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The integral equation for the electric field distribution in the slot which is excited by
a current source at its center is solved for the longitudinal field variation by Hallén’s iteration
method. The first order solution of the slot susceptance provides an agreement with
computations based on the variational method for cavities as shallow as N/20 provided the
slot length exceeds N/2. There is no agreement for very shallow cavities, where the fields
are rapidly attenuated along the slot according to the variational solution. A simple
closed-form approximation to the susceptance is applicable if the slot and the cavity are
of equal lengths. The first-order slot conductance is accurate only for approximately \/2
long slots which are backed by deeper cavities.

1. Introduction

The input admittance of a rectangular slot which is backed by a rectangular cavity has
been recently computed using variational techniques [Galejs, 1963]. The somewhat similar
problem of rectangular slots cut in waveguide walls has been treated using the Hallén’s method
of antenna analysis [Hallén, 1938 ; Watson, 1947; Stevenson, 1948].  Also slots above a dielectric
half space have been considered by the same technique [Galejs, 1962].

In this note it will be attempted to compute the admittance of a rectangular cavity backed
slot by the Hallén’s iteration method [Hallén, 1938; Watson, 1947; Stevenson, 1948 ; Galejs,
1962]. The electric field in the slot plane is related to the source current by an integral
equation. Approximations to the electric field distribution are obtained by successive itera-
tions, and the slot admittance follows as the ratio of source current to the voltage across the
center of the slot.

The integral equation is developed in section 2. Its zero order solution is discussed in
section 3. The first-order solution is compared with the variational solution in section 4.

2. Integral Equation

Figure 1 depicts the slot which is backed by a rectangular cavity of volume 2oz The

1 Sponsored by Air Force Systems Command, USAF, Rome Air Development Center, Griffiss Air Force Base, New York.
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slot is symmetrical with respect to the z-dimension of the cavity. The #-coordinate of the
slot center, 7,, is arbitrary.

The H) component of the magnetic field in the z=0 plane inside the cavity is readily
related to the electric field in the slot plane [Galejs, 1963]. 'The H; component of the magnetic
field in the z=0 plane outside the cavity also depends on the electric field in the slot plane
[Levine and Schwinger, 1950; Galejs, 1963]. The source current 7, flows across the slot
at 2=x/2. Therefore, ! and H_ are related by

Hi—H—1, 5 I:x—?:l )
Substituting the expressions for H% and HY in (1) results in

[lc2+§—;] f f ds'E,(', y") (Git-2Go) =—dmiapol 5 [x-%"], @

(slot)

where Green’s functions G, and G, are given by

Giz—ﬁr— S0 ST S 6ot Bz sin By cos B,y sin Bz’ cos By, (3)
LYo m=0 n=1 Be
Gozexp ;Zk?‘)’ @)
and where
k= w+/oeo,
nmw
BI_;O’
mm
le—%’
Bi=k>—pB—B;.
a=il, i =,
en=2, if m>0,

r=v(e—a")*+(y—y')"

The field components are assumed to exhibit an exp (—iwt) time variation. Considering (2)
as a differential equation for the double integral, its solution is

f f da'dy’ Ey(a’, y') (Gi+2Go) :~47r2w#° Lu [OP%{I sin l:k (93—%>:|

e +C, sin [lc <x—%9>]+ O, cos I:k (z—%)]) (5)

where «(z) is a unit step function. Equation (5) may be rearranged by applying the identity
[Watson, 1947; Stevenson, 1948 ; Galejs, 1962]

E,x;y)=E,,y)+[E, @ y)—E,(x,y")] (6)
into

f do’dy' B, (z, ') (G+26) = A(x) sin [k <m—?29>]+3 - [k <x-——$2%°>i|—A(x), @
(slot)
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where

Alx) :_471'71:;0#0 L l:x—%):l—}— 0, (8)
B:OQy (9)
and
A(z) :ff(Gi+2G0)[Ey(x’7 y)—E,(x,y")ldz'dy’ . (10)
(slot)

This rearrangement of the integral equation is the essence of Hallén’s method in antenna
problems, which makes it possible in our case to obtain %, (z) on the left-hand side of (7) by
substituting less accurate £, expressions in A(z). For narrow slots (e<Z<(l), it is permissible
to use the static approximation of #,. The electric field across a slot of width 2¢ in an infinite
conducting screen is obtained as [Smythe, 1950]

.
——— O
TV eE—(Y—y.)*

E,@y)=— (11)

where 17is the voltage across the slot. Using this approximation of %, it follows that [Watson,
1947; Stevenson, 1948; Galejs, 1962]

