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The subject of electromagnetic wave scattering by a randomly varying medium is
reviewed giving special emphasis to the technical method of approach. The symbolic
representation of Maxwell’s equations is introduced to make it easier to survey the whole
subject and to formulate the equations. The Feynman diagram method is applied to the
computation of the correlation of the fields at different points in space to any order of
approximation. The differential equation to be satisfied by the latter correlation function
is also derived from another point ot view. Then the theory is developed on the “renormali-
zation” of the constants, i.e., the effective propagation constant in a fluctuating medium
and the effective coupling constant between the field and the medium, ete.; the explicit
expression of the former is obtained to the first order of approximation. The dispersion
relation is derived as a connected problem. In Part I1 of this series of papers, a fundamental
theory of statistics of the electromagnetic field in a fluctuating madium will be developed
In Part I1I, a few applications to tropospheric scattering will be given.

1. Introduction

The entire subject of electromagnetic propagation through a fluctuating medium has been
investigated theoretically and experimentally by many authors. Even though the Born
approximation might be valid for the scattered electromagnetic waves in many cases, there
still remain several theoretical problems to be solved such as the effect of earth diffraction,
the effect, if any, of using very narrow beam antennas, the restrictions for the validity of
simple formulas for the scattered power, ete. As to the theory of multiple scattering, there
are also many fundamental problems to be solved.

The purposes of this series of papers are first to remark that an almost perfect corre-
spondence exists between the statistical treatments of the electromagnetic field in a fluctuating
medium, which could be anisotropic, and the treatments in quantum field theory, and thus
that the many powerful methods used in the latter, e.g., Feynman’s diagram method, the
method of renormalization, the methods used in solving bound-state problems, etc., are available
when solving the statistical problems in the former (Part I). Then a fundamental statistical
theory of the field in a fluctuating medium will be developed (Part 11); the field and the medium
are inevitably quantized there, and the reason for keeping a high correspondence between the
statistical theory and the quantum field theory will naturally be understood.

The contents of part I can be summarized as follows: In section 2, a symbolic representa-
tion of Maxwell’s equations is introduced [Furutsu, 1952, 1956; Marcuvitz, 1962]. This
representation is very convenient for studying the subject from a broader point of view, and
for achieving a unified and briel equation formulation. In section 3, the theory of the power
transmitted to the receiver through an arbitrary medium, including anisotropic media, is
extended. Here the antenna patterns of the transmitter and receiver are represented in
terms of the respective equivalent electromagnetic current distributions on suitable surfaces
enclosing the transmitter and the receiver. These distributions could refer directly to pure
electric currents of all the antenna elements which may be distributed on a surface of some
extension, or they could be derived from the electromagnetic fields themselves, as occurring,
e.g., on the surface of the mouth of a parabolic antenna. In the same way, the cross product
of the amplitudes ol two different receivers at arbitrary points in space is also derived in terms
of the antenna patterns of the receiver and transmitter. In section 4, the expression for any
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cross correlation of fields is derived with the aid of the results of section 3. All the equations
are first transformed into their Fourier representations, and next Feynman’s diagram method
[Feynman, 1949a, 1949b; Dyson, 1949a, 1949b] is extensively used to any order of approxima-
tion with respect to the correlation function of the refractive index. This diagram method
has been one of the most convenient techniques in quantum electrodynamics. Here the same
technique is introduced and, in section 5, the discussions are completely devoted to the ‘“renor-
malization,” i.e., the effective medium constants in a fluctuating medium, the effective coupling
constant between the field and the fluctuating medium, ete.

In section 6, another approach to the multiple scattering problem is shown. It is used to
derive directly the differential equation for the correlation function between the fields at two
arbitrary points in space. The equation takes a simple form, and there are many possibilities
to solve it.

2. Symbolic Representation of Maxwell's Equations

In order to survey the subject from a broader point of view and also to facilitate the
analytic representations in the following sections, it is convenient to represent the six com-
ponents of the electromagnetic field in a unified form. In this section, Maxwell’s equations
are expressed in symbolic form, and the Green function is properly defined for later
convenience.

Here we employ the following notations: Latin subscripts assume values ranging from 1
to 3, and a repeated index is to be so summed. The coordinate vector in space is denoted by
aP= ({78

Using the conventional notations, Maxwell’s equations are given in Gaussian units (time
factor e'«') by

rot H—i(w/c)& E=4rnlc, rot K+i(w/c)uH =0. (2.1)

Introducing the matrices

(0 0 01 0o 0 —i 0 i 0
0o 0 i =10 0 0} w=l—i 0 o} (2.2)

S1= y Ss Sy A
Lo ] ()J i 0 0 0o 0 0

the operator ‘“rot” as a three-rowed matrix is expressed by

el el =l ) (2.3)
al'j
Thus, (2.1) can be expressed in the form
0 1\ /fiE & O\ [iE\ (i1
(s9) —% =(¢ "} (2.4)
1o/ \H YAV 0
which takes the form
[o1(50) — k. 2.5)
Here
il 4w
Vi and j=| ¢ 1 (2.6a)
H 0
are one-column matrices of 6 elements, and
k=g { (14pg) 8+ (1—po)u}, (2.6b)

a 66 matrix and, in the case of isotropic media, the elements & and u of the latter, as well
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as those of the two-rowed Pauli’s matrices

0 1 0 —1 1 0

P1— y p2—=\ y P3— s (2-7)
| 0 7 0 0 =l

represent 3 <3 unit diagonal matrices multiplied by the indicated quantity.

On the other hand, in the case of anisotropic media, & and p are generally 3 <3 matrices,
which can be represented as functions of s, s, and s;.  Therefore & and u in general do not
commute with the s,’s (see (2.10)).!

Equation (2.5) finally takes the form

[v:0:—kly=}, Yi= p1S5i. (2.8)
The matrices s; and p,; are all Hermitian and especially
Yi=vi=—7s (2.9)

where v§ and v7 are the complex conjugate and transposed matrices of v, respectively. Equa-
tion (2.9) is evident from the explicit matrix expressions of (2.2).

The matrices s; and p; satisfy the following algebraic relations which are often very con-
venient to use:

. Q.Q A — o 3 QI G ] 3
888k 8588 =08k 0S4, $18;—8;8:=1""€:1Sk,

221 21 2 2 9 o9 _ . . ’
Si=sit8+85=2, pi=p3=pi=1, pip2= —pap1=1p3, etc. (2-1())
Here ¢ i1s the antisymmetrical tensor corresponding to e;=1; its elements are 41 or —1

according as the number of permutations necessary to change the order of subseripts 17, j, £,
mto the order 1, 2, 3 is even or odd. From (2.10), it especially follows, for any two orthogonal
vectors m and n in the ordinary three-dimensional space, that

(ny)*=n*(ny), (ny)(my)*= {m*— (mv)*} (nv), (ny) (my) (ny) =0,
(ny)2(my)?= (my)*(ny)*=n2m*— (mXn -v)% (2.11)

The traces of these matrices are frequently used in actual computations, and the following
formulas hold (appendix 1):

Tr'(s)=0, Tr’(s:8;)=20;, 'l‘l"(.\'i.\'j.\‘k):/.716,-1';‘-, '[‘l"(\',.\'j.\'k.\',):6“6“+6],;5“. (2.12)

Here Tv” stands for the trace in the subspace of s;’s matrices.

