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The influence of earth curvature in the theory of reflection from the ionosphere is con-

sidered.
procedures can be displaved quite readily.
earth’s magnetic field is vertical everywhere.

By choosing a rather idealized model, the significance of usual earth-flattening
To simplify the analysis, it is assumed that the
It is shown that the curved ionosphere may be

represented by homogeneous planar slabs, provided the local value of layer curvature is used.
The results in the present paper are compared with some corresponding expressions obtained

by Johler and Berry [1962].

1. Introduction

Boundary value problems involving magneto
plasmas, such as the ionosphere, are a great deal more
complicated than the corresponding problems for
isotropic media. For this reason a number of gross

~simplifications are often made in order to achieve

tractability. For example, in most of the existing
literature on radio propagation it is assumed that the
ionosphere may be regarded as a planar stratified
medium. In fact, Budden’s exhaustive treatise
[Budden, 19611 is restricted entirely to this case.
Also, in prior work on VLE mode theory it has been
somewhat tacitly assumed that the ionosphere may
be regarded, in a local sense, as a planar stratified
medium. Justifications for this step are based on
arguments valid only for isotropic media. Earth
curvature is accounted for only in the nonionized
waveguide region beneath the base of the ionosphere
[Wait, 1961a, 1962; Katzin and Koo, 1962; Budden,
1962].  Since the anisotropic properties of the iono-
sphere play an important role in VLE mode theory, it
seems that this aspect of the subject warrants some
serutiny, and this is the main purpose of the present
paper.

The situation considered here is rather idealized.
The ionosphere is regarded as a spherically stratified
plasma with a superimposed radial magnetic field of
constant strength. Such a model has been considered
by van der Wijck [1946], Bremmer [1949], and more
recently by Krasnushkin [1961]. If this restriction,
on the magnetic field, were not made the problem
would become intractable unless some other simplify-
ing assumptions were made such as a purely trans-
verse field [Wait, 1961b].

2. Formulation

Choosing a spherical coordinate system (6, ¢, 7),
the base of the ionosphere can be regarded as the

spherical surface r=¢. For an ionospheric-type
plasma, the dielectric constant (e) has the form of a
tensor. The relation between the displacement

- -
vector 1) and the electrie field £ is then

-
2)

D=(e) E, (1)

which may be written more explicitly in matrix form
as
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The elements of the dielectric tensor may be a
function of » but constant with respect to 6 and ¢.
They depend on the strength of the earth’s magnetic
field and on the electron density, ion density, and
frequency of collisions between them. The case
usually considered is that in which the electromag-
netic forces influence only the electrons and the

motion of the ions is neglected. In this case
[Bremmer, 1949]
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where o, 1s the (electron) plasma frequency, w, 1s
the (electron) gyrofrequency, and v is the effective
collision frequency (for electrons). The generaliza-
tions of these formulae to include the mfluence of
heavy ions and the effect of an energy-dependent
collision frequency have been discussed elsewhere
[Sen and Wyler, 1960; Johler, 1962; Wait, 1962].
For purposes of the present analysis, it is sufficient
to point out that, even under these general conditions,
the dielectric tensor has the form given by (2),
provided the magnetic field is vertical. Therefore,
the subsequent theory will not be restricted just to
an electron plasma with constant collision frequency.
Maxwell’s equations,

> =
curl £F=—iuwH, (4)
N (e E 5)

where (e) is a tensor may be written explicitly in the
form

10 k)= — iy, (6)
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In the above it has been assumed that 0/0¢=0.

It 1s now a simple matter to express the » and 6
components of the field in terms of the ¢ component.
To facilitate this, two auxiliary functions M and N
are introduced which are defined by

1 oM

1 oN
Ho= S5 (13)

Then, without difficulty, it follows that

oM
sin 6 - 2 )
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Furthermore, it is found that M and N satisfy the
two coupled equations
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where k2=e¢uw?. In the case of isotropic media,
M and N are proportional to Debye potentials.
Equations (18) and (19) are applicable i regions
external to the source.

3. Solution
A solution of (18) and (19) is now sought in the
form
=F(r)P,(—cos 6), (20)
M=G(r)P,(—cos 6), (21)
where P, is the Legendre function which has the

required asymptotic behavior and has no singularities
except at 6=0. It is a solution of the equation

1 of_. _oP,(—cos¥) Y -
sin g o9 | S0 0 s J—}—v(qul)] ,(—cos 0)=0.
(22)
The radial functions I and G must then satisfy
i l_ LF’\ 2 eﬁ [ y (_]. 2 >
38 Iy (e“ (/r)+k € Ftivey dr \ e G
”(":]’ F=0, (23)
d*G 75%2 o 52 Dl v(v+1) ,
(112+ 622+:”] G— “ ey Or 72 G=0. (24)

In the case of isotropic media (i.e., ¢,=0), the equa-
tions become uncoupled. As a further check, the
medium may be taken to be homogeneous and iso-
tropic (i.e., e;—ey—e3—e where e is a constant).

