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The integral equation for t he electric fi eld distribut ion in t h e slot which is excited by 
a current source at its center is solved for t h e longitudinal fi eld variation by Halh~n 's iteration 
method. The first order solut ion of t he slo t susceptance provides an agreement with 
computations based on the variat ional method for cavit ie as shallow as "A/20 prov id ed t h e 
s lot length exceeds "A/2. There is n o agreement for very sha llow cavi t ies, where the fi elds 
are rapidly attenuated a long t he slot according to t he variational solution . A si mple 
closed-form a pproximation to t he suscep tance is applicabJe if the slot and the' cavity are 
of equal lengths. The first-order slot conductance is accurate only for approximately "A/2 
long slots which a re backed by deeper cavities , 

1. Introduction 

The input admittance or a rectangular slot which is backed by a r ecLangular cavity has 
been recently computed using variational techniques [Galejs, 1963]. The omewhat similar 
problem of rectangular slots cu t in waveguide walls has been treated using the Hallen 's method 
of antenna analysis [Hallen, 1938; Watson, 1947 ; Stevenson, 1948]. Also slots above a dielectric 
half spt\ce have been considered by the same technique [Galcjs, 1962]. 

In this note it will be attempted to compute the admittance of a rectangular cavi ty backed 
slot by the Hallen's iteration method [H allen, 193 ; Watson, 1947 ; Stevenson, 194 ; Galejs, 
1962]. The electric field in the slot plane is related to the SOlU"ce current by an integral 
equation. Approximations to the electric field distribution are obtained by successive itera­
tions, and the slot admittance follows as the r atio of SOLU"Ce current to the voltage across the 
center of the slot. 

The integral equation is developed in section 2. Its zero order solution is discussed in 
section 3. The first-order solution is compared with the variational solution in section 4. 

2. Integral Equation 

Figure 1 depicts the slot which is backed by a rectangular cavity of volume XoYoZo. The 
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slot is symmetrical with r espect to the x-dimension of the cavity. The y-coordinate of the 
slot center, Yo, is arbitrary. 

The H ; component of the magnetic field in the z= O plane inside the cavity is readily 
related to the electric field in the slo t plane [Galejs, 1963]. The H~ component of the magnetic 
field in the z= O plane outside the cavity also depends on the electric field in the slot plane 
[Levine and Schwinger, 1950; Galejs, 1963]. The source current I y flows across the slot 
at x = xo/2. Therefore, H : and H~ are related by 

Substituting the expressions for H i" and H~ in (1) results in 

[p+ ::2J J J ds' Ey(x', V' ) (Gi +2Go) = - 47riwlloIyo [x_~o} 
(slot) 

where Green's functions Gt and Go are given by 

and where 

471"' co co €m€ n . ' . " 
G;= - - L; L; - {3 cot {3czo S111 {3xx cos {3yY sm {3xx cos {3yY , 

XoYo m=O n = l c 

G exp (ikr) 
o ' 

{3 = n7r, 
x Xo 

(3 = m7r, 
y Yo 

r 

fm= l , if m= O, 

fm= 2, if m~O, 

(1) 

(2) 

(3) 

(4) 

The field components are assumed to exhibit an exp (- iwt) time variation. Considering (2) 
as a differential equation for the double integral, its solution is 

f J dx'dY' Ey(x', V') (G;+2Go)= - 47r~wMo I yu [ x- ~oJ sin [k (x-~) J 
(slot) 

(5) 

where u(x) is a unit step function. Equation (5) may be rearranged by applying the identity 
[Watson, 1947; Stevenson, 1948; Galejs, 1962] 

(6) 
into 

f J dx' dy' Ey(x, y' )(G;+2Go)=A(x) sin [k (X- ~o) J+B cos [k ( x- ~o) J-A(X), (7) 
(slot) 
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where 

(8) 

(9) 

and 

A(x)= I I (Gi +2Go)[Ey (x', y' )-E y(x, y')]dx'dy' . (10) 
(slot) 