The Green theorem in this representation takes the following form: Let ¢’ and ¢’ be
arbitrary continuous y-vectors represented by a one-row and a one-column matrix of 6 elements,
respectively, in the space X, then with (dz) =dx,dxsdr;

ﬁ (W [(40) — kW — [ — (vO) — kY } () — —i j W ()W do. (2.13)

Here the right side represents a surface integral over the surface ¢ of =, and n=n(s) the inward

o
space unit vector normal to o, and O operates on the coordinates (x) on its left side. 'The
excitation of the electromagnetic field will be performed either directly by electric currents,
or indirectly by the use of a device such as a waveguide antenna. In the latter case, it will,
in practice, be excited by one predominant waveguide mode. However, these two ways of
excitation involve no difference whatever in the representation of the field:

1 For example, in an ionized gas of plasma frequency wo/27 under the influence of static magnetic field F, or corresponding gyrofrequency
«7[1/21r with collision frequency » [Furutsu, 1952],

2 . =
g==1—wﬁlw{w—lv+<wﬁs) ik
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Let ¢(x,2") be the 6 <6 tensorial Green function satisfying given conditions in space and
at boundaries. We then get, combining (2.8) with a result derived in appendix 2, two different
representations for the differential equation for this function, i.e.,

((v0) —kly(x, 2") = (x, 2")[— (vg') —k]=é(x—a"). (2.14)

Here the right side is to be interpreted as the coefficient in front of a 6 > 6 diagonal unit matrix.
On the other hand, ¥(z, /) constitutes a nondiagonal 6 <6 matrix, the jth column of which
satisfies Maxwell’s equations in which the right side of the jth equation is 6(x—z’) instead of
zero. 'The symbol 0’=10/0z" here refers to differentiation with respect to z’.

Then, the solution ¢(z) of (2.8) is given by the one-column matrix

Y(x) =S¥ (a,0")j @) (da’). (2.15)

On the other hand, the field which is excited by a source inside the surface o can be expressed
in terms of the tangential components of the field on ¢. Thus, applying (2.13) to the space
outside o, while putting ¢’=v¢(z) (the solution to be obtained) and ¢"'=y(2’, 2) (the Green
function), we find, taking into account the outward propagating condition for y(x) at infinity,
and also using (2.14),

() =i f (&', @) (o) (@) do,

or

Y(a) = S, 2")E(2") (da)). (2.16)
Here

& (1) =id(x, o) (nv)¢(x), (2.17)

while 6(z, o) is defined as the one-dimensional §-function of a variable which may be identified
with the distance to ¢, that is a function different from zero only on the surface ¢.* It may
be remarked that & (x) depends only on the components of the electromagnetic field that are
tangential to the surface o.

Equations (2.15) and (2.16) take the same form, and thus & (x) may be interpreted as the
effective electromagnetic current accounting for the field inside o.

In this symbolic representation, the Poynting vector /; takes the form

Pi=Syryw="C [Re (E*x ). (2.18)
8T 4

™
Here y* stands for the one-row matrix representing the complex conjugate of y.  Decomposing
k into its Hermitian and anti-Hermitian parts,
k=«k—i(4m/c)a, (2.19)

both x and o (not to be confused with the same symbol for the surface o) being Hermitian,
we readily find by the use of (2.8) and (2.6) that

div PHy*op=—Re (I£*]). (2.20)

Thus the anti-Hermitian part of & contributes to the waves influenced by the dissipative
properties of the medium.

2 For an arbitrary function f(z), it holds that

Sf @)z, o) (dx)=Sof (x)do.
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On the other hand, from (2.17), we derive, using the relation (ny)y,(ny)=n,;(nvy),

S & ik (de)=n,b(a”’, o), (2.21)
if ¢ is normalized by *

[ vrompio—1. 2.22)

The function §(c”’, ¢’) is the delta function of the “distance” between two ‘‘parallel”
surfaces ¢’/ and o¢" (according to the usual definitions of these quantities for neighboring
surfaces).

In view of (2.18), the normalization (2.22) implies that the total power radiated outwards
from the surface ¢ equals ¢/Sw power units. Here, the surfaces ¢” and ¢’/ in (2.21) are assumed
to be two arbitrary elements of a continuous set of surfaces, no element of which intersects
another.

For later convenience, we shall deduce the Green function S(r) for the case of a homo-
geneous medium which could be anisotropic; then, from (2.14),

[(y0) —kIS(x) =6(x), (2.23)
with the condition of outward propagation at infinity. lLet S(f) be the Fourier transform *

of S(x) as follows:

S(f):( e @ S(z)(da)s (de)=dz,dz:dzs, (2.24)

=

then, from (2.23),
[(vt)—=kIS@t)=1, S@E=I[(t)—k]7!, Im (k)<0. (2.25)
Here, Im (k)< 0 indicates that all the eigenvalues of & to be used in (2.23) should have an
infinitesimal negative imaginary part. -
On the other hand, the adjoint Green’s function S(x) is defined by

= 1
S(.r):b'(—r):mw)“ [(f“”’“S(f)((/f), (dt)=dt dtydt,, (2.26)
which satisfies, with the condition of outward propagation at infinity,

§()[— (vd) —k|=5(z). (2.27)

In the special case of a homogeneous isotropic medium, & commutes with all the s; matrices
(but still does not with p;), and thus, using the algebraic relation (y0)*=09%(y0) (see (2.11)),
which involves (v1)*= (vt)#*, we find

[(v) —k)[(v0) + { (vt)2— 2+ k"2 } kY = 02—k

)

in which the new matrix £ and the new scalar £” are defined by

B =Fk=(w/c)ue, k=pikor="Flos>—0; (2.28)
Hence, from (2.25),

SO=gO@—k)7, g&)= a0+ {(ty—E-+k ]k, (2.29)

3This normalization is possible only when the total radiated power away from the surface o into the direction n is positive.
¢ The notation ¢ will be used exclusively for the Fourier transformation variable, and, in this paper, any function f(¢) will stand for the Fourier
transform of the space coordinate function f(z).
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. 2 : 5 5 o .