-

Then I and @ satisfy the same differential equation |

given by

=0. (25)
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Solutions are linear combinations of the functions

ZhV(Z) and ZhP® (7), where Z=Fk(e/e,)"*r and where
hL“ and A,? are bphoncl‘] Hankel functions. Most
proponents [Budden, 1962; Katzin and Koo, 1962]
of earth-flattening procedures start with an oquallon
equivalent to (25). Then they develop the idea that

the term
FOWCR)

may be replaced by
Gl
2 <;,’I( )),
€0

where e () 1s the effective dielectric constant for
the equivalent planar region. Unfortunately, in the
anisotropic case the solutions of the coupled equations
:annot be expressed in terms of spherical Hankel
functions even if the medium is homogeneous.
Thus, the earth flattening procedures are open to
quo\tlon when dealing with magnetoplasma media.
Tosolve the ¢ oupml wave equations for the general
:ase, resort must be made to numerical techniques.
To simplify the procedure it is suggested that the
ionosphere above the surface r=c=r, be broken into
a number of concentric homogeneous regions which
are bounded by the surfaces 7o, 7, 75 . . . 7py, 70 . .
ryr. For example, within the mth region, the ele-
ments of the dielectric tensor may be replaced bv
constants. Thus, for r,_ < r<

]‘III L]

A

€11 = €22 €p, €33= €y, and €12=10m,

which corresponds to a dielectrie tensor having the
form

€ ". ,(/I/l ()
(6)=| —Ym €m 0 (26)
A
0 0 &
for the mth region. The coupled equations now
have the form
A 5y A A
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= 20

In most cases the quantity A\ can be regarded as
a constant \\ltlnn the layer. Thus, it is replaced by

AU gy

72

m

A=)\ = (29)

for the mth layer  Solutions of the coupled differ-
ential equations may now be found in the form
£, (30)

(31)

1)/" (}
and
Gn=qne "n".

Substituting these into (27) and (28) leads to the
two algebraic equations
A
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In order for a solution to exist, the determinant of
the coefficients p,, and ¢, must vanish. This
condition can be written compactly in the form

”m+”m|'\l %’\'2|+\1\§7\JW (34)
€€
where
= €& ¢
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1= _)\/n' (’ ))
€
There are four solutions of this equation; two

representing outgoing waves and two l(‘])l(‘s(‘l]llll"
mncoming waves. Ih('s(' are denoted “+u,, and -£u,,.
The equation is equivalent to the Booker quartic for
plane waves in dl]l\()ll()])l(' media [Budden, 1961].
The general solution in the mth ].1\01 may then be
\\nllon
S i - = s
["m:])m(jiu"'r*% l)m’,+umr+]),'”(,—u,'”r_*_ 1)1’"(,+u,"r (37)

and
’ = ’
u,”r_{,_ (Irln‘l"ru'"ry (38)

when the p’s are arbitrary constants. The ¢’s are
related to corresponding p’s through (32) or (33).
Therefore, for convenience in what follows,

=2 = =
r—. ’ -
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where the function «a(u) is known. The imaginary
part of the u,s is chosen to be positive and, thus,
the arrows — and < represent outgoing and ingoing
waves, respectively. In the outermost region, where
m=>NM,only outgoing\ raves are permissible and, thus,
“ <, «

Par= 1)1,*(1,,—(1,, —(0. Since the tangential field com-
ponents are to be continuous at tho interfaces, it
follows, from (12), (13), (16), and (17) that four
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continuity conditions are required at the surface
r=r,. These are
Fm:I”m—}-l’ (39)
Gm:Gm+1; (40)
(]Gm d0m+l
dr dr’ (1
dr,

1 [l
dr gmme] 6m-‘rl[ dr

Therefore, four independent relations between the
coefficients are available at each interface from
m=1 to m=DM.

To obtain the complete solution of the problem it
is necessary to consider the fields in the free space
or waveguide region a<_r< r,. Here the fields are
obtained from

.(/m+1‘*’Gm+1:|' (42)

1 bZlL,

. r o9 (43)
: 1 ONO
H,= i (44)
il — L 9 oM, 15
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. , 1 ’°N,
'Zeow]h;:—; 510 (48)

which 1s a special case of equations (12) to (17) for
isotropic media. In this case

A’:):Fo(r)Pv(_COS 0)7 (49)
and
My=Gy(r)P,(—cos 0), (50)
where G, and £, satisfy
2 v(v+1) -
[//“+A 2 F, —0. (51)

