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The paper deals with t he relative convergence of a d oubly-infini te set of equations per­
taining to a boundary value problem in a waveguide. It is shown that the solution for t he 
equations converges differently for different choices of the co mbination of t he number of 
equations from the two sets. This is demonstrated by st udying t he co nvergence proper ties 
of t he truncated set of equations as t he number of equations is made indefini t ely largc. It 
is proven t hat t he solution for the reflection coeffi cient becomcs identical with t he exact 
solu t ion only with a p ar ticular choice of the ratio of t he equations. Thi s choice of t hc 
unique ra t io is also shown to be consistent with t he edge condi tion. 

1. Introduction 

In formula ting electromagnetic boundary value problems we are often led to an infinite 
set of equations. In most cases, it is not possible to invert the infinite matrix and we are forced 
to resort to truncating the above to a fini te size. "\Ve then solve the equations for a number of 
increasing sizes of the matrL,( and study the convergence of the solution. If at least the leading 
members of the unknown coefficients (which are usually of prinulJ.".)' interest) tend to converge, 
we feel satisfied and assume that we have ob tained a reasonably good approximation for t he 
leading coefficients. 

It is the purpose of this paper t o show in the fIrst instance that for a particular doubly 
infinite set of equations associated with the bifmcation problem in a waveguide, there is a 
relative convergence of the solution, meaning that the solution converges to a different se t of 
answers for every differen t choice of the r atio O= PIQ. P and Q are the numbers of equations 
from the fu'st and second set, respec tively, out of the doubly infinite set of equations. These 
equations for the bifurcation problem have been obtained by Hurd and Gruenberg [1954], 
who have also presented an exact solution of the infinite set through the use of calculus of 
residues . The above set, because it has a known solution, is particularly suited for our purpose 
which is to demonstrate by considering several finite size matrices that there results a relative 
convergence when P --HD and Q-o> 00 . Furthennore, we are also able to find the r atio of PIQ 
which yields the correct answer in the limit . 

In the second part of this paper we present a basis for choosing the correct ratio of PIQ 
when working wiLh a truncated set . With this choice, when the size of t he set is increased 
indefinitely while keeping the r atio 0 constant, the solution does converge to the correct answer. 
It is shown through the study of the asymptotic behavior of the higher order unknown coeffi­
cients and the application of the edge condition, why only an unique choice of the r atio would 
make the solution asymptotically tend to the correct one and wh~T otherwise an incorrect 
solu tion will resul t . 

2 . Development of the Infinite Set of Equations for H-Plane Bifurcation 

The infinite set of equations which will be discussed here in connection with the problem 
of H-plane bifurdation in a rectangular waveguide has been derived by Hurd [1954]. We shall 
therefore skip the details and merely outline the procedme for then' derivation. 
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FIG U RE 1. H-plane bifuTcation of a rectangular waveguide. 
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The geometry under consideration is shown in figure 1. Assume that the incident wave 
from the negative z-direction is a TEIO mode with the electric vector parallel to the edge of the 
septum. It can be easily shown that the only nonzero field components are E y , Hz, and Hz and 
that they can all be expressed in terms of a scalar function <p = E y and its partial derivatives. 

The problem can be stated in terms of the equation 

(1) 

and the following boundary conditions on <P: 

(a) <P and \1<p are finite everywhere in the region concerned, except at the edge of the bifur-
cation at z= O, x= b where \1<p becomes infinite. 

(b) <P and \1<p are continuous in the subregions and at z= O. 
(c) cp behaves as an outgoing wave at large z apart from the incident field. 
(d) <P vanishes on the walls x= O, a and on the septum at x= b, z> O. 
(e) <P satisfies the edge condition and hence goes to zero at the edge as rl /2, where r is the 

distance from the edge. \1<p therefore goes to infinity as r - 1/ 2 as 1'--70. 

It is easily verified that <PA, <PB and <Pc expressed in the following equations satisfy (1) 
and the conditions (a) , (e), and (d) . The expressions are : 

where 

<PA= Ae-"'lZ sin (7rx/a) + i= Ane"'nz sin (n7rx/a) 
n = 1 

<PB= ~ Bne-fl"z sin (n7rx/b) 
n=1 

<PC=~ Cne- 'Y"z sinn7r(x- b) /c 
n= 1 

A = amplitude of the incident field 
iX n = [(n7r/a)2-k2JI /2 
i3n= [(n 7r/b)2- k2]l /2 
'Y n = [(n7r /e) 2_ k2]l/2 
k = 27r/A, A= free space wavelength. 

iX, 13, and 'Y's are the mode propagation constants in the three regions. 