The function S(f) has poles at #*=Fk’" which can be avoided in further integrations by
assuming also an infinitesimal negative imaginary part for k’; the latter corresponds to the
condition of outward propagation at infinity. Hence, from (2.24) and (2.29), we finally have

S(x):ﬁr ¢~ IS(t) (dt) =g (D) (2—;)—3f:(t2—k'2)“e"“’”(a’z‘)—g(b){4% p—} (2.30)

Here r=|z| and 0,=170/0x;.
3. Transmission Power Gains

We consider here a transmitter system which is assumed to be in the space Z; enclosed
by the surface o, and, in the same way, a receiver system in the space Z, enclosed by the surface ..
The conductivity loss in space and in the systems is first neglected, involving a Hermitian k.
Let ¢,(x) and ¥»(z) be the solutions satisfying the given boundary conditions in space and at
the boundaries, whose fields on the surface o, or o, are respectively given by ¢,(s;) and are
normalized according to (2.22)° by (fig. 1)

| wrempdo—1 (i=1,2), (3.1)
Thus, since Y;=v¥=—v, and 0f=—20;,
[(vO)—Fkly: (2)=¢7 (2)[— (vO)—k]=0, (3.2)

the latter being the complex conjugate of the former. However, the transposed expression
of the second representation yields,

[(v0)—k7]¥7 (2)=0.

Hence, ¢¢ constitute no solutions of Maxwell’s equations unless k=£k”. This holds for an
isotropic medium ; the ¢¥ then are exactly the solutions satisfying the given boundary conditions
except for the propagation directions which are just inverse to those of ..

Although (3.2) is sufficient in the case of isotropic media, it is necessary to introduce the
adjoint equation of (3.2) in order to include the case of anisotropic media, i.e.,

Vl—(0)—kl=0, [()—klgt=0  (i=1,2), (3.3)
with the normalization
— [ B ido= [ TramFdo—1. (3.4)
. Ui 0’,,:

Here ¢, have to satisfy the same boundary conditions and propagation condition at infinity as
¥,. Itis to be noticed that ¢¥ are the set of solutions of Maxwell’s equations whose propagation
directions are just inverse to those of ;. In the special case of k=Fk", we have ¥, =v,, and the
normalization (3.4) agrees with (3.1).

i In this paper, (¢:) will stand for the coordinates of arbitrary point bounded on the surface o.

fop g
G nz Ny

Ficure 1. [llustrations of the surfaces oy, o, 01" and oo’
for (3.1) and (3.6).
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Now suppose that both the transmitter and receiver use waveguides in each of which
only one propagational mode can exist, and that the antenna systems are so well matched
that there are no reflected waves at all for these modes. Any cross sections of these waveguides
will be denoted by o and o, respectively, corresponding to the surfaces ¢, and ¢, enclosed by
them ; the predominant modes will be marked ¢,(a;) and ¢»(o2) inside the respective waveguides,
Yi(x) and Y, (x) being their continuations outside.

The problem is, then, to determine the field strength or the power transmitted into the
receiver waveguide by the excitation of the mode wave in the transmitter normalized by (3.1).
Putting ¢’ =y, (2) and "’ =y.(x) in (2.13), and identifying the space 2 with the whole space
outside the surfaces ¢, and o,, we have, on taking into account that both ¢, and ¢, are solutions
of (3.2) and (3.3) that represent waves propagating outwards at infinity, respectively,

[ Bmwde—o. 3.5)
. al 02

Here we could replace the surfaces o, and ¢, by o; and o, respectively.
On the other hand, deep in the waveguides, sav at o5 and o7, we know ¢, (o) and ¢ (o)) to be
’ te] ) & ) 2 1
waves entering into the second and the first waveguides, respectively; therefore

%(U-lz):a:l@?(”;)y Jz(ﬂi):blz\//f(ﬂi), ete. (3.6)

Here @y, and by, are numerical constants. Multiplying by ¢.(e3) (n3y) on the left side of the
first equation of (3.6), and by (n;y)¢:(s1) on the right side of the second equation, and inte-
grating both sides over ¢} and o}, respectively, we find, using also the normalization conditions
of (3.1) and (3.4),

f,zz(“‘Y)\P](]U:—Gm, I‘,Jz("’Y)l//ﬂ/G:bm, (3.7)
%2 Jo
and, on account of (3.5),
fr /¢2<”7)¢1([U:7(121+b12:(); or @y =b,. (3.8)
. 03+”1

This agrees with the theory of reciprocity in the case of isotropic media. However, when re-
ferring to (3.6), we should bear in mind that ¢.(z) is not a solution of Maxwell’s equations but
of the adjoint equation (3.3).

Using the expression (2.18) for the Poynting vector, and also the normalization condition
(3.1) (involving a transmitted power of ¢/S7 units), the power W, transmitted into the surface
a» per unit power of the transmitter takes the form

Wa=— [ vtomvids, (3.9)
which, on deforming the surface o, into o5, yields after the substitution of (3.6) for ¢,(o})

2| () ido=|ay?, (3.10)

J Ty

Irzl:“lflrzl

or, in view of (3.7),

(3.11)

”v:l::f,lz(’w)‘ﬁl'/(f
[Jay

In the same way, in the inverse case of radiation away from the surface oy, the power Wi,
transmitted into the surface o, takes the form
2

|
|
|

Im:Jﬁmmww (3.12)
G
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When the medium is isotropie, we have g-bizllxi, and thus, from (3.7) and (3.8), Wy=Wy,,

as it should.
From (2.16),

V(@)= fy’/(r, 2')Eq, (2) (da).
Hence, we have finally, by deforming o} to o,
Wau= ‘ ffgaz(x)¢(f, ;l”) fal (l‘/) ((ZJ‘) ((Z.I’)i (3.13)

Here, in accordance with (2.17) and (2.21),

& (2)=—18(z, o) () () =18(z,0) (n7) ¥ (2),
with

[2?//’)’1'2—51 ((]I)anﬁ(a”,a'), (314)

which is derived from (3.4).

If we would like to have the cross product of the amplitudes of two different receivers
labeled by the subsecripts 2 and 3, the corresponding product Wi, ;,=asa3, would be given,
instead of (3.13), by

Worn={ [tz #1660 @n @) ([ o, e, ]

4. Fourier Transtorm and Feynman Diagram Method

We assume here that the medium is changing randomly in space and time, but still has
some correlation between two points in space which depends on space-independent averages.
Also the time variation is assumed to be very slow as compared with the wave frequency. Let
k="Fk,}+ ok, where, for the time being, we put k,=(k), the time average value of & and thus
(6ky=0. In an anisotropic medium, the k, generally becomes a matrix operating on .