This rearrangement of the integTal equation is the essence of Hallen's method in antenna 
problems, which makes it possible in our case to obtain E y(x) on the left-hand side of (7) by 
substituting less accurate E y expressions in A(x). For narrow slo ts (E< < l ), it is permissible 
to use the static approximation of E y. The electric field across a slot of width 2E in an infmite 
conducting scr een is obtained as [Smythe, 1950] 

(11) 

where V is the voltage across the slot. Using this approximation of E y , it follows that [Watson, 
1947 ; Stevenson, 1948; Galejs, 1962] 

2 II dx 'dy'EvCx,y')Go ~-4V(x) log ~l . 
(slot) 

Noting that [Groebner and Hofreiter , 1958] 

Jb cos ax dX= 7rJo(ab) 
-b .Jb2-X2 

and applying (3) and (11), the integral involving Gt is evaluated as 

If 8V(x) '" '" E E 
dx' dy' E y(x, y' ) Gi=-- ~ ~ m(3 n cot f3czo sin (3xx cos (3yy 

• Yo m=On=l n c 
(slot) 

(12) 

(13) 

. J O((3yE) cos (3yyc sin ((3x ~o) sin (3xl. (14) 

The Go integral (12) as well as the Gt integral (14) become logarithmically infinite as E--70. 
In case of Gt this is seen most readily after approximating Gt by its small r value 2 

(15) 

which makes (14) equal to the approximate value of the Go integral in (12). However, this 
approximation ignores any cavity effects on the Gt integral, which is undesirable in the present 
investigation. A(x) of (10) remains fini te for E--70, and the subsequent analysis simplifies 
after replacing y and y' of the Go expression in (10) by Yc [Watson, 1947 ; Stevenson, 1948; 
Galejs, 1962]. 

The integTal (7) now becomes 

V (x)c(x)= A (x) sin [k ( x- ~o) ]+B cos [k (X- ~o) ]- A(X), (16) 

' The Green's function of free space is equal to r- I for r-.o. T he factor 2 of (15) is due to the image beyond t he bound ary on which \7G=O. 
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where 

( ) 4 I 4l+2 ';"';-" F sin {3xx . ( xo). 1 
c x = - og -;- ~o ~ nm ~ sm {3x 2" sm (3x (17) 

iX0/ 2+ 1 [ i k lx-x'i '" '" J 
A (x)= -2 ~1 _ 'I+L: L: Fnm sin {3xxsin{3xx' . [Vo (x' )-Vo (x)]dx' 

x0/2- I x X m=O n= l 
(18) 

F En Em ? J ( ) 
I nm= 47r - - {3- cot f3czo COS" f3vYc 0 (3y E • 

XoYo c 
(19) 

3 . Zero Order Solution of the Integral Equation 

The simplest solution Vo (x) of (16) is obtained by neglecting A(x). A (x) and Bare 
determined from the condition 

v [~o ±ZJ = o. (20) 

This gives 

- 27riIy.JIlO/ EO { ' . [kl xolJ t kl [kl xolJ} sm x-- - an cos x - - . 
c(x) 2 2 

(21 ) 

The slot admittance may be computed from (21) as 

y Iy 
o V (xo/2) 

1 ~EO (xo) . - c ', - cot kl. 
2 7T"~ 110 2 

(22) 

This slot admittance is purely susceptive and Bo= Imyo has been plotted in figure 2. A closed 
form approximation to the double summation of c(xo/2) has been worked out for 2l=xo in 
appendix 2. The corresponding susceptance figures B o are indicated by dashed curves in figure 2. 

The susceptance Bo is equal to zero for l= X/4. If no modes propagate in the cavity or if 
the cavity reflects an ideal open circuit, it follows that c(xo/2)< 0. Short slots of l< X/4 are 
now inductive, and long slots of l> X/4 are capacitive. This applies also to the deeper cavities 
of figure 2. The leading term of the double summation in (17) is positive if the m= O, n = 1 mode 
propagates. For very shallow cavities, c(xo/2) > 0. Hence long slots are inductive, and short 
slots become capacitive, 'which may be seen from figure 2. This last conclusion cannot be 
justified from physical considerations because a shallow cavity should reflect an inductive 
short circuit regardless of the slot length. The zero order solution of the integral (21), which 
ignores A(x) in (18) , may be expected to be accurate only for deep cavities. It provides an 
incorrect susceptance for short slots which are backed by shallow cavities. Furthermore, the 
zero order solution does not provide the slot conductance. 
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4 . First Order Solution of the Integral Equation 