(2a) 

(2b) 

(2c) 

By applying the continuity conditions at Z= O and subsequently equating the Fourier 
components of the resulting equations in the range O< x< b and b< x< e, one arrives at the 
following doubly infinite set of equations after some manipulations (for details see Hurd [1954]): 
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~ A n sin (n-rrb/a) A sin (7rb/a) 
p = l , ... 00 (3a) 

n= 1 an - /3 p al + /3 p 

~ A n sin (n7rb/a) A sin (7rb/a) 
q= l , .. . 00 (3b) 

71,= 1 an-'Y~ al + 'Yq 

where o~= O for n~l and equals 1 when n = 1. 
The set of infinite equations (3) has been solved exactly by Hmd. We shall, however, 

concentrate on the solution of the truncated set of equations for various combinations of 
P and Q where these are the number of equations from the set (3a) and (3b) respectively. 
We proceed to do this in the following section. 

3 . Solution of Truncated Set of Equations 

Consider the solution of the truncated set of equations 

~Q A n sin (n7rb/a) A sin (7rb/a) 
p = l , 2, ... P (4a) 

n= 1 an- /3p a l + /3 p 

l~ An sin (n7rb/a) A sin (7rb/a) 
q= l , 2, .. . Q (4b) 

,,=1 an-'Y~ al+'Y~ 

In attempting to solve the set of equations (4) we r ecognize first of all that the determinant 
of the equation is of a par ticular kind which is called a double alternant [Muir, 1960]. Written 
explicitly, the determinant is 

1 
a 1-{3/ 

1 
C¥1-(3/ 

1 
(Xl - (3P' 

1 
CX2 - (3./ 

1 
a2-/3/ 

1 
0:3- f3/ 

1 
0 3- /32' 

1 
03 - {3P' 

... . 0' 

... . 0' 

1 · .. . 0' 

1 · .. .. , 

1 · .. . 0' 

1 · .... , 

1 · . .. . , 

Note that we have grouped the factors sin (n7rb/a) with the unknowns A n. 

(5) 

It is observed that each element of the determinant is a reciprocal of the difl'erence of two 
quantities, a T and /3s or "( t in general, only one of which, viz , the a, changes as one goes along the 
columns, whereas only /3 or,,( changes as one goes down the rows. Hence, if a,~an, where r 
and n are two differen t subscripts , then it is obvious that the determinant Ll~O and that the 
zero is a simple one. This is effective to saying that (a,-an) for various combinations of r 
and n are the fac tors in the continued product expansion of the determinant. In a similar 
manner , we observe that (/3,- /3 n)' ("(,-'Y n) and (/3t-'Ys) are also to be included in the product 
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expansion of the determinant. We have to make sure, however, that all such factors are in­
cluded in the product and that none is repeated. It is also obvious that the denominator of this 
expression for Ll must contain the factors (at-{3s) and (at-'YT) for various combinations of the 
subscripts. The expression for the Ll developed on the basis of above arguments, is 

M , M - l P , P - l Q, Q- l P, Q 

II (am-an) II ({3m- {3n) II ('Ym-'Yn) IT ({3m-'Yn) 
(6) 

where M = P + Q; II is an even or odd integer, depending on P and Q and as yet undetermined, 
although we shall not really need to find II. This is because in order to calculate the coefficients 
A T we need find only the ratio of the determinants LlT/Ll where LlT is the determinant obtained by 
replacing the rth column of Ll by the column representing the right-hand side of (4) . It is 
fairly straightforward that 

AT sin (1'1rb/a) =-~ Ll(a,~-at) sin (7f'b/a) (7) 

where Ll(aT~- al) is the determinant Ll with aT replaced by - al' We can therefore obtain 
through the use of (6) and (7) an expression for A T in the product form, which is 

A sin (1'7f'b/a) -A Ll (aT~-al ) 
T sin (7f'b/a) Ll 

= -A IT ((3,,-aT) rt ('Yn- aT). MIt (an + at) 
n = 1 ((3n+at) n=1 ('Yn+ al ) n = 1 (an-aT) 

(8) 

where the superscript (1' ) on the last product implies that the factor corresponding to n = 1' is to 
be omitted. Equation (8) gives the desired solution for the truncated matrix. In particular, 
the expression for AdA, which can be identified as the reflection coefficient R, is 

(9) 

We also quote below for comparison and reference, the result arrived at by Hurd as a 
solution of the infinite set of equations. His expression has a sign error and corrected it reads 

where for instance 

II(w, a) = IT (ap-w) (a/p7f')e(aw/ p7rl 
p=1 

(10) 

and the superscript (1) implies as before that the factor corresponding to p= l is to be omitted. 