Then, from (2.14) fixing the Green function ¢(z, '), we find the equation

[(vO) —k, Iy (x, ') =dk(x)¢(x, x) +o(x—2’) k=k,+ ok, (4.1)

whose solution is, using the Green function S(z—=z’) of (2.23) for the homogeneous medium £,,
Y(z, 2)= fS(r—f”)ék(l”)l//(T”,f’)(flf”)+S(x-r’):¢o(f, )+, ) e, o)+ ... (4.2)
Here
Yolz, ') =S@@—2z), ¢ (z, x’):f((lx”)S(x—x”)5k(x”)S(x”—x/),

¥z, x’):f(dx”) f((Ix”’)S(x—x”)(Sk(m”)S(x”—x’”)ﬁk(r'”)S(m”'—J’), etc. (4.3)

On the other hand, according to (3.13), the time average (W, of the transmission power
gain Wy, is given by

W)= [ f f f (d) (d) (A (A (22 (e () B, () Xy (20 (22, 1), (21))= S0 T

i, j=0

(4.4)

Here ¢' is the Hermitian conjugate of ¢ and defined as ¢'(x1, 2;) =complex conjugate of the
transposed (unction y7(x5, ;). Further, in view of (4.3),
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T, = f f f f (dey) (dary) (daeh) () (82 e (at, 2B, (2) X By ()W 2y 2 B (21)) (4.5)
or, in an abbreviated representation,
Toy= (85, W1 EE) (B ¥ £0,))
with

Eetileo) = [ [ () @)y (00 (2, )80, ().

Generally, 6f will have the form
ok (x) =BAE(x). (4.6a)

Here B1s a 6 X6 nondiagonal matrix in the case of an anisotropic medium, havine the dimension
(=) t ) (=)
of a propagation constant, and AE(x) is always a dimensionless scalar such as the fluctuating
= ’ / . t=l
part of the dielectric constant of the medium. In the case of an isotropic medium, g has the
form, in view of (2.6),

B=4(1+po) (wfe). (4.6D)

Substituting the expression (4.6a) in (4.5), we see that the average value appears only
through the term

D(xy, 23, x5, . . ., €,) =(AE(x))AE(x) . . . AE(x,)), (4.7)

which may be represented with the aid of its Fourier transform D(t, t,, . . ., ¢,), in the form

” - f(//il)((/fg) o (dt)emtm et A D ). (4.8)

On the other hand, the function D(x,, x,, . . ., #,) has two important properties: its
invariance with regard to parallel translations and simultaneous rotations of the points z;,
Iy . . ., o, and also the symmetry with regard to these points.  Owing to these invariances,
the functional form of D(t, &, . . ., t,) is very restricted: from the translation invariance
for @;—x,~+1, [ being an arbitrary vector, we see by the use of (4.8) that the factor exp [—i(t
+t,+ . .. +t)l] should effectively be equal to 1 when multiplied by D, t, . . ., t,).
This implies that, also taking into account the rotational invariance, the latter takes the form

D(tl, tg, . e ey I(,,)Za(tl‘l—tg“‘i‘ « e “‘{_1‘”)])71“%, tif]'), (49)
and thus the vector sum ¢4+ . . . -+, should always be equal to zero. Here D, (3, tt))
stands for a function which is symmetric with regard to the indices 7 and j of the indicated

independent variables.
Substituting the expression (4.9) into (4.8), we finally arrive at

IO, @ o o o )= [( . f((/tl)((lt2) oL (dt)o(t ..t
= . X D, (8, tit;)e~1mtiomt 02 (4.10)

Thus we also infer the invariance for coordinate inversion

D(—z,—xy, . . ,—2)=D(@1, 2, . . ., Tp).

311



In the same way, we define the Fourier transforms &,(¢) of & (), and £, (f) of £, (2) by
a@=n= [ anerean,

Eu(x)=(27r)—3/2fw E(t) et (dt); (4.11a)
hence, if k"=Fk (see sec. 3)

E(t)=t{—1), k'=k. (4.11b)

The normalization condition (2.21) then takes the form
| e timae =, o). (4.12)

Also, from (2.24), the Green function S(z) and its Hermitian conjugate function S'(z) are found
to be

S(x)z(?rr)“'*‘fiS(t)e‘“”’((lt), S'(x):(27r)‘3f_wmS*(t)e‘“‘”((lt), S =SB [est, (4.13)

where k' is Hermitian conjugate to k.
It would be instructive to know the Fourier transformed form of 7%;. From (4.3) and
(4.5), we derive, with the aid of (4.6a) and (4.7),

T= [ ([ [ ety @eranae g, s i85 (a—a)Be 2
I Xy, (1) S (22— a)BS(@—,)Es, (11) - D(a’—z).  (4.140)
Here, according to (4.10),

Dz’ —2)=(A8(z") A& ()= IT((lt’)((It)é(t+t’)D(tz)e‘”””“’):[_Z D(t)e=#@=2(d1). (4.14b)

Evaluating (4.14a) with the aid of (4.13) and (4.11a), we arrive at

T”:f. f f [ [ () ) ) AR (1S (1) DRI~ )
Koy (t2)S(E2)BS (t1)és ()6 (81—t — 1) D(t?).  (4.15)

Here, the terms 6(t,—t—1t) and 86(—#+#;-+t) result from the integrations over » and 27,
respectively.
Equation (4.15) finally takes the form

Tu=[ D Of0) A =D, (4.160)
in which c

f(ﬂzf_m Euy (1—1)S (L —1)BS (£1)E, (1) (1) (4.17)

constitutes an ordinary scalar function. This integration will be evaluated in Part III for
arbitrary functions for & and &,.

In the same way, for the cross correlation of the amplitudes at two receivers, we derive,
starting from (3.15),

Waesr= [ Deafattra), (4.16h)

which is the cross correlation in the first approximation with respect to D(¢?). Here fy, is
the function given in (4.17) and f; the corresponding function referring to the receiver labeled
by the subscript 3 instead of 2. In Part III, we shall see that f5i(¢)f. () does oscillate more
rapidly with # according as the distance |z;—a,| increases, and thus the integral becomes smaller.
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The integral (4.15) can be interpreted graphically in the following way (fig. 2a): On a
sheet of paper, we first mark four points corresponding to &, 5,,2, £, and g,z, respectively, and
the two points s and s” corresponding to the two scattering points. Then draw the solid line
from the point &, to s and from s to E,, Here the direction is taken away from the point &,
it corresponds to the propagation with the wave-number vector # away from &, (connected
with the transmitter, for instance) to the scattering point s. On the other hand, from the
end point of this vector we draw a line towards the point £,; it corresponds to the propagation
into 5—,,2 (connected with the receiver) with the wave-number vector ¢,

In the same way, we draw the solid line from the point Z*;Q to s/, and from s to & . But
the directions of these complex conjugated lines are to be taken just inverse to those of the
corresponding original lines. Hence, the new solid line is directed towards the point &, with
the corresponding vector #.  Finally we connect the points s and s” by a broken line with any
prescribed direction of the vector t.

