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The characteristics of two- and three-loop superdirective antenna arrays are presented.
At VLF, this type of array appears to have many desirable qualities, and the usual detri-
mental characteristics associated with superdirectivity are less in evidence. It is shown that
the beamwidth is narrowest, the front-to-back voltage and power ratios are greatest, and the
position of the back lobes and nulls are most invariant when closely spaced loops are used.
Inequalities in signals from the individual loops tend to obscure the front and back lobes
and limit the proximity of the loops.

List of Symbols

F,=relative voltage received from direction ¢ compared to voltage from one loop.

¢—angle of received signal in the horizontal plane from the vertical plane in which the

loops are located.
27D cos ¢
A

D=distance between loops

N=Iree space wavelength
—d=phase delay between loops

¢o=null position

¢ =nposition of side lobe maximum

R =ratio of front lobe to side lobe amplitude

Ry—=ratio of front lobe to back lobe amplitude
Rp=ratio of power collected by the front lobe to that collected by the back lobes

I=current in the loop antenna

7=120m, intrinsic impedance of space

A=area of loop

B=2x/\

=angle in the plane of the loop

r=radius of loop

ro=radius of wire used to make loop

Z;=input impedance of loop

V5. =loop voltage

F=free space radiation field.

1. Introduction

At very low frequencies (VLK) a large land area is required to obtain high resolution and
unidirectional antenna patterns with conventional arrays. It appears that the array can be
greatly reduced in size by using the principle of superdirectivity.

Several authors have discussed the factors that limit superdirectivity in practical antennas
[Taylor, 1948 ; Wilmotte, 1948 ; Riblet, 1948; Yaru, 1951 ; di Francis, 1956; Stearns, 1961]. It
is limited by ohmic losses, narrow bandwidth, and critical tolerances of antenna parameters.
Superdirective receiving antennas are realizable at VLF because these limiting factors are less
in evidence. There is very little coupling between loops used at VLLF so the bandwidth is not
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narrowed and the ohmic losses are not increased when the loops are used in an array. The
tolerances of the loop voltages are critical and will be discussed later. In this paper several
characteristics of two- and three-loop arrays are derived and presented.

2. Radiation Pattern Characteristics

The important characteristics of the patterns of two- and three-loop arrays will be derived.
The positions of the side lobes, and nulls, beamwidth, ratio of side and back lobes to front
lobe, and ratio of power collected by front lobe to that collected by back lobes will be pre-
sented. Some of the pattern characteristics of the two-loop array have been derived and
experimentally verified earlier [Friis, 1925]. This paper will be an extension of the work done
by Friis.
2.1. Two-Loop Array

The pattern of the two-loop array is easily derived by pattern multiplication from the
pattern of a loop and that of a two-element isotropic array [Kraus, 1950a]. Consider two
identical loops with (6—a) phase shift between them, oriented in line in a vertical plane such
as loops No. 1 and No. 2 in figure 1. If the loops are receiving vertically polarized energy.
the radiation pattern in the horizontal plane is given by (18A) in appendix 5.1 which is

E,=| 2 cos ¢ sin <%§>] /~<¢%6->- (1)

¢ =90°
" o |
|Loor 2 LOOP 3

¢=0°

¢ =180°

Freure 1. Loop antenna array.
(a) Physical configuration.

(b) Radiation pattern.

HALF-POWER BEAMWIDTH

270° 90°
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a. Null Positions

The null positions in the pattern may be used to exclude unwanted signals. There are
four nulls: one each at ¢=—90° and ¢=270°, and two between the side lobes and the back lobe
as shown in figure 1b. Only the null positions between the back lobe and side lobes will be
discussed, since the other two are fixed. Null positions between the side lobes were derived
in appendix 5.1 and from (23A)

(2)

¢p=—arc cos
Equation (2) is plotted in figure 2 which can be used to position the nulls in a loop array.