4 . Comparison of Solutions of Finite and Infinite Set of Equations 

In this section, we shall study the asymptotic behavior of the expression for the reflection 
coefficient R. We shall see that even when (P + Q) is very large, the expression (9) for the 
reflection coefficient yields different values for different ratios of P/Q. We shall then compare 
the answer for a particular choice of P/Q and see that it indeed converges to the exact value of 
R calculated through the use of (10). 
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Consider the particular case when all the mode propagation constants excepting il'1 are 
real and il'1 is purely imaO'inary. This is done merely for convenience, and the conclusions 
regarding the convergence phenomenon reached in this case will still be applicable to the 
general case when the above condition is not true. 

For this case, it is obvious from (9) that R= eJO, i.e., IR I= l. The angle B=argument R 
is given by 

where il'1 = jO. But since f3n=--/(mr/b)2-k2 and 0=-,jP - (7r/a)2, one can write 

tan - I o/f3n=sin- 1 {(bo/7r)/ (n2-b2/a2)1/2}. 

After similarly expressing the other arctans in terms of arc sines, one can rewrite (11) as 

B 7r+~Q . - I (ao/n) ~ . - I (bo/7r) .JL.. - I (co/7r) -=- L..J sm ---- L..J sm 2..:; sm . 
2 2 n=2 --/n2-1 ,,=1 --/n2- (b/a) 2 n=1 , ln2- (c/a)2 (12) 

A similar expression for the exact Bex has been derived from (10) and is given in the foHowing: 

8ex= "!._ ao (1-~ In ~_~ In ~)+82 (oa; 1, 0)-81 (ob;~, 0)-81 (OC;~, 0) 
227r a b a C 7r 7ra 7ra 

where 

8 ( . 0) - -.!0 [ . - I U UJ N U, V, - L..J In (2_ 2)1 /2 . n=N n v n 
(13) 

vYe shall now go on to show that the expression r or the reflection coefficient derived from 
the truncated set of equations becomes identical with the exact solu tion as P ---'7oo , Q---'7 co , 

provided we choose P /Q= b/c. To this end, consider (12) which gives the angle of the reflection 
coefficient B in terms of the arc sine series. Rewrite the expression for Bin (12 ) as 

-=-+ ~sm- -- - - ~ - - ~ S111 - - - L: -8 7r { P+Q. 1 ( aO/7r) ao P+Q I} { P . 1 ( bo j-rr ) bo PI } 
2 2 n=2 -Jn2 1 7r n=2 n n= l --/n2- b2/a2 7r n=1 n 

- { tsin- l cO/7r cot~} _~+ao~Q~_bo£~_~t~. (14) 
n=1 --/n2- (c/a) 2 7r n=1 n 7r 7r n=1 n 7r n=1 n 7r n=1 n 

N ow, use the well known relation [Magnus and Oberhetinger, 1954], 

lim (:.B ~-lnM)='Y=Euler's Constant 
M-4'" n=1 n 

in (14) after letting P ---'7 00, Q---'7 00, and deriye 

- 87rao )8 hm -=-2--+82(oa/7r; 1,0) -81 (ob/7r; bfa, 0 - 1 (oC/7r; cia, 0) 
P-4'" 2 7r 
Q '" 

. { ao bo co } + llm -- In (P+ Q)--- ln P- - In Q . 
P-4'" 7r 7r 7r 
Q-4'" 

(15) 

If we now let P /Q= b/c, we can readily derive 
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Comparison shows that the limiting value of (J agrees identically with (13), which is the 
exact expression given by Hmd [1954]. 