Now there exists a one-to-one correspondence between the lines thus drawn in the diagram,
and every factor in the integrand of (4.15). First of all, the factors & (¢,) and E,,(z‘) in the
integrand fix the antenna patterns of the transmitter an(l receiver in the spaces enclosed by
the surfaces o, and o,, respectively; they correspond to the points &, and &, in the diagram.
In the same way, the factors & (¢/) and Eﬁ;,(t;) correspond to the points & and 2*:,2. Then the
vector line ¢; from the point &, to s in the diagram corresponds to the factor S(7;) and, in the
same way, the vector lines ¢, ¢ and ¢, to the factors S{t,), S'(¢) and S'(#)), respectively. The
vertices s and s’ are situated in accordance with the vector relations t=¢,—t,—t —t,, thus
expressing geometrically the effect of the momentum functions Ba(t,—t.—1) and go(—t+t5-+1),
respectively.  Finally the broken line represents the last factor D(#*) of the integrand of (4.15).

Since the mentioned factors are all 66 matrices or one-row or one-column vectors of
six elements, their orders of succession in the integrand are important: from the right to the left
these orders correspond to the directions of the solid lines, thus beginning with the factor &,
.111(1 ending with the factor E for the solid line considered fusl while beginning with the factor

*, and ending with the fac tm' & for the complex conjugated s(*('()n(l line. On the other hand,
broken lines will always represent an ordinary scalar function, that is D(#%) in the case under
consideration.

Though this is just an example of the way for representing the integrand of the multifold
integral for 7, by a corresponding diagram, its method is quite (rvnvml and can be applied to
all other cases. There is one such (Imwmm for each 7';; occurring in (4.4), and any of them
comprises two solid lines, the one being the original line starting from &, and ending at &,
and the other lho complex (-onjuwxl(* line starting from ¢, and ending at & ; in the case of
the diagram for 7%, there are j vertices on the original solid line from each of which one broken
line is branching off; the corresponding property holds for the 7 vertices on the conjugate solid
line. All these broken lines are connected to the “domain’ of 1) which, including all of them,
corresponds to the factor D(ty, t,, . . ., t;,;) introduced in (4.9) (fig. 3). The other corre-
spondences of each solid line and each vertex in the diagram with the corresponding factors
of the integrand are just the samelas explained above for 77,.

&, &,
- = i =
¢ g 602 E‘Tz 50—2 60'2
73 2 Sy
N\
5 r
WA ; Son
SPEEES(S ! f 7
et g 7 4
ﬂ t|
% & & =
i g o o S o {’ ¢
(a) (b) (c) g aj
Ficure 2. Feynman diagrams for Ty, Tay, and T,. Frcure 3. Feynman diagram for Ts in terms of

D (ty, to, ts, ty).
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The number of broken lines or bonds of D is equal to the number of factors 6k involved in
the integrand, and generally there are accordingly (i-+7) bonds for the special term 7;;. There-
fore, for the second-order approximation terms, we have to do with the three terms 7', 75,
and 7}, the diagrams of which are given by figures 2a, 2b, and 2¢, respectively. In the higher
approximation of nth order, only the sum of terms 7’;; with i+4j=n would have a clear physical
meaning, but in most cases, not the other individual terms.

It remains to discuss the function D(xy, @y, . . ., x,) or D,(t. t;t;) which is of the nth
order with respect to AE(z). Of course (AE(x))=0 and further, assuming a multivariate normal
distribution of AE(x) values at different points, it 1s well known® that

(AE () AE(25) AE(Z3) . . . AE(@3,)) = = ,(AE (X)) AE () ) (AE () AE (X)) . . . (A Xop_1) AE(2r)), (4.18)
(AE(x) AE(xs) . . . AE(anyq))=0.

Here ¥, stands for the sum of all the terms obtained by the various combinations of different
pairs composing the set of variables x;, zs, . . ., 2.

The right side of (4.18) is given in terms of the correlation function )(x) between only
two points and this fact makes the computation very simple; first of all any diagram having
an odd number of vertices yields no contribution to the result, and the function D(¢,, t,,

t,) can be divided into 2n—1) (2n—3) . . . 1 independent parts depending only on the function
D).

For instance, the diagram of D(t,, £, t;, t;) can be expressed as the sum of the three in-
dependent diagrams of figures 4a, 4b, and 4c¢, and thus the diagram for 7}, is divided likewise
into the three diagrams shown in figures 5a, 5b, and 5¢.  The contribution from each of these
diagrams can be easily formulated in the integral form according to the correspondence rule
stated above.

The number of diagrams, however, rapidly increases with the order 7, and the diagram
method would become impractical. But, just as in the case of quantum electrodynamics, a
renormalization method can be applied. The sum of contributions of all the self-energy parts,
such as shown in figure 6a, and the sum of contributions of all the vertex parts, such as those
of figure 6b, can then formally be taken into account by the use of an effective value of /, and
another effective value of the matrix g introduced in (4.6a), respectively. This procedure is in
accordance with the method developed by Dyson [1949a, 1949b]; we then only need to consider
irreducible graphs, that is, graphs having no self-energy parts and no vertex parts at all. In
the next section, the theory of renormalization, especially of %, will extensively be discussed.
In particular, the imaginary part of the effective value of & which results from the renormaliza-
tion, and which represents physically the attenuation of waves due to the scattering by the
medium, will be computed to a first approximation, together with the corresponding dispersion

relation.

6 See, for example, Middleton: Introduction to Statistical Communication Theory, ch. 7- sec. 7.3 (7.28), (McGraw-Hill Book Co.. 1960).
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| 1 , e / oz |
4 d 7 o= - 2
2 3 2 3 2 3 |
(a) (b) (c)
F1GURE 4. Decomposition of D(t, to, ts, t4) into the
three independent diagrams in the case of a multi-
variate Gaussian distribution. Ficure 5. Three independent diagrams for Ts;.
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Frcure 6 (a) FErample of self-energy part; T ———7 T v
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(b) example of vertex part. \-(/

5. Effective Medium Constant and Effective Fluctuating Medium-Field Coupling
Constant (Theory of Renormalization)

Here, (4.1) for the Green function is replaced by
[((vO) —k¥(x, a') =ok(2)¢¥(z, ) +-6(x—2’),  k=k.+ok. (5.1)
Hence, by averaging over the time, we obtain
[(v0) — kel (x, ) = (k (2)¢(x, ) +-6(x—a’). (5.2)
Here, k, is the time-independent effective value of %, which is different from %, of (4.1), and
which is to be defined by

ke, ) = (30) (W(a, 2)) —d(@—a”). (5.30)

Thus k, could be an operator operating on (¢), but it will be assumed as a space-
independent constant for a while. Since {y(x’’, z’)) should depend only on the coordinate
| difference 2" —ux’, its Fourier integral representation will have the form

’7 ’ l ” Q! —it(x'’—zx’) =
W', 2 )= grg [ S =), (5.4)

which is similar to the formula (4.13) for S(x). Here, according to (5.3a), S.(f) satisfies the
equation

[(vt) = keSO =1,  S.()=(v1) —k.]™", (5.5)
from which we conclude inversely that (¢(x, 7)) satisfies the adjoint equation

W, )~ () —k]=b(a—a"). (5.3b)

It will be seen later that the /&, in (5.5) is eenerally not constant but depends on 7. This
situation corresponds to replacing the left side of (5.3a) by

ke(b(x, 2)) = Ske(x—a") (", 27)) (da""), (5.6)

where

(3]
=l
S

ED)= ey | D=0 ) (5.