b. Back Lobe Positions

A picture of the radiation pattern would not be complete without a knowledge of the side
lobes and the back lobe. The side lobes are the two lobes whose peaks are situated at equal
angles on either side of ¢=180° and the back lobe is the lobe whose peak is at ¢=180°. 1f
(22A) and (23A) are substituted into (1) a voltage pattern equation results in terms of the

null position selected,
F4=2 cos ¢ sin |:7T){) (cos ¢—cos ¢(,)] ‘f,f““—<¢j6k’)- (3)
Only the amplitude is needed,
| 4| =2 cos ¢ sin l?ri) (cos p—cos @.)]- 4)
The positions of the maxima of all back lobes can be derived from (4), by differentiating £

with respect to ¢ and setting the results equal to zero. Two equations are obtained from which
three back lobes can be ascertained.
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Fraure 2. Null position as a function of delay.
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sin ¢=0, (5)
and

tan [7% (cos ¢;—cos ¢°>]:_TTD cos ¢). (6)

Equation (5) yields one back lobe maximum at 180°, and (6) yields two more side lobe max-
ima, since there is symmetry about ¢=0° A graphical solution of (6) for three different.
null positions shows that the side lobe positions change very little with /\. These solutions
are plotted in figure 3. For small loop spacings (D/A<0.1) (6) reduces to

2 cos ¢;=c0s ¢y. (7

When the null position has been selected, the corresponding back lobe position may be com-
puted to a fair degree of accuracy especially at VLF frequencies where the wavelength is
very long.

c. Beamwidth

A measure of the directivity of an antenna is its beamwidth. The half-power beamwidth
of the two-loop array is determined by setting

E¢A:O-707[€¢=()° (8)

and solving for ¢4, which is half the half-power beamwidth.
COS ¢4 SIn I:E){z (cos ¢4 —cos ¢0):|=0.7()7 sin I:TTD (I—cos ¢0)]. 9)

When (9) is solved and plotted (see fig. 4) the first evidence of superdirectivity is revealed,
for the narrowest front lobe occurs with the smallest loop spacing. The beamwidth is only
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plotted up to a value of loop spacing where lobe splitting begins; at this point the front lobe
splits into two lobes. This loop spacing depends upon the null positions, and occurs where
2l
Limit dE,

o0 do

18 positive.

Lobe splitting begins at the following loop spacings:

D/x=0.364 for a null at 180°
D/x=0.385 for a null at 150°
D/x=0.461 for a null at 120°.

d. Front-te-Back Lobe Ratios
The front-to-back ratio may well be the most important characteristic of the two-loop
array, for it shows to what degree signals from the rear (¢=90° to $=270°) are excluded.

If (4) with ¢=0° is divided by the same equation with ¢=¢;, the position of the back lobe
maxima, the lowest front-to-back voltage ratio is obtained for the two lobes on either side

of $=180°,
I sin l:»— (1—cos d)',)jl
74;,‘?,’,9 =R,=- (10)
Lig=9; COoS ¢ sin I:— (( 0S ¢ —CO0S ¢U):|
and for the single back lobe at ¢=180°,
i sin ’:— (1—cos ¢‘,):|
el = R (11)

Es 150 sin I:..,— ( +( 08 ¢o):|

The front-to-back ratios of back lobes ¢—¢, and ¢—=180° are plotted as a function of
D)X for several null positions and shown in figures 5a and 5b. The two back lobes off ¢=180°
are called the side lobes to distinguish them from the back lobe at ¢=180°. These curves
represent the lowest front-to-back ratios. At all other angles ¢, the front-to-back ratio is
oreater. It is interesting to note that the solution for 22, and /2, when /X is very small is
a fair approximation for a good range of /N values.

) 1—cos ¢,
> S
gm R, c0S ¢1(COS b1—COS ¢y) "
) 1—cos ¢ ‘
o iema 13
él.]:() v 1+cos ¢, -
A

When loop spacing is small there is an optimum null position for the greatest front-to-back ratio.
If (12) and (13) are plotted as a function of null position, as in figure 6, the intersections of the
two curves give the positions of the nulls for equal and optimum front-to-back voltage ratio
with all three back lobes. The optimum front-to-back ratio is 11 and occurs at the null posi-
tions of 145 and 215°.

In applications where the loop array is in a field of multiple sources, such as spherics at
VLF, it is useful to optimize the ratio of the power collected by the front to that collected by
the back lobes. For small loop spacings, (4) reduces to

2D

| Ey| = (cos® p—c0s ¢y COS ¢). (14)
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Fraure 5. Two-loop array.
(a) Front-to-side lobe ratio.

(b) Front-to-back lobe ratio.

If (14) is squared and integrated over the front lobe, the normalized power is obtained.