It is also interesting to note that if P and Q are increased indefinitely, such that C= P/Q 
does not equal b/c, the expression for e approaches the limit 

which is different from the correct solution. Hence, even though the solution for the reflection 
coefficient will converge to a limit when larger and larger size truncated matrices are taken, 
the convergence is relative and the solution obtained will be incorrect except for the unique 
choice of the ratio P/Q= b/c. In what follows, we go on to demonstrate that this particular 
choice of P jQ ratio is also consistent with the criterion based on the edge condition at the edge 
of the bifurcation. To this end, we first study the behavior of the higher order coefficients, 
AT) in the following section. 

5 . Asymptotic Behavior of Higher Order Coefficients 

In this section, starting from (8), we shall develop an asymptotic expression for A r/A 
for large P and Q. 

Let us rewrite (8) as 

where 

(18) 

Since 
n7r n7r n7r 

(3n~ -b ' 'Yn~ - and OIn~ - for large n, 
c a 

it is convenient to introduce some additional factors in the numerator and denominator of (18) 
and rearrange it as 

P+ Q 
IT (1 + OI)a/n7r) 

n=! (19) P Q 
IT (1 + OIlb/n7r) IT (1 + OIlc/n7r) 

n=1 n=l 

It may be shown that the factors inside the first two (braces) tend to constants as P and 
Q aTe increased indefinitely for a given r. This is proven in appendix 1. 

It will therefore be sufficient to study the behavior of the ratio of the products F, where 

P Q 
IT (l - OIr bjn7r) IT (1-ar cjn7r) 

F n=l P+ Q n= 1 (1- ara /1'1r) , (20) 
IT (1-OIr a/n7r) 
n=l 

and of a similar ratio of products with - OIl replacing Olr . 
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Let us rewrite (20) a 

(21) 

and then use the following represen tation [Magnus and Oberhetinger , 1954] of l / r(z+ 1) where> 
rex) is the Gamma function of ar gument x. 

1 m 
limm - z IT (l +z/n), 
m~(I) n= l 

(22) 
r (z+ l ) 

to recast (20) into its asymptotic form for large P and Q. We derive using (22) in (21) , and 
letting P /Q= C (constan t), 

(23) 

Next, u ing [~Iagnus and Oberhetinger , 1954] 

r (l -z) 7r 
sin 7rZr (z) 

in (23) one derives 

The next step is to study the limit of Fa 1', hence aT becomes very large. We have from 
Stirling's formula, 

ZZ 
r (z) '" (27r) 1/2 l/2 e- Z for a large z. (25) 

z 

Using (25) in (24) and letting aT-'7/",r/a we find 

where L is a constan t independen t of l' and K T is an oscilla tory function of 1'such tha t KT-f~O 
and IK TI< l. N ote that we have used the fact that {I - (aTa/7r) /r} /sin aT a has the limi t (-Y+1 
(l /1'7r) as a T-'7I'7r/a. 

Writing 

we obtain from (26) 

1'T= ( rb + 1'C) Tb/a+Tc/a 
a a ' 

. LKT (l + l /C)'D/a(l + C) TC/a 
F-7 1'3/2 (1 + C/b)'b/U(l + b/c)TC/a 

fo r P/Q= C, P-'7 00 , Q-7 00 , and r large. 

(27) 

Equation (27) gives the desired asymp totic behavior of F . It is no t difficul t t o show th at 
the ratio of products 

1 
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has the asymptotic behavior 

and hence tends to a nonzero constant as r becomes large. We can sum up all this and arrive 
at the asymptotic behavior 

Letting X = b/e, we canrewTite (29) after some manipulation as 

• I ( {(I +- C) (X)b1a } r) . 1~1! Ar~O (1')-3 /2 I +-X' Tj forlarger. 
Q--'> oo 

Let C= P/Q= aX. Substituting for C and rearranging (3 0) one may obtain 

( I+-C) (A.\bla I+ X 6) = {1 +(17- 1)p }I7 -P= 17, say, 

with p= b/a= X /(1 + X). 
Using (3 1) in (30) we write 

lim A~~O ( (1') -3/217 r) . 
P --,>oo 
Q--'>oo 

(29) 

(30) 

(31 ) 

(32) 

Without loss of generality, let us let b> c implying X = b/c ~ 1 and hence 0.5::;p < 1. It is 
shown in appendix 2 that under this condition 

and by direct substitution we see that 

17 = 1 for CT = 1. 