The Fourier transform of (5.3a) then leads to (5.5).
Now, from (5.2) and (5.3a), we infer
(k@Y (x, ) =0, (W(r, 2')ok(@))=0, (ok(x))= k70, (5.8)

Here we put, as in section 4,

()=, + k=P, (5.9)

By comparing (5.3a) with (2.23) we find, identilying the constant £ in the latter equation with
the present £,

W@, 2)en, =S —2").
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Equation (5.3a) is then solved for arbitrary k, by
W, 2'))y=— S Sa—az"") oy’ ') (dx"")+Sx—x). (5.10)

Here 6x(y) should be interpreted as in (5.6).
On the other hand, in view of the wave equations (5.3a) and (5.3b) for (y(x, 2’)), the
solution of (5.1) can be given in the form

W, 2= S W, )G W, o) () + @, @)
=S¥(x, 27)ok(@"") (Y2, ) (dx”") + Y (x, ). (5.11)
Here 6k(z)—éx should be equal to 8k (x) defined in (4.6a). Hence,
ok (z) — ok=BAE (x), (A€ (2))=0, (5.12)
and thus, substituting (5.12) in (5.8),
Bz, 7))+ B(AE (@), ) =0. (5.13)
[t will be convenient to introduce now the “vertex function’ B(x; x3; x.), to be defined by
W@, ) AE (23))= S W@, 2)B(’; a5 )@, 2))D (@ — ) (da’) (da’") (dz'""). (5.14)
The Fourier transform of B will have the form

1

B(ay; x3; 12):(27#?

S8ttt ts) B(—t, ty) "m0 (dy ) (diy) (dis). (5.15)

Here the 6-function appears because the left side of (5.15) should be invariant for a parallel
displacement of the vectors z;, x,, and 3, just as in (4.10). Applying the first expression of
(5.11) to y¢(ay, x2) on the left side of (5.14) and also using (5.12), we have

Wy, 1) AE (25))= S (Y (a1, 2") )k (x") ¥ (2’ 2,) AE(23))(dx")
which gives, applying the second expression of (5.11) to ¢(2/, x,) on the right side,

S Wy, 27))BAE () AE (23) )W (2, 22)) (da”)
+ S W, @)k @)y, @)k (") AE (a5))(Y (2”7, 2)) (da”) (da"").

Thus we infer, since the above equation should be identical with the right side of (5.14),
S B(ay; x; 1) D(x—2x5) (dx) = B6 (11— 12) D (0, —5) + (K () ¥ (x1, 72) 0k (25) AE (x3)).  (5.16)
Hence B becomes in the lowest order of approximation with respect to A€
B(xy; xs; x5) ~ B8 (0, —x3)8(xs—123),
which agrees with (5.15) if B(¢,, t,) is given by the corresponding approximation
B(t,, t2) ~B. (5.17)

When the values of AE(x) follow the Gaussian distribution, it will be proven in Part I1
of this series of papers that, for any functional f(AE[Z]) of AE(x) over the space 27,

(AE(x) f(AE[Z])= Ln(x—x’) <6X8%f(1\8[.‘2])> (dz"). (5.18)

7 The notation f(A€[Z]) means that the function [ involves the variables A £(x) at all points of the space =; for example, any waves are func-
tional of the medium through which they propagate.
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Here the functional derivative is defined as follows: When, for arbitrary variation 6AE(x), the
change 61 can be represented in its first order by the form

of (AE[Z])= f {ME f(AE[2 ])} SAE(x) (da), (5.19)

the factor of 6AE(x) in the integrand is defined to be the functional derivative with respect to
AE(x).

Applying the lemma (5.18) to the second term on the rigcht side of (5.16), we find, taking
into account (5.12) and also the relations ®

o(ok(x))/6AE(x") =Bo(x—1’), (5.20)
50/, 1) = f W@, o) BBAE (e, 22) (dr),

together with (5.8), that

(oK ()¢ (a1, a5) 0K (ar5) AE (ir3)) = fl)(-l':i—-") (0K (1) ¥ (x,, x) B (x, xy) ok (12)) (di). (5.21)
Hence, it follows from (5.16) that
B(ay; 35 3) = B6 (0, —25) 6 (23— 23) -+ (K (1) Y (1, 3) B (3, 2) 0K (22) ) . (5.22)

From (5.22), we can get B in any order of approximation by successive application of
(5.11) and (4.18).
Now, substituting the integral representations (5.4), (5.15), and (4.14b), and evaluating
the integrations leading to impulse function, the integral (5.14) reduces to (fig. 7)
<¢<x1.wz)Ae<w3>>:(%a f S(t)B(t1, 12)So(t:) D((t—12)?) e~ 111D +Uals=mDi(dt ) (dL,y).  (5.23)
2r)°
Hence, (5.13) becomes
ox{y(x, x))+ f[ﬁ [S (t1)B(ty, t,)D((t,—t5)?)(dt, )] S s A= (i )=0),
Thus, applying (5.6) and (5.7), we arrive at the Fourier transform of 6, i.e.,
—ok(t) = fBAQL,(tl)[f(tl, HD((t,—t)?) (dt,). (5.244a)
Here the Feynman diagram of éx is represented in figure 8.
* The first equation of (5.20) follows from the identity

A&(z) =I 8(x—2")AEQ’) (dz’).

it.-t2
1
Selh
/{hw g ‘\—e‘(') —°
it Bl(h=12)2)
Ficure 7. Feynman diagram for (5.23). Ficurw 8. Diagram for (5.2/4a).
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In the same way, we derive from (5.10) the following Fourier transform S,.() of

(", a")) (see (5.4)):
S.(O)=8#)—S @) o ()S. () =S ) [1—k()S.(D)]. (5.24b)
In a first order of approximation, S,(¢) is given by
S.()~SH 11—k S®)],

and, substituting (5.17) in (5.24a), éx(f) accordingly by

et~ f 8S(1) BD((ts— 1)) (dts). (5.25)

In the case of an isotropic medium, the dx(f) defined in (5.24a) behaves as if it were a
constant whenever it operates on the solution £(¢) of the wave equation (compare (2.25))

[(vt) —k.]E() =0, (5.26)

which involves #2=Fkk,=Fk/*. The reason for this behavior as a constant is the following:
Since dk(t) should be invariant with respect to space-coordinate rotations, it should be a
function of 2, (vt), (vt)?, ((vt)>=£(yt)), and thus it can be expressed in the form

Ok (£) = bk (%) + 0k, () [(vt) — ko) 48w (8) [ (vE) — e I (5.27)

Hence, when operating on £(f) of (5.26), 6«(f) is equivalent to the constant of dko(k.’) which
should be equal to k,—k, according to (5.9). Thus

o (k) =ko—k. (5.28)

gives the equation to determine k,. Also in the case of anisotropic media, we would have the
same conclusion that éx(f) behaves as if it is a constant matrix whenever operating on the
wave function of (5.26).