Pp—— fz (cos® p—cos ¢y oS ¢)2dp. (15)
J 0

The integration needs to be performed over only half the front lobe (¢=0 to x/2) since there is
symmetry about $=0°. Then

27)2 5 9 co ¢ / a

Pfﬁtﬁr—p l:(*os ¢ sin ¢ <mg 4)- g_,,, COS ¢y COS ¢+ 25 %)—}—qb <( i ¢° %)-—-f COs ¢, sin ¢]2,

o ¢ 0
(16)

which reduces to
! STD? [, 4 3
gy ol o= () 2 S o .

[P= N2 <4 cos” ¢, 5 €os ¢0+]67r) (17)
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Likewise, the power in the back lobes is

27)2 g
[,":MT)D ﬁ (cos® p—cos ¢y cos ¢)*dp, (18)
)
N 5 4 3
[By= N (g cos? ¢0+§ cos ¢0—{—1—6 7r>- (19)

The ratio of power in the front lobe to power in the back lobes is

. 16 3
T cos? ¢0—7) cOs ¢°+Z T

T = (20)
T cos’ ¢0—|—»,3-) oS ¢0+'Z T

The front-to-back power ratio depends only on the position of the nulls in the back when
loop spacing is small. An optimum null position for maximum front-to-back power ratio is
found by differentiating (20), setting the result equal to zero, and solving for ¢,. The optimum
¢o equals 150°. 2., is also found.

16
21 COS pg——
) — o ¢
[‘mux] Go=150° "'*'*16——10()- (21)

2m cos ¢>0—|—~,;——

Tt is evident that the best possible ratio of power collected by the front lobe to that collected by
the back lobes for the two-loop array with closely spaced loops is 100. As a comparison, [p

is plotted as a function of the null position in figure 7. The optimum point is clearly seen to be
a null position of 150°.
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Ficure 7. Two-loop array: ratio of power in the front lobe to power in back lobes.
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2.2. Three-Loop Array

The pattern of the three-loop array is easily derived by pattern multiplication from the
pattern of a loop and that of a three-element isotropic array [Kraus, 1950]. If the three identical
loops are oriented in a vertical plane, receiving vertically polarized energy, with (6— ) phase
difference between adjacent loops, as shown in figure A1, the radiation pattern is given by
(5A) from appendix 5.1, and is

Ey=2 cos ¢[1—cos (y+6)]/—a. (22)

Equation (22) is the basic equation used to derive the pattern characteristic in the discussion
following.

a. Null Positions

The null positions in the radiation pattern may be used to exclude unwanted signals. Null
positions between the side lobes are derived in appendix 5.1. By rearranging (10A) the null
position is

Po=arc cos (2—7;%/—>\> (23)

Equation (23) is identical to (2). Apparently the null position is the same for the two- and
three-loop arrays when the same delay is used between loops. In figure 2, the null positions
are plotted as a function of the ratio of line delay to free space delay between loops. The curve
can be used to place the nulls at desired positions in a practical array.

b. Back Lobe Positions

To gain a clear picture of the radiation pattern, the position of the back lobes including
side lobes should be derived. The positions of the back and side lobes are needed also to com-
pute the front-to-back lobe ratio which is a measure of the directivity. If (22) is rearranged in
terms of the null position and simplified as in appendix 5.1, the amplitude, which is all that is
needed 1is

|E4|=4 cos ¢ sin? [%) (cos p—cos ¢(,):|- (24)

If (24) 1s differentiated and set equal to zero, the result is
sin ¢=0 ¢=0° and 180°,

which is the maximum of the back lobe, and
27D .
Y COS ¢;=sIn I:Zr)? (cos ¢;—cos qso):l; (25)

which is the equation for the position of the side lobes. Equation (25) has been solved graphi-
cally and plotted in figures 8 and 9. It appears that the distance between the loops has very
little effect on the position of the side lobes (fig. 8), but the side lobe positions depend to a
great extent on the position of the null (fig. 9). The loop spacing for a VLF superdirective
array would be very small compared to a wavelength. In this case (25) reduces to

3 COS ¢;=—CO0S ¢y. (26)

The positions of the side lobes, ¢;, can readily be computed with (26) when the null position,
¢o, has been selected.
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Freure 9. Three-loop array: side-lobe posilions as a funclion of null position.

c. Beamwidth

One measure of the directivity of an antenna is its beamwidth. The half-power beam-
width of the three-loop array is determined by setting £ ,=0.707 /-y, which gives

—~
o
~J

o

cos ¢, sin? [7%) (cos ¢p4—cos ¢0)]:0.7()7 sin? l:%{—) (1—cos ¢0):|;

where 2¢, is the half-power beamwidth.
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Ficure 10.  Three-loop array beamwidth.

