessary. Only if the hypothesis n2< < nl is sat isfi ed, the use of an analog com
puter is practically possible. However, in some special cases, the a bove procedure can be 
simplified. 

Two different types of cp(y) = CPI (y) - jcpz(y) functions (to which a favorable l:0(1/) spectrum 
is related) were chosen, and the corresponding 1'1, (x) = 7l1 (x) - jnz(x) functions computed by 
means of the ab ove procedure. 

The n(x) functions are traced infig ul'es 6 H!ld 7, und er ench of whi ch the corresponding 
cp(y) function is listed. Tbe first case was compu ted by menns of an IBM 1620 d igital com 
puter (see sec. 2), and the second one by means of a PACE- TR- 10 analog computer (see sec. 2). 

Table 6 gives th e power r efl ection coefficient IPo( 7]) 12 percent computed by meaDS of the 
RDE (1.3) and (1. 1) plus (l.2), for the two considered cases, and for several values of th e 
rate LIt... Under table 6 t be numerical vnlues of parameters are, as well, referred. 

In tbe second case, an initial discontinuity (n(O) = 1.25) was co nsidered . 
The results summ arized under table 6 seem to be rather poor. But it must be poin ted 

out that no interfer enti al effect (at least for the second case) takes place between the two terms 
of (6. 12). B etter results could probably be obtained by lowering the losses. 

FIGURE 6. Graphs of Ihe Dl (X) and D2(X) functions 
referring to table 6, 1st column. 
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<p(y) = (T RIANGULAR - i RECTANG ULAR) PULSE 

1.0 

FIGURE 7. Graphs oj the n,(x) and 112 (X) j1lnctions 
refuring to table 6, red column. 

TABLE 6. Power reflection coefficient 1 Po (L/ >-) I' percent jor several values oj L/>- (absorbing case), and numerical 
values oj the parameters 

A ~ J.4 

In ";n'+n2~A sin ~ y 
R~O. 32 Triangular pulse of height A YL=6 .28 -A~O.936 Functions ", (y) 1 2 TYL 
T _ 3.33 IOS:Y:S;OYL 

-j reclangnlar pulse of height 
B~0.195 

sretg ''2 ~ B sin ~ Y 
B 

YL=2.11 - 6.66 OYL95,YL 05,Y5,YL 
nl TYL 

g=0 . 833 

L/)\ ~ O . l 59.9 76.9 

.2 31. 2 12.5 

.3 0.55 3.3 

.4 3.82 0. 25 

. 5 1.14 .02 

.6 0.65 

. 7 . 68 

9. Conclusion 

The possibilit,y of linearizing the basic RDE allows us, in the case of matching, to make 
easy use of both the analysis and synthesis procedures, the last being based on the Fourier 
tmnsform techniques. The extension of the method to the n = n(x) case gives it a large field 
of practical applicability. 

In the case ot absorption, lmfortunately, the transform techniques are, generally, applicable 
only to a part of the solution of the RDE, and under rather restrictive conditions: fJ, must be 
a constant and nl(x) and J1.2(X) must be independent of frequency; owing to the conditions for 
physical realizability, this can be (approximatively) true only in a lim.ited frequency band. 
Only the analysis procedure is, therefore, completely reliable. 

Furthermore, t.he construction of a stratified layer closely approaching two given nl (x) 
and n2(x) functions is a hard task, and; if the number of the strata is not sufficiently high, 
noticeable disagreements with the theoretical values have to be expected. As for the match
ing, a "band pass" rather than a "high pass" behavior has to be expected [Franceschetti, 1962]. 
An easy way to design and to construct a broadband absorber may consist of using a single 
material of known and proper electric and magnetic characteristics" (w) and fJ,(w), and by taper
ing it "geometrically," e.g., in the form of dyhedra or pyramids of such dimensions that a 
sufficient number of them is included in a ;\2 area. Under the above assumptions, the per
formance of this absorber may be considered approximatively equivalent to that of a stratified 
absorber, whose €(x) and J.1. (x) parameters are functions of the "geometrical tapering" and, 
obviously, of the single used ma terial. 
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