2 f(lx’(ly’Ey(x,y’)Goz—éﬂ (x) 1004?1 (12)
(.slob)
Noting that [Groebner and Hofreiter, 1958]
b
f -;’f_‘% dz=mJ,(ab) (13)

and applying (3) and (11), the integral involving G is evaluated as

8V (z) Z Z Emé€n cot B.zo sin Bz cos By

Yo m=0n=1 16:

f f d2'dy' E, (@, ") Gi=
;sl.ot)

Jo(B,€e) cos By, sin (B, %ﬂ> sin 8,0. (14)

The @, integral (12) as well as the G, integral (14) become logarithmically infinite as e—0.
In case of @; this is seen most readily after approximating @; by its small » value ?
2
which makes (14) equal to the approximate value of the G, integral in (12). However, this
approximation ignores any cavity effects on the (Z; integral, which is undesirable in the present
investigation. A(x) of (10) remains finite for e—=>0, and the subsequent analysis simplifies
after replacing y and 7’ of the ¢, expression in (10) by y. [Watson, 1947; Stevenson, 1948;
Galejs, 1962].
The integral (7) now becomes

5 &xr
Vi oo A (en [k <x~-9>:|+B o [k (:t——~>:|——A(x), (16)
2 The Green’s functior of free space is equaal to r=! for r—0. The factor 2 of (15) is due to the image beyond the boundary on which VG=0.
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where

clx)=—4 log +2 i i F.. SH;BIOC sin <BI ?) sin B,/ 17)
m=0 n=1 z
Zg/2+41 1k1z z’| © ) X
A= l:— —{-—Z‘, >0 F,, sin B,z sin Bzx'] - [Viola")—Vo()|da’ (18)
Jagre—1 ]93 T ] =0 n=1
Frn=41 ~ c0t 8,25 c08” B,yeT o(Bye). (19)
Lol OBc

3. Zero Order Solution of the Integral Equation

The simplest solution Viy(z) of (16) is obtained by neglecting A(z). A(z) and B are
determined from the condition
V|2 :l:l]:O. (20)

This gives

Vo(x):—%r;g; /ey {sm :I—tzm kl cos [Icl 5 12'0 (21)
The slot admittance may be computed from (21) as
Yy L ( ) 6 ki, (22)
TV (@of2) 271'2 o

This slot admittance is purely susceptive and B,= I'my, has been plotted in figure 2. A closed
form approximation to the double summation of ¢(x/2) has been worked out for 2/=u, in
appendix 2. The corresponding susceptance figures B, are indicated by dashed curvesin figure 2.

The susceptance B, is equal to zero for [=»N/4. If no modes propagate in the cavity or if
the cavity reflects an ideal open circuit, it follows that ¢(z,/2)< 0. Short slots of [<{\/4 are
now inductive, and long slots of />>\/4 are capacitive. This applies also to the deeper cavities
of figure 2. The leading term of the double summation in (17) is positive if the m =0, n=1 mode
propagates. For very shallow cavities, ¢(z,/2) >0. Hence long slots are inductive, and short
slots become capacitive, which may be seen from ficure 2. This last conclusion cannot be
justified from physical considerations because a shallow cavity should reflect an inductive
short circuit regardless of the slot length. The zero order solution of the integral (21), which
ignores A(z) in (18), may be expected to be accurate only for deep cavities. It provides an
incorrect susceptance for short slots which are backed by shallow cavities. Furthermore, the
zero order solution does not provide the slot conductance.
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4. First Order Solution of the Integral Equation

The first order solution V,(z) may be obtained by using Vi(z) of (21) for computing
A(z) of (18). Because of the difficulties in evaluating the integrals, V;(z) will be computed
with a simpler approximation to Vy(xz). For a slot approximately N2 long the voltage dis-
tribution along the slot is expected to be nearly cosinusoidal. Assuming a cosinusoidal dis-
tribution, the trial function V{(z) becomes

7t(x)=DB cos l:k (x—%)]/c(xl), (23)

where 2; may be selected to be equal to z,/2. Details of these computations are discussed in
appendix 1.

The resulting slot susceptance B,=ImY; is shown by the solid curves of ficure 3. The
dashed curves are obtained for 2/=x, by using closed form approximations to }; which are
derived in appendix 2. The dotted and dashed curves represent the variational solution
[Galejs, 1963]. There is a reasonable agreement between the variational solution and the
Hallén’s first order solution for 2/ >0.5X and z, >0.05Xx. The first order solution for slots of
20<C0.5\ is accurate only with deep cavities (2, >0.25\), because of the shortcomings of the
corresponding zero order solution.