When (27) is solved graphically and plotted (fig. 10), it is readily apparent that the nar-
rowest front lobe and the most directivity occur at the smallest loop spacing. This behavior,
which seems contrary to normal array theory, is superdirectivity. At close loop spacing, (27)
reduces to

. A 2
cos ¢=+ I} (#OS ¢°*> ; (28)

COS ¢.4—COS ¢

where 2¢, is the beamwidth at power level 12, which is 0.5 for half-power and 0.1 for one-tenth-
power beamwidth.

The position of the null has some effect on the beamwidth, as shown in figure 11. The
advantages of the small beamwidth associated with null angles close to 90° are partially offset
by a large back lobe at ¢=180°. The front lobe is narrowed considerably by using three loops
instead of two loops. Figure 12 shows the beamwidth of both two- and three-loop arrays as
a function of the null position. These curves can be used to sketch the radiation patterns with
selected null positions if the levels of the back lobes are known. One other consideration in
sketching the pattern is the loop spacing at which the main lobe splits. An examination of the
derivative dF,/d¢ as $—>0° is necessary to determine when the main lobe begins to split into two
lobes. lLobe-splitting occurs when

(lpinol %%=——4 sin l:%) (1—cos ¢0):|{g7;—n+sin l?%) (I—cos ¢0):|}

is positive. Lobe-splitting takes place when sin [#D/N(1—cos ¢y)] is negative, since 270/
sin [wD/N(1—cos ¢o)] 1s always positive. Sin [zD/N(1—cos ¢o)] is negative when z[)/\
(1—cos ¢g) >m; therefore, lobe-splitting occurs when
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By inspection of (29) it must be concluded that there is no lobe-splitting for loop spacings
below a half wavelength.
d. Front-to-Back Lobe Ratios

Another important aspect of the directivity of the three-loop array is the ratio of the
maximum of the front lobe to the maximum of the back or side lobes, which shows the extent to
which signals from the rear (¢=90 to 270°) are excluded. These ratios are derived from (24).
If the amplitude of the front lobe is divided by the amplitude of the side lobes, the ratio 1s

E

sin? [T{J (1—cos %)]
=Ry =—— : 30
Boes, ' <277;\Q>2 cos’ ¢, .

Similarly, the ratio of the front lobe to the back lobe is

—sin? I:W)? (I—cos ¢'.):I

—R=——= 5 —————= (31)
sin? [ﬂ-){g (1-+cos ¢>0)—!
=

v
) I(‘Q,:([O

=
Iﬁé:lsn”

These ratios are shown as a function of loop spacing in figures 13 and 14 for a variety of null
positions. In all cases the maximum front-to-back ratio or greatest directivity occurs at the
closest loop spacing. This is contrary to the usual array in which directivity increases with
aperture length. This again shows superdirectivity tendencies.
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Fiaure 13. Three-loop array: front-to-side lobe ratio.

For small loop spacing, (30) and (31) reduce to

27 (1—cos ¢,)*

Ey 4 cos® g, (32)
and
o 1—cos ¢, 2.
A== 14cos ¢o> (83)

If R, and R, are plotted as a function of the null position, as shown in figure 15, an optimum
null position is apparent where R; equals £, This condition occurs at ¢,=138.6 and 221.4°,
where R, and R, are 49 (or 33.8 db). A very wide range of null positions can be selected in
which the front-to-back ratio is greater than 28 db.

In applications where the three-loop array is in a multiple-source field, such as sferics at
VLF, it is important to optimize the ratio of power collected by the front lobe to that collected
by the back lobes. The power ratio may be derived from (24). For small loop spacings, (24)
reduces to

| Eg|=cos ¢ [@ (cos ¢—cos %)]2- (34)

The ratio of power in the front lobe to that in the back lobe is

2B,
_&_L'__i‘_‘f’,
D - T
Py f" | Ey|2de
2
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The power need only be integrated over half the pattern since there is symmetry about ¢=0°.