The first order solution VI(x) may be obta,ined by using V o(x) of (21 ) for computing 
A (x) of (18). Because of the difficulties in evaluating the integrals, VI (x) will be computed 
with a simpler approximation to Vo(x). For a slot approxima tely -""'/2 long the voltage dis­
tribution along the slot is expected to be nearly cosinusoidal. Assuming a cosinusoidal dis­
tribution, the trial function vg(x) becomes 

V5(x) = B cos [ k ( x- ~o) JI C(XI), (23) 

where XI may be selected to be equal to xo/2. Details of these computa tions are discussed in 
appendix 1. 

The r esulting slot susceptance B I = 1m YI is shown by the solid Clll'ves of figure 3. The 
dashed curves are obtained for 2l= xI by using closed form approximations to YI which are 
derived in appendix 2. The do t ted and dashed curves represent the variational solution 
[Galeis, 1963]. There is a reasonable agTeement between the variational solution and the 
Hallen 's fu st order solution for 2l> 0. 5-"'" and zo> 0.05-.,... . The fil's t order solu tion for slo ts of 
2l< 0.5'\ is accurate only wi th deep cavities (Zo> 0.25 -""') , because of the hOl' tcomings of the 
corresponding zero order solution . 

R epresenta tive figllTes of the slo t conductance Gt = ReYI have been lis ted in table 1 for 
20= 0.5 -.,... . GI is compared with t he conductance Gv of the variational solution [Galeis, 1963] 
and wi th an admi ttance estima te Go based on a complementary dipole configuration. It can 
be shown that [Kraus, 1950] 
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FIGURE 3. Fi1'st order slot susce ptance. 

T ABLE 1. Slot conductance computed by the 
Hallen's method (G J), vW'iational method (Gv ) 

and f" om the resistance of a complementary 
dipole (Go). Xo = O.6>., zo = O.5>', E= Yo = 1O-3>. 

YO/A 21/A a, a. (I , 

mm,/to rmnho 1nmho 
0. 116 0. 4 0.83 0.58 0. 59 

0.5 1. 01 1.11 1. 15 
0.6 0.93 2. 01 2.34 

0.3 0.6 0.93 2.03 2.34 

where R is the free space input resistance of a complementary dipole a ntenna. As poin ted 
out before , V6(x) of (23) may approximate VI (x) if 2l """ -""'/2. Therefore, GI approximates G. 
and Go in table 1 for 2l= -""'/2. Vb' (x) of (23) is too inaccurate for conductance computa tion at 
different slot lengths. 

5. Conclusions 

The first order slot admittance computed by the Hallen 's m ethod appears to corroborate 
the slot admittance of the variational method [Galeis, 1963] in the cases where the voltage 
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clistributions of (21) and (23) are valid. Obvious disagreements occur for very shallow cavities, 
where the voltage is rapidly attenuated along the slot [Galejs, 1963]. 

More accurate solu tions of the Hallen's method may be obtained by trial functions V~(x) 
which resemble Vo(x) of (21) more closely than VJ (x) of (23), or by going to higher order solu­
tions V2 (x), Va (x) , . . .. This involves a considerable analytical effort and will not be attempted 
in this note. 

The author thanks P . Kimball and T . W. Thompson for computational assistance. 

6 . Appendix 1. First Order Solution of the Integral Equation 

A(x) of (18) is evaluated using the trial function V~(x) of (23). Substituting (23) in (18) 
and considering x=xo/2 + ~ and x=xo/2 ± l, (where ~~l), it follows that 

A [~+~J=-C(~l) [eik~ { log [k(l + m + E i [2ik (l-0l+ i; -log 2- 'Y } 

+e-ik~ { Ei[2ik ( l+~) ] +i ~-log 2- 'Y+ 1og [k(l-~)] } 

-2 cos kHEi [ik(l+~)] +Ei[ik(l-m-2'Y+i7r } ] 