5.1. Evaluation of the Effective Medium Constant for an Isotropic Medium
(in First Order of Approximation)

It will be interesting to compute the éx as defined by (5.9), especially its imaginary part,
in a first order of approximation in the case of an isotropic medium. Then, from (5.25),
applying (2.29),

—ox(t)= f (B— k') ~8g(1)BD((t1— )?)(d1s). (5.20)

Here, when the medium fluctuation is due to the dielectric constant, we can derive the following
relations with the aid of (4.6b) and (2.29):

=3(1+ps)(wlc), B=(w/c)B, kB=(w/c)EB, By(t)B=E'{(try)*—t+k"*}B, (5.30)

and thus (5.29) takes the form

t)—ge " [ D=0 =—p [ G-k GurD(L— R, TmE)<0.
) (5.31)
Since the correlation function D(z) is an even real function of the space coordinates z,

the Fourier-transformed function D(#) is a real function of ¢. Also Bg(#,)8 is real in so far as
it is Hermitian, and thus has only real eigenvalues.
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2 L . . . .
On the other hand, " and £’ should have an infinitesimal negative imaginary part (see
the end of sec. 2). Hence, in the integrations,

E—k) =P —k) 1 —mid (B —k"). (5.32a)

Here, P denotes the Cauchy principal part. Thus
Im |5A(/)]:[57r€_1j (E— k) (vt ) D((—1)D)(dEy),
Re [dx(£)]—BE- j X(ti—1)2)(dts) = — BE- J (B— k) vt ) D((t—1))(dty).  (5.32b)

The integral for Im [6x(#)] should be a function of #*, (v¢) and (v)? in view of the same in-
variance discussed when dealing with (5.27); thus, when operating on the wave function &(7)
of (5.26), it behaves as a constant. In this case, the factor (v#,)? of the integrand can be replaced
by

[£°() (vt)*EO]/[E* (1) £ =381 (1+cos® 0). (5.33)

This result is easily obtained by using the method to be described in Part III. The right side
of (5.33) constitutes the mean value for the two independent polarizations of £(¢), and 6 is the
angle between ¢, and ¢. Thus, putting ( JdQ and dQ=27 sin 0d6, (5.32b) yields,
when evaluating the integration with respect to |t/,

Im (5)=8 ] k'€ J (1+cos? 0)D((2k” sin 0/2)2)de. (5.34)
Hence, from (5.28), we find
Im (k)= m"lej 5 (1+ cos? 6)a(0, k" )dQ. (5.35)
Here
a0, k') = (x/2)k"*€2D((2k’ sin 0/2)?), (5.36)

which is interpreted usually as the scattering cross section per unit volume from the view point
of scattering loss.

5.2. Dispersion Relation

A well defined dispersion relation existing between éx;, the anti-Hermitian part of éx, and
okr, the Hermitian part, follows from (5.32b). This relation makes it possible to express kg
in terms of éx;; by the change of variable t,—t=¢', the right side of (5.31) takes the following
form, when Im (k’) tends to zero:

Rt

e (f’H‘ )2— k/er[‘ D(t"™)(dt"). (5.37)

Equation (5.31)=—BE~ J

Here, e is an infinitesimal positive real number. From now on, the integral (5.37) will be
understood as operating on £(¢) of (5.26). Hence, the term {(t-+¢’) - v}*in the integrand can be
replaced by its mean value for the two independent polarizations of £(¢), and thus by the right
side of (5.33) with 2=Fk"".

Since € >0, we recognize the integral (5.37) as an analytic function of &”* in the lower half
complex plane. Further, taking into account that &k, which is given by (5.34), will become
the leading term of the left-hand member of (5.31) for &>+ o, we see that, for k’—>c, this
member tends to

130 —

iB(

Bk e j D) tdt~ 1.
0

k'

319



On the other hand, for £’—0, (5.37) becomes

e %f; D)(dt")+O0[k ]

Hence, in view of (5.31), it follows that

<5K—% ge~! f _Z D(t2)((lt)> K=o f(k") (5.38)

is a function of £~ which is analytic in the lower half plane and also on the positive real axis,
while the singularity at the origin, if any, is integrable. Also, this function tends to zero if
|k’'|>~>0 in the mentioned domain. Hence

of (k") ——. fm_“ 2f8) g 0>—e> Tm (k'Y),

27['1‘ = =iE N—k/2 ’

or, using (5.32a) with Im (¢’*)—>—¢,

5_f(lc’2)=—7% TP (= k) 15 f(s)ds. (5.59)

v J—w—ie
Hence, taking the Hermitian parts on both sides of (5.39) in the limit e—0,

a_f‘R(k'2):——1— Lm Pls—k"™)6fi(s)ds, 0. (5.40)

™

Here §fz and §f; are the Hermitian and anti-Hermitian parts of of, respectively, and of;(s) is
zero for s< 0 because of (5.32b). By the substitution of (5.38) into (5.40), we obtain

S B o .
BKR(kﬂ)—% e~ J D(ﬁ)(dt):—%f P(s—hk'?)1 “‘—f*) i (5.41)
. . . .

Equation (5.41) is the dispersion relation which gives dkg in terms of the known 6k~
spectrum.

Although this dispersion relation is derived for 6« in the first order of approximation, the
corresponding formula would hold also for the exact 6k independent of any approximation.

6. Differential Equation for the Cross-Correlation Function

Another approach to the multiple scattering problem is as follows: Let us introduce the
function G(x, 25|21, 27) defined by

G2z, wa| @y, 21) = W22, 1) - ¥ (23, 21)). (6.1)

Here the sign * indicates the complex conjugate, and the product a - b the direct product of two
matrices @ and . Hence, the function G is a 6 X6=36 matrix, the elements of which equal
the products of two corresponding elements of its matrix factors. Then, from (4.4), (Wy)
is given by

W= [ [ [ [Fstars(a e, atles et (a)s DA ) AD),  (62)
provided the vectors are suitably multiplied to @.
Now, applying the wave equations (5.1) together with (2.3) and (2.9), we find
[(00) — ] [(400) — k¥ G, |, ) = (0K () s, 1) -OK* (@) W (ahy 20)

8z — ) (3K (2 ¥ (22, 1))+ 8 (s — 1) (OK* (@) ¥* (a2, 20)) +6(xz—21)d(xs—x1).  (6.3)
320



Here, according to (5.8) and (5.12),
(0K () Y (a2, 21)) =0, (SK*(x3)¥* (a3, 21))=0, 6k (x) =BAE (2) + bx. (6.4)

If the medium fluctuations satisly a multivariate normal distribution, we can use the lemma
(5.18) and thus get for the first term on the right side of (6.3)

(oK (2o (s, 1) - SK* (o W (s, 1)) =B B*D (s —s) + k- 56*| (W, 1) ¥ (2, 1))
+ [[1oc-8*De )+ 800D 1>1<m( m,x1>-¢*<r;,1-;>}>(«u>

) +8:8* [ Dlar—2)Dei—s) (3 e a7y (¥ 20 WA D) ) (@) ). 09
ere

D(x—z’") =(AE (x) AE (z)).