< 32 5
32 7r—D) (7—r cos* ¢0~—§ cos® ¢>0—{—9 T cos? ¢0—i oS qso—{—l"f 7r>
p.Pi2_ WAL 3 8 15 96 36)
PTP2 . (DN [T 8 9 32 15\
Q= b3 4 . 3 o 2 o= 2 o
32 ( X ) (4 CcOS ¢0+3 cos ¢0+8 T COS ¢>0+15 cOS ¢“+96 7r>
which reduces to
T <i cos* qso—{——g- cos? ¢0—|—£)—<§ cos? ¢'0+% cos ¢0>
R . (37)

I)=
L oost ot cost 10 ) (3 cos® k22 cos )
r(4 cos ¢>o+8 cos ¢’0+96 o 3 08 ¢o+15 COS ¢y

The front-to-back power ratio depends only upon the position of the null when loop spacing is
small. Equation (37), which is plotted in figure 16 shows that the power ratio remains above
30 db over a wide range of null positions. The optimum front-to-back power ratio of 35 dbh
occurs at 144 and 216°.

3. Limiting Factors in Loop Spacing

Although the results show that the smaller the loop spacing the greater the directivity,
there are certain limitations. The limiting factors in loop spacing are the amplitude and phase
inequality in the loop voltages received in the direction of a null and to a lesser extent the
coupling between loops. Coupled with this is the decrease in amplitude of the main lobe of
the array as the loops are spaced closer.

3.1. Amplitude and Phase Inequality

Theresultant null voltage from a pair of loops is derived in appendix 5.2, and is expressed as
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Fraure 16.  Three-loop array: ratio of power in front lobe to power in back lobe.

ier[ :Af’lz_jA012E1 (38)

where Aej; is the amplitude difference between the loop voltages and A#;, is the phase difference
between the loop voltages; % is the voltage {rom one loop.

In a similar manner the resultant null voltage from a three-loop array derived in appendix
E9 iq
5.2 1s

‘é’vr[:Af’qz‘!‘Aezz—j(AolErl‘AasEﬁ,- (39)
where
Aeyy 1s the amplitude difference between loop 2 and 3,
Afy; 1s the phase difference between loop 2 and 3, and
Iy is the voltage from loop 3.

The resultant null voltage can become quite large and obscure the null if the loop voltages
are unequal and out of phase. The amplitude difference is most important because the phase
difference tends to simply relocate the null position, while the amplitude difference limits the
depth of the null. This is especially true in the two-loop array case. In the three-loop array
:ase, phase difference between the loop voltages tends to create two null positions. One per-
cent difference in amplitude and 1° phase shift between the voltages will produce a null voltage
ol 0.01£;, in the case of the two-loop array and a maximum null voltage of 0.04/, in the case
of the three-loop array.

3.2. Coupling Between Loops

Coupling between loops could be a serious problem in loop arrays if sufficient voltage is
coupled from one loop to another to cause an inequality in the loop voltages. The coupling
between adjacent loops may be determined by deriving the ratio of the field produced by the
adjacent loop to the free space radiation field. These ratios for the / and /1 fields derived in
appendix 5.3 are
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ha‘ ,[ (1)) <>\)+’” (1))())]/ s 0
o= [ (5) O+ (5) 5 =75 (5) ] /_wai)' o

From (40) and (41) it is obvious that the ratio of the fields will be quite small if the ratios of
loop radius to loop spacing and loop radius to wavelength are small.

At VLF frequencies the loop radius of a practical array is by necessity small compared to
the wavelength, and the loop radius can be made small compared to loop spacing so the ratio
of the fields and hence the coupled voltage will be quite small. For example, if

and

7/A=0.0001, »/D=0.01 and r/ry=0.1.
Then the ratio of fields or ratio of coupled voltage to received voltage is
Eo/E,=2X10~340.15 %108 and H/H,=—j70X10~*
which is very small and insignificant.
3.3. Front Lobe Amplitude

The other limitation on loop proximity is the amplitude of the front lobe. For the three-
loop array (24) gives