+ C txl) t:a ~ Fmn sin [ l1x (~+~) ] sin (l1x ~o) 
. { sin l (l1x-k) + sin l (l1x+ k) 2 sin I1xl cos k~ } . (25) 

~-k ~+k ~ 

A [~± lJ=-C~!) { e;I IOg (2kl) + e~kl [ E i (i4kl)-log 2-'Y+ ~7rJ 

-cos kl [ Ei (i2kl ) - 'Y+ ~ J} 
+ C fxl) ~ ~ Fnm sin [ l1x (~o± l) ] sin (l1x ~o) 

. { Sin [l(l1x-k)]+ sin [l(l1x+ k)] 2 sin I1xl cos kl ~ (26) 
~-k ~+k ~ J 

where 'Y= 0.5772 ... , Ei(x) =Ci(x)+iSi(x) -i ~' Si (x) and Ci(x) are the sine and cosine inte­

gTals respectively, and where B , c(Xj) and Fnm are defined by (9), (17), and (19) respectively. 
Substituting A[(xo/2) ± l] in (16) A(x) and B may be determined from the condition 

(27) 

This results in 

B=47r~WMo I y sin kl { 2 cos kl - [ A (~+l)+A (~-l)J B - 1} - I (28) 
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and 

A(± Ix!) ' 
B [ A (~± l)] 

sin C±kl ) cos kl B . 
(29) 

Vex) follows from (16), with A (x) , Band A(x) determined from (29), (28), and (25) respectively. 
rfhe slot admittance YI may be computed from (16) as 

(30) 

Appendix 2 . Approximate Evaluation of the Double Summations 

The numerical calculation of the admittances Yo and Y I of (22) and (30) is rather laborious 
because of the infinite double summations of (17), (25), an d (26). These double summations 
may be simplified if the slo t is extended over the length of the cavity (l= xo/2). The simplified 
summations may be approxim ated by integrals or summed directly. 

Thus c(xo/2) oC (17) becomes 

2xo 2xo '" '" ( - 1) p 
c(xo/2) =-410g - + - L: L:; 2 + 1 Fp fft 

E 'Ir 711 = 0 p=O P 
(31) 

where n = 2p+ 1. The double summation oC (31) will be simplified by means of several approxi­
mations. FOT the cutoff cavity modes cot f3ezo ~-i. For m= O and p~ O , f3e~if3x . For 
m~O, f3e ~ if3l1 ' The last approxim ation becomes inaccm ate for larger values of p. However, 
the individual Lerms of the p summation become small for p large, which tends to minimize 
this error. These approximations resul t in 

The summation over m is approximated by an integral as 

cos2 (m'lr Ye) J o (m'lr E) f '" J o ('irE m) cos2 (7rYe m) dm :::t Yo Yo ~ yo Yo , 
711= 1 m 1/ 2 m 

(33) 

on the assumption that cos (m 7rYe/YO) ~O. It follows that 

I=lj-7~{~ So'" m2~o2 [1+COS C:;e m) ] J o (::m) dm- SoI/2 ;~~2 } = [ log (~o)-"tJ (34) 

if cos (7r1.Jc/Yo) = 1 and J o G 'irE/YO) ~ 1. If Ye=Yo/2, all the m= odd terms of Lhe summatio,n are 

equal to zero and the summation is approximated by I /2. The summation over m may be 
generally represented by 

(35) 
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where I is given by (34) and where q~l for Yc = f (slot neal' the edge of the cavity) and q~O.5 
for Yc=Yo/2 (slot neal' the center of the cavity). After evaluating the p summations 

where A= O.91596 ... is the Catalan's constant. 
With l=xo/2, A(xo/2) of (25) becomes 

A (~o)=_ C(X~2) { 2 10g (kxo/2) + 2 [ Ei(ikxo) + i; - log 2-'}' J -4 [ Ei(ikxo/2) + i; -'}' J} +81 

(37) 
where 

(38) 

8 1 is evaluated using similar approximations as in the evaluation of the double summation of 
(31). This results in 

2 [ (4Yo) J} 16 -q; log -;-; -'}' +-;- [cos (kxo/2)-lJ 

For l=xo/2 the double summation of (26) is equal to zero, which greatly simplifies the 
computation of B in (28). 
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