Using these in (32) , it follows that the higher order coefficients A~ have an exponential growth 
for a~l , i.e ., for C=P/Q~X= b/c. Only for CT = l , which implies P/Q= b/c, A~ 's exhibit an 
algebraic behavior and are 0(1'-3 /2) for large r. 

6 . The Edge Condition and the Proper Choice of C 

The condition at the edge of septum requires that the field potential 'P go to zero at the 
edge as 1'1 /2 and that IV' 'P I go to infinity as 1'- 1/2 . N ow it is seen from (2a) that 

(33) 

It is obvious that if A~=-sin (n7rb/a)A n/sin (7rb /a) increases exponentially for large n , 
which it does when P/Q= C~X= b/c, the expression for o'PA /ozlx~b at the edge goes to infinity 
in a much stronger manner than Z-I/2 as Z--70. It is only when O= X and A~ is 0(1 /n3/2) for 
large n that the sum of the series is O(Z- I/2) as Z--70, as may be shown by following a method 
due to Hurd. It may be pointed out that in the exact solution obtained by Hurd A~ is 0(1 /n3/2) 
for large n, as it of course must be. 
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The conclusion is then that the edge condition is satisfied only with the choice of C= X, 
i.e., PIQ= b/c. When P and Q are increased indefinitely, consistent with the condition C= X , 
the solution converges to the one which satisfies the required behavior at the edge and thus 
yields an unique answer atisfying the physical conditions. 

7 . Conclusion 

It has been shown that the solution of a doubly infinite set of equations may exhibit relative 
convergence in that it may be dependent on the manner in which the doubly infinite set is 
truncated. An additional condition, such as the edge condition, may be used to determine 
the correct way of truncating the infinite set. Only with the proper choice of the ratio of the 
number of equations, the solution of the truncated set yields the exact solution as the number 
of equations is increased indefinitely. Otherwise, the solu tion converges to an incorrect 
answer which depends on the ratio of the number of equations from the doubly infinite set. 

It is hoped that this work may provide insight for handling a class of problems of a similar 
type which do not lend themselves to an exact solution. 

The au thor acknowledges the helpful discussions with his colleagues in the Antenna 
Laboratory of the University of Illinois and the sponsorship of Aeronautical Systems Division , 
Wright-Patterson Air Force Base, Ohio, through the research gran t AF33(616)- 6079 . He is 
also thankful to Professor S. A. Schelkunoff for making some helpful comments on the paper. 
The paper was prepared for publication while the author was a summer employee at t he Rad ar 
Division , Ground Systems Group, Hughes Aircraft Company, Fullerton , Calif. , and he is 
thankful for all the assistance provided him during the course of the preparation of the paper . 

8 . Appendix 1. Convergence of Certain Products 

'iiV e shall prove the convergence of the products of the type 

~ (l - a ra/n7r) 
n= l ( l - a r/an) 

(A- I) 

as P ---7 a:J. These products appeiU' in (19) in the text. To prove the convergence of the 
products in (A- I ), it will be sufficient to show that the series Sear) given b~T 

00 

S (ar)= L; {In (l - a ra/n7r) - ln (I - ar/an )) (A- 2) 
11= l 

converges. Consider the Rth terms of the series for R large such that (a ra/R7r) < <1. Expa,nd 
the log functions in a series and obtain 

(A-4) 

From (A- 3) and (A-4) , i t is obvious that the Rth term of the series in (A- 2) is at least O(1/R2) 
and hence the series is convergent. By exponentiating the series, one immediately concludes 
that the product under consideration is convergent. Similar reasoning applies for the other 
products appearing in the braces in (19) . 

9. Appendix 2 
To prove the inequality 

(A- 5) 



for O"~ 1. Note for 0" = 1, the above becomes an equality. 
We shall take a geometric approach to show that the above is true. The two functions 

1 + (O"-1)p and O"P are plotted as functions of 0" in figme 2, and it is seen that they have a 
common poin t a t 0" = 1. 

FWURE:2. Plot of functions appearing in inequality 
relation. 

The slope of the cmve O"P satisfies the following: 

<p for 0" > 1 
>p for (T < 1 
= p for 0" = 1. 

cr-I 

(1\.-6) 

Since the slope of the str aight line is p and the two curves have a common point at (T = 1, it 
follows from above that the line l +«(T - l )p is tangent to t he curve (TV at 0" = 1 and, further­
morE', the curve (TP lies below this tangent for all 0" ~ 1. 

Hence, the inequality is proven. 
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