Representative figures of the slot conductance G;=ReY| have been listed in table 1 for
2o=0.5N. G, is compared with the conductance G, of the variational solution [Galejs, 1963]
and with an admittance estimate G, based on a complementary dipole conficuration. It can
be shown that [Kraus, 1950]

€0

G.=22R 24)
Mo

Fiaure 3. First order slot susceptance.

Tasre 1. Slot conductance computed by the

w
o
X
=
-
=
=
- £ Hallén's method (Gy), variational method (Gy)
w ’g and from the resistance of a complementary
2 = dipole (Go). Xg=0.6\, 2g=0.5\, e=y,=10—3\
= }
o
2 'Q\ _ vo/x 2/\ G G» i (7
HALLEN'S FIRST S~ N\ | T
il ORDER SOL. SSSS = mmho mmho mmho
— —— APPROX. FOR U=x° =) 0.116 0.4 0.83 0.58 0. 59
A/X=06 | & 0.5 1.01 111 1.15
— .—. VARIATIONAL SOL. S 0.6 0.93 2.01 2.34
~20 ) . ) 0.3 0.6 0.93 2.03 2.34
0005 00 002 005 0.1 02 0.5 ‘

CAVITY DEPTH - Zo/ X

where R is the free space input resistance of a complementary dipole antenna. As pointed
out before, V{(z) of (23) may approximate V,(z) if 2/=X/2. Therefore, G, approximates @,
and @, in table 1 for 2/=X/2. V{(z) of (23) is too inaccurate for conductance computation at
different slot lengths.

5. Conclusions

The first order slot admittance computed by the Hallén’s method appears to corroborate
the slot admittance of the variational method [Galejs, 1963] in the cases where the voltage
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distributions of (21) and (23) are valid. Obvious disagreements occur for very shallow cavities,
where the voltage is rapidly attenuated along the slot [Galejs, 1963].

More accurate solutions of the Hallén’s method may be obtained by trial functions V{(x)
which resemble V() of (21) more closely than V{(z) of (23), or by going to higher order solu-

tions V,(z), Vi(x), . . .. Thisinvolves a considerable analytical effort and will not be attempted
in this note.

The author thanks P. Kimball and T. W. Thompson for computational assistance.

6. Appendix 1. First Order Solution of the Integral Equation

A(z) of (18) is evaluated using the trial function V{(z) of (23). Substituting (23) in (18)
and considering x=uz/2+¢ and z=w,/2+(, (where £5£1[), it follows that

. BT, . :
A= G [ { o o miika—g)+ g 2 }
e { Bil2ik ()14 §log 2—-+log [k(l—s)]}
—2 cos ke { Eilik (14-£)]+Eilik (l——f)]—Z'y—{—iﬂ'}:I

+C(i) 1;) F,, sin I: <2 +£>] sin <6x 9>

sin [(B,—k) | sin [ (B,+k) , sin Bl coskf |

: 2B L ]
A [%O:t l]= o) log I:Iiz (14kl)—log 2—7—{—%7[

—cos ki [Ez (i2kl) — 7+_:|}

+c (l;]) 7?_‘(,) Z F,,, sin l: (-——J; l)] sin <BI >

sin [L(B,—Fk)] %m[l(ﬁﬁ%)]_ sin B,/ cos kl}
{ B—F gtk 0 B 26)

where v=0.5772.. . ., Ei(x)=Ci(x)+1Si(x) — 72—r; Si(z) and Ci(x) are the sine and cosine inte-

erals respectively, and where B, ¢(z;) and £, are defined by (9), (17), and (19) respectively.
Substituting A[(zo/2) +1] in (16) A(z) and B may be determined from the condition

% [%Oj: z]:o. (27)

This results in

B=4TI0 1 cin {9 i lrl—l:A (’”"+1)+ A < z)] B“l} B (98)
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and

A <T°il>
A SR R )

sin (= kl) B

V(z) follows from (16), with A(z), B and A(z) determined from (29), (28), and (25) respectively.
The slot admittance Y; may be computed from (16) as

o O ]

- (30)
V<2> 1,

Appendix 2. Approximate Evaluation of the Double Summations

The numerical calculation of the admittances Y, and ¥; of (22) and (30) is rather laborious
because of the infinite double summations of (17), (25), and (26). These double summations
may be simplified if the slot is extended over the length of the cavity (I=u,/2). The simplified
summations may be approximated by integrals or summed directly.