Therefore, solutions in the region a<_»<r, are of
the form

Fo(’) —FhD () - oh @ (k) (52)

and

pn(')

=gh D (kr)+g.h 2 (kr). (53)

The boundary conditions at the level r=r, are

Fo=F (54)

G=G, (55)

(]CO (/nl X

dr dr’ (56)
LdF, 1 (/Fl__, ' -
© dr e ':7/7 5/1“’01] (57)

For all practical purposes,
characterized by a surface
surface impedance Z,. Thus

the ground may be
admittance )Y, and a

150 i (58)
and
Ey=—ZH,, (59)
at r=a. In terms of G, and F; these may be written
IG ;
ipe¥ Gi=" (60)
and
. o @il
7.60ng1 0—7” (61)
at 7=a. In the case of a homogeneous ground of
conductivity o, and dielectric constant e,
S +7e w> |: 1€yw ]1
1 e — 2
£ ( T€ow gt lew ’ (82
and )
Legw ?f w '
() Tl o
€ <U&—Heg o, 1€,w (65
In most actual situations the square bracket factors

in these expressions may be replaced by unity, and,
furthermore, displacement currents in the ground
are usually of minor significance. Thus
Z.21/Y >~ (tuw/a,) . (64)
The boundary conditions as exemplified by (39),
(40), (41), (42), (60), and (61) yeild 4M-+2 algebraic
equations connecting 4M -2 unknown coefficients.
Setting the determinant of these coeflicients equal
to zero leads to an explicit equation to solve for the
eigenvalues or modes ». To illustrate the form of
this modal equation, the case of a homogeneous
ionosphere is considered. Thus M=1 and the
boundary conditions Vleld 6 hnear equations in the

coeflicients 1y, fo, 91, g2, pl, and pl The determinant
of these coefficients is written out explicitly in table
1. Setting this monster equal to zero yields a rather
involved transcendental equation for the determina-
tion of the modes ». The size of the determinant
grows linearly as the number of slabs 1s increased
(i.e., M >1). In the case of any number of slabs,
the determinant equation for the mode can be
written in matrix form as follows:
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TaBLE 1. Determinant of the coefficients for the case

of homogeneous ionosphere

A
ho (D (ke)

—u —u
0 o U EPeulo
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0
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where the first two factors are matrix reflection
coefficients.  Explicitly,

In’ ah® (x)—iZy/n
[),\:—- Sn gl o o
s In” 2h® () —i 210 smra (66)
and
In’ zh" (x)—i¥ gmo
| S— v g .
Ry Tn’ xh’(}g)(x)_,iyw():l::hl; (67)

where In” is the logarithmic derivative defined by
~dF(x)/dx

In” F(z) F o)

(68)

R, and I, can be interpreted as ground-reflection
coefficients for vertically and horizontally polarized
waves, respectively.  The explicit form of R,
LRy, ete., for the present problem could be written
out in full. However, there is no need to do this
as they have the same form as the reflection coef-
ficient matrix for a plane stratified ionosphere.
This aspect of the subject has been discussed recently
in some detail [Wait, 1963]. To make direct use
of numerical data already available for planar
reflection coefficients, it is necessary to invoke the
Debye approximations for the Hankel functions
iV (ke) and A (ke) and their derivatives. The
restriction for this step is

(ka/2)5C">>>1,

where (" is the (complex) cosine of the local angle
of incidence at the ionosphere. In terms of » and
ke it 1s not difficult to show that

w1277
( 7[ (ke)?

In the theoretical model discussed in this paper,
the earth’s magnetic field was taken to be vertical

where i=1, 2,

everywhere. A rigorous treatment of the earth-
ionosphere waveguide with a nonvertical magnetic
field does not seem to be possible. However, an
approximate approach to the subject, which utilizes
the concept of surface impedances, also leads to a
modal equation of the form of (65) above [Wait and
Spies, 1960; Wait, 1961a, 1963].

4. Final Discussion

The particular problem discussed in this paper has
also been considered by Johler and Berry [1962].
However, their solution for the anisotropic ionosphere
does not agree with the one given in this paper and
with a previous formulation of the author [Wait,
1961a] using a similar approach. It appears that
the origin of the discrepancy is their assumption
that the Hertz potentials I1° and 11" in the ionosphere
are not coupled by the boundary conditions." This
coupling is evidenced by the forms of (18) and (19)
in the present paper. Furthermore, their Hertz
potentials I1° and 11", which are related to the Debye
potentials N and M, are not solutions of uncoupled
wave equations in the ionosphere.

The coupling of ordinary and extraordinary waves
by the boundary conditions appears to be an essential
point in the analysis. Physically this is important
because the transmitted waves in the ionosphere are
almost circularly polarized even though the waves
in the space between the earth and the ionosphere
are nearly linearly polarized.
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