E,_r=4 sin® [7";2 (1—-cos Q,)]; (42)

which is the amplitude of the front lobe normalized to the voitage from one loop. For very
close loop spacings the amplitude of the front lobe is quite small.  The amplitude is equal to
the voltage from one loop when the spacing is 0.0833 wavelength and decreases rapidly as the
loops are brought closer together. When the loops are spaced at less than 0.1 wavelength,
(42) reduces to

) 2
Femr=| 222 (1=cos 6 | (43)
For the optimum array (that is, equal back lobes) (43) reduces to
2
o —121 (lx)) - (44)

Similarly for a two-loop array with equal back lobes and close loop spacing the front lobe
amplitude is
Ey_o=11.4D/\. (45)

The limitation on loop spacing is readily apparent if the front lobe amplitudes (44) and (45)
are compared to the null voltages with 1 percent difference and 1° phase shift in loop voltages.
In the case of the two-loop array the null voltage and front lobe are equal at a loop spacing of
0.0017 wavelength. The three-loop array has equal null and front lobe voltage at a loop spac-
g of 0.018 wavelength. Of course the back lobes will be obscured at even greater loop
spacings.

4. Conclusions

The three-loop array has greater directivity than the two-loop array, and the directivity
is greatest for small loop spacing. The beamwidth is narrowest, the front-to-back voltage
and power ratios are greatest, and the position of the back lobes and nulls are most invariant

229



when closely spaced loops are used. Another important feature of the loop array—particularly

useful for receiving sferics

is its broad bandwidth.

Its characteristics change very little

with frequency for close loop spacings since there is very little coupling between loops.

Any inequality in the signals from the loops tends to obscure the front and back lobes;

this will limit the proximity of the loops.
A summary of the derived equations is presented in tables 1 and 2.

TaBLE 1.

)

Summary of equations for the three-loop array

Characteristic

|

General

|

D/x->0

Pattern of three-loop array-_ ______________

Null positions_.__________________________

Side-lobe positions_________________________

Half-power beamwidth (2¢4)

Front lobe splitting . _____________________

Front-to-back voltage ratio:
(Back lobe Ro)

(Side lobes Ri)

Front-to-back power ratio.._______________

Es=4 cos ¢ sin? [E)%) (cos ¢—cos ¢0)]

)
¢o=arc cos (m>

sin [1%) (cos ¢p1—cos ¢u)]=—¥ coS o1

coS ¢4 Sin? [7%) (oS ¢4 —CO0S p0) ]

=0.707 sin? [’% (1—cos ¢0)]

D 1
1—cos ¢o

x >
—sin? [7%) (l—cosdm)]

- sin? [7%) (14-cos ¢o)]
sin? [% (1—cos¢o)]

N (H)” cosi
N 1

Ry

R,

2
E4= [%’TD (cos ¢—cos ¢0) ] cos ¢

)
$o=arc cos <§1r_D/X)
$1=arc cos <% cos ¢0>

1—cos ¢n

cos ¢4=0.707 (c—gos =G

)

1__
1—cos ¢o

D
RE

_ 1—cos b0

Lif= 14cos ¢o

y

27 (1—cos ¢0)?

= 0

1 9 15 8 32
i o4 — 3 s — - 3 - 3
71'(4 CoSs ¢0+8 oS ¢0+96> <3 COS:! ¢0+]5 cos d)o)

(DA0)  Ry=

1 9 15 8 32
= cost = cos? == Z cos? e
-zr(4 oS ¢>0+8 COs' ¢0+96> +(3 COS ¢0+15 cos ‘7’0)

TABLE 2. Summary of equations for the two-loop array

Characteristic

General D/x>0

Pattern of two-looparray__________________

Null positions____ . __

Side-lobe positions___.____________________

Half-power beamwidth (2¢4)

Front-to-back voltage ratio:
(Side lobes Ri)

(Back lobe Ry)

Ratio of power in the front lobe to that in
the back lobes.