Thus ¢(z¢/2) of (17) becomes

¢ <x0/2) 4 10( u.ln_*_-fo Z Z

m=0 p=0 2p+1 Ipw (31)

where n=2p-1. The double summation of (31) will be simplified by means of several approxi-
mations. For the cutoff cavity modes cot B.zo=~—i. For m=0 and p#0, B.~i6,. For
m#=0, B.~1f3,. The last approximation becomes inaccurate for larger values of p. However,
the individual terms of the p summation become small for p large, which tends to minimize
this error. These approximations result in

_ 2;0 16 cot (vA2— (r/xo)?20) | 1620 & (=1
¢(x0/2) = + Yo B— (o)’ ™o p=1 (2p+1)*

s Vs COSZ<—“'/°> <7/0 )

32
TS ) (32)
The summation over m is approximated by an integral as
cos? <ﬂ yv> Jo <@ e) w Jo (E m) cos? <7_rg/_c m) dm
Yo Yo /., f Yo Yo ) (33)
= m 1/2 m

on the assumption that cos (mxy./y,) #0. It follows that

I= hm{ f P 1+cos( m >]J0(Jom) dm— 01/2 Tzl;f:;z }zl:log (4%'3)-_7] o

if cos (my./iyo) =1 and J, <% 7re/y0>z1. If y.=0/2, all the m=o0dd terms of the summation are

equal to zero and the summation is approximated by 7/2. The summation over m may be

generally represented by
mm mm
_ cos? <—— yc> Jo (—-~ e> -
3 Yo Yo/ _ gl (35)
m=1 m
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where / is given by (34) and where ¢g=1 for y,=e (slot near the edge of the cavity) and ¢=0.5
for y,=w,/2 (slot near the center of the cavity). After evaluating the p summations

L 2z, 16 cot (\k*— (ﬂ-/xo)2zo) 16:::0 - 40\ .
cla?) =—4 log 2 1 20t CE e a—n—sglog ()= ] @0

where A=0.91596 . . . 1s the Catalan’s constant.
With [=u,/2, A(z¢/2) of (25) becomes
To . B S0 3771‘_ o n G20 %_7!'_
A <5>_ e {2 log (kzo/2) 2 [Ez(moﬁ T log 2 'y:l 4|:Ez(1lcx0/2)+ - —y]}—l—Sl

(37)
where

:22 2 "om(—1)? [cos (fexo/2) ﬁzﬂrki, —] (39)

S; is evaluated using similar approximations as in the evaluation of the double summation of
(31). This results in

~  (w/xe)* {COt (Vk2—(r [o)22
Sy~ lﬁ[cos (fo/2) o= :l EGRD

—q 7% l:log <%>—7:|} +1;6 [cos (kxo/2)—1]
Lo w10y

For l=u,/2 the double summation of (26) is equal to zero, which greatly simplifies the
computation of B in (28).

8. References

Galejs, J., Admittance of a rectangular slot which is backed by a rectangular cavity, IRE Trans. on Ant. and
Prop. AP-11, No. 2 (1963).

Galejs, J., Excitation of slots in a conducting screen above a lossy dielectric half space, IRE Trans. on Ant.
and Prop., AP-10, No. 4, 436-443 (1962).

Groebner, W., and N. Hofreiter, Integraltafel, Part II, eq. 333.76¢ (Springer Verlag Wien, 1958).

Hallén, Erik, Theoretical investigations into the transmitting and receiving qualities of antennae, Nova Acta
Regiae Soc. Sei. Upsaliensis, Ser. IV 11, No. 4, 1-44 (1938).

Kraus, J. O., Antennas, 369-371 (McGraw-Hill Book Co., New York, N.Y., 1950).

Levine, H., and J. Schwinger, On the theory of electromagnetic wave diffraction by an aperture in an infinite
plane conducting screen, Comm. Pure and Applied Math. 3, No. 4, 355-391 (1950).

Smythe, W. R., Static and dynamic electricity, see Problem 4.21 (McGraw-Hill Book Co., New York, N.Y.,
1950).

Stevenson, A. F., Theory of slots in rectangular waveguides, J. Appl. Phys. 19, 24-38 (1948).

Watson, W. H., The physical principles of waveguide transmission and antenna systems, sec. 10 (Oxford at
the Clarendon Press, England, 1947).

(Paper 67D2-259)

244



	jresv67Dn2p_237
	jresv67Dn2p_238
	jresv67Dn2p_239
	jresv67Dn2p_240
	jresv67Dn2p_241
	jresv67Dn2p_242
	jresv67Dn2p_243
	jresv67Dn2p_244