As we have seen in section 5, D(x) and 6« are of the second or higher order with respect
AE.  Hence, all the terms except the first on the rigcht side of (6.5) are of the fourth order in
AE, and thus may reasonably be neglected in most cases as compared with the first term which
is of the second order. Hence

(0K () (g, 1) -0k (o) (s, 1)) B-B* D (w—23) G (s, w3y, 1), (6.6)

and thus (6.3) becomes, remembering the vanishing of the second and third terms of its right
side:
[(v0:) — k] - [(v05) — k¥ G(xs, )

x) ~B-B*¥D (x:—x3) G(xs, xy|y, 21) +6(xs—21) - 8(s—11). (6.7)

This constitutes the differential equation to be solved to get the function . In the case of
scalar waves, the corresponding equation reads:

[As+ RENAL A1 G (s, @], 1) =D (2y—3) A, 3|, 27) +0(@a—1) - 85 —a1). (6.8)

The approximation used to derive (6.7) is equivalent to taking into account all the con-
tributions from the graphs of ladder type like figure 9a but not those from graphs like figure 9b

The investigation of the solution of (6.7) or (6.8) is also a powerful approach to the multiple
scattering problem.*

9 The differential equation of this kind may be solved relatively easily by the use of the relative coordinates u=z—z; and those of averages
u=(r2+21)/2.

Xz X Xz Xz
T ~ /’
N
T e Fraure 9@) Diagram for ladder type interaction;
e <
PAS
R (b) diagram for nonladder type interaction.
XX Xi X
(a) (b)

7. Summary and Discussion

In this paper, the treatment of a statistical theory of electromagnetic fields in a fluctuating
medium is primarily based on the graphical method introduced by Feynman [1949] for quantum
electrodynamics.  The latter also has been one of the most convenient methods in general
quantum field theory. The theory is developed in parallel with that of Feynman as much as

321



possible, and a perfect correspondence between them is found in almost all kinds of problems
occurring in our scattering theory, especially when the medium fluctuations follow the Gaussian
distribution. For instance, the problem of getting the correlation between the fields at two
different points in space (sec. 6) is equivalent to solving the Schrodinger equation for two
mutually interacting particles, whose interaction term can be obtained in the same way as in
quantum field theory [Salpeter and Bethe, 1951 ; Gell-Mann and Low, 1951]. The latter has a
perfect correspondence with our theory especially when the medium fluctuations satisfy the
above mentioned conditions. Many methods and approximations used in the quantum field
theory [Lévy, 1952a, 1952b; Klein, 1953] will therefore be available for solving the partial
differential equation (6.7) for the most relevant correlation function; also the theory of
renormalization treated in section 5 has an almost perfect correspondence with that of the
quantum field theory.

The correspondence in question refers to the behavior of the electromagnetic field in a
randomly changing medium, and to that of the quantized electron field which is in interaction
with the quantized electromagnetic field; AE(x) behaves just like a quantized Boson field,
especially when AE(x) has a Gaussian distribution so that (4.18) will hold. This might not be
accidental, because the quantum theory states the problem and the answer only in terms of
probability or statistics; any quantized field cannot be free from its own fluctuation. In Part
IT of this series of papers, the fundamental statistical theory for the electromagnetic field in a
fluctuating media will be extended. The quantum-field theoretical treatment will inevitably
be introduced there, and the basic relationship between the statistical theory of electromagnetic
fields and the quantum field theory will be derived ; many powerful methods used in the latter
are expected to be available in the former in view of this relationship. In Part I11, a few appli-
cations to tropospheric scattering will be discussed, taking into account the boundary conditions.

The author expresses his cordial thanks to Dr. H. Bremmer for his great interest and en-
couragement extended to this paper.

8. Appendix 1
Introducing the matrices 8,(i=1, 2, 3) by
Bi=2si—1, By=2s3—1, B3=253—1, (A1)

these prove to satisly the relations

) Qo 0 (i7£j) 51‘3]‘_5/31‘:07
Bi'j—&_‘sjﬁ[{z"j @@= BiB:Bs=1, Bi=1, etc.

Hence, applying the algebraic relations (2.10) and also the relation 77 (ab) = Tr(ba) for arbitrary
matrices @ and b,

Tr'(s)=Tr"(B:s1)=Tr"(s:81)=3Tr'(B151+5181) =0,
Tr'(8182)=Tr"(B18182) = — T (818:81) = — 11 (B18182) = — 1" (8182) =0,
Tr' () =3Tr'(s1+s3+53)=2,

o L 1 o
T/'/(S’i-\‘j-\"k): Tl“'(—'s'ksj'\‘i+5ij.S’;C—|>6]k-9i):- Tr (.S‘Au\’jr\’i):é ]", [(Si'sj#’\)jsi)'\.k’]:a? Eij[T]‘,(Sle‘k):7r léijk_
(A3)

Here, the commutation relation in (2.10) is used. In the same way, since the trace is invariant
for the matrix transposition and s/=—s;,

Tr'(sis;8u81)=Tr' (s1508;8:)=3% Tr' [(8:8;8x+-88;8:)8.]=% Tr' [6:; 881+ 0,18:8] =000+ 8,201;.  (A4)
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Generally, using the commutation relations for s; and g, the trace of any function of s,
can be expressed in terms of the following traces:

Tr'(s)=Tr"(sB;) =Tr"(s:s;8r) =Tr" (s B:8:) =0 (1#j #k).
Tr' (sis)) =284, Tr'(sis86) =1""ewn, Tr'(B) =41, Tr’(B:8,)=—1 (1#).
9. Appendix 2

The second equation of (2.14) is derived from the first one as follows. The Green’s
function (z, x’) is defined by the first equation

[(v0) =kl (x, o) =d(x—a'),

-
which gives, operating [— (y0") — k] from the right side,

[(v0) — kW (z, #7)[— (v0') — k] =5(z—2") [— (vO') — k] =[(0) — k]3 (2 —2")..
Hence

[(v0)— k1 {¥(z, ") [— (vO') —k]—(z—a”) } =0,

which has the general solution

-
Y, 2')[— (y0') —kl=d(x—z') +o(x, 2').
Here ¢(z, 2’) is a solution of the homogeneous equation
[(v0) —klp(x, 2") =0,

which has to satisfy all given boundary conditions in space. Generally, there exists no such
solution of a homogeneous equation. Thus ¢(z, ') =0 and the second equation of (2.14) is
obtained.
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