E4=2 cos ¢ sin [%(cos $—COS ¢0) ] E4=2m D/\(c0S2 p—COS ¢ COS ¢p0)

1) )
$o=arc cos [2_”—1)/)\] $o=arc cos <m>

—aD
A

tan ["TD (COS $1—COS ¢0) ] = €OS ¢1 2 COS $1=C0S 0

€OS ¢4 Sin [7%) (cos ¢o)] COS pA=3} COS po=3

D —_—
=(.707 sin [WT (1—cos dm)] Veos2 po—2.82(cos ¢po—1)

P sin [# D/N(1—cos ¢0)]
"= ¢0S ¢1 sin [ D/N(COS ¢1 —€0S ¢0)]

sin [7%) (1—cos ¢0) ]
M=

_sin [7%) (14-cos ¢w)]

1—coS ¢o
. e
COS ¢1(COS ¢1—COS ¢0)

_1—cos¢o

14 "= T1+cos po

_ m cos? po—16/3 cos po+3/4m

T T cos? po+16/3 cos pot+-3/4m

Ry

D
0
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The author thanks Vernon Kamp and Ivan Rainwater for their effort in calculating the
curves in the figures.

5. Appendix

5.1. Loop Array Received Voltage Analysis

If the loops are oriented in line in a vertical plane and receiving vertically polarized energ
equally in all loops from a linear wave front, the resultant voltage received at an angle ¢ in the
horizontal plane can be derived with the aid of figure Al.

If the receiving elements in figure Al are first considered to be isotropics with delay,
—d, as shown

E¢:e~j6+e—j6_e—j(¢+26)__e]'\&_ (1A)
Factoring out ¢ 7
E¢:6—j6[1_{,_l_e—j(¢—6)_€j(¢+8)]' (2;\)
By deMoivre’s theorem
e"+e~ =2 cos x (3A)
E,=2[1—cos (y+6)]/—é. (4A)

Three-Loop Array
By pattern multiplication [Kraus, 1950a] the received voltage of the three-loop array is
E4,=2 cos ¢[1—cos (Y-+0)]/—a. (5A)

From inspection of (5A) the null positions occur when

cos (Y+0)=1 (6A)
or
Y+6=0,2x,4r, . .. ; (TA)
then
y=—3. (8A)
If
¢:2WTD cos ¢ (9A)
then
‘)
—5=%) oS ¢y (10A)

where ¢, is the null position. Then substituting (10A) into (5A) the result is

ARRAY PHASE

CENTER
#l #2
$-180° ‘
DELAY
Ficure Al. LINE
e -j(w+8) |
DELAY
LINE

e _e-ivizd)] |
Ey

o 1® ¥
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E,=2 cos ¢ [1—003 (?TTQ cos ¢——2)%r cos ¢0):| /“_5

=2 cos ¢ I:l—cos I:%;\—D (cos ¢—cos ¢0)]:| /—8.

By using the trigonometric identity
1—cos 2z=2 sin’ z
the received voltage reduces to

E,=4 cos ¢ sin? [7% (cos p—cos ¢0):| =5

Two-Loop Array

If only the 1st and 2d receiving elements are used in figure Al
Ey—1—¢ i+,

(¥
Factoring e J(2+2> out of (14A) we have
(V0 (Y8 e
B &5 [ﬁ (m)—e 7 (5%5)],
e"—e "=2 sin z

E¢,=[2 sin <g+%>]/~—g._%

By deMoivre’s theorem

By pattern multiplication [Kraus 1950a] the received voltage of the two loop array:is

E¢=|:2 cos ¢ sin <g+%>]/~ gﬂ}.—g)

From inspection of (18A) the null positions occur when

sin <g+%>:0

Y+06=0, 2m, 47, .

or

This is the same as the three-loop case. Then

Yy=—30
since

5
¢:17;—D— cos ¢
then

— 5:%7;—1) cos ¢, where ¢, is the null position.

Substituting (22A) and (23A) into (18A) the two-loop received voltage is

- . (7D _11) 2K
E4=2 cos ¢ l:sm <—)\~ cos ¢ N C0s ¢0>:|/ T

=2 c0Ss ¢ Sin I:E)\l—) (cos ¢— cos ¢0):|/__<‘£¥>.
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(11A)

(12A)

(13A)

(14A)

(15A)

(16A)

(17A)

(18A)

(19A)

(20A)

(21A)

(22A)

(23A)

(24A)



5.2. Null Voltage Analysis

The null voltage will depend on the equality and phase difference between the individual
received loop voltages. The effect of amplitude and phase differences between loop voltages
on the resultant null voltage can be determined using ficure A2. If the loop received voltages
are assumed to be sinusoidal they may be added to show the effect of small phase differences,
Af, and amplitude difference on the resultant null voltage, .. When only loops No. 1 and
No. 2 are considered, the null voltage of a two-loop array is

e,:Eg Sin wt—E1 sin (wt:}:Aﬁl). (25A)

By using the trigonometric identity

sin (z+y)=sin z cos y-cos z sin y (26A)
e,= I, sin wt— Fy[sin wt cos (£ A6;) +cos wt sin+ 6] (27A)

when A6, is small
sin+Af= +Af and cos+ A, =1. (28A)

Using these approximations,
e,=F, sin wt— I sin wt—A0E; cos wt
= (Ey,—E)) sin wt— A6 E, cos wt

=Ae;2 sin wt-—AﬁlEl cos wt (29A)
where
A€12:E‘2_E1. (-30A)
The amplitude of
le;| = E,=|Ae1s—j A0 F . (31A)

The null voltage of the three-loop array can be derived similarly by summing all three
loop voltages shown in figure A2.

:‘)Ez sin wt-—]ﬂ Sin (wt;{: Aelg) —I’Jg Sill (wt + A023) . (32A)
By using 264,
¢,=2[, sin wt— Fj[sin wt ¢os + Abs+cos wt sin -+ Aby,]

— I[sin wt c0s 4= Aflys+ cOS wt Sin -+ Afy]. (34A)

&
° Ey Ea Ex

Fraure A2. g
-E sin(wt1A8) Epsin wt E,sin wt -E3sin(wita6s)

I

Er
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When A6, and Af,; are small

sin + A = 4= Ay (35A)
Sin:t 023 ~ 4 Aagg (36A)
cos+0,=1 (37A)
COS:t 023 =]1. (38A)
Then

e,=2HF, sin wt—I\[sin wt-+ Abs cos wt]— Fs[sin wt+ Abys cos wt] (39A)

=2k, sin wt— | sin wt— I sin wt— Ay cos wt— F3A0; cos wt
=[(Ey—E,) + (Fy— E3)] sin wt— (Z1A0, -+ I5A05) cos wi. (40A)

From (40A) it is evident that the amplitude of Z; is
E,=|Aerz+ Aoy —j (B A0+ EsAbs) | (41A)
5.3. Coupling Between Loops

The voltage induced in a loop by a nearby loop may be an appreciable fraction of the
voltage induced in that same loop by the free-space radiation field. The coupling between
adjacent loops can be determined by deriving the ratio of the field produced by the adjacent
loop to the free-space radiation field.

If two small single-turn loops are oriented in line in the 6-plane, the field intensity pro-
duced by one loop in the vicinity of the other is given by [Schelkunoft, 1952]

B2 <1+%%> Sl (424)

A .
He= BI <'+WD &Daeﬁwc“¢' (434)

In the plane of the loops
BIA
H— MD( e ) /—8D (44A)
2JA

H=—4 <1+JﬂD - DQ>/ 8D. (45A)

Equations (44A) and (45A) are the field components in the vicinity of the loop produced by
current / in the nearby loop. If the current induced into the nearby loop were known the
ratio of the coupled field to the free-space field could be derived. The maximum voltage
induced in the nearby loop antenna in a free space radiation field is [Jean, Taggart, and Wait,
1961].

Vi=jBAE, (46A)
. R _V._ .BAE, ~
from which I——ZL—j 7, (47A)

Substituting (47A) into (44A) and (45A) with B— T and A=mr?

1, o
E:(ZL DN (1) i) /=50 ()

E,
II 7])
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and similarly



ot ‘77r . 1 27
</L DN <D+J A j;)??l’ﬁ/i) / = )

If (48A) and (49A) are rearranged in terms of the ratios of loop radius to loop separation and
loop radius to wavelength,

]Lj:</"> [”3 (‘}5)2 <%)2+ g2 ('1"3) @] [ﬁ (504)
1= () Q) +=() )~ 7) ()] / "2 (514)

For small loops the impedance is [Schelkunoff, 1952]

and

r
*2 o .”2‘
Z,=2407" "I S (52A)
1‘)()71' 1
an' 7 CANHS — - ,.(; (53A\)
L 9 0 e 2 - —
24 )\ ln = T In 7

Substituting (53A) into (50A) and (51A)

5, ‘,',1 [5(5) O+ (5) G )] o o
TGO ()G )T R

The ratio of the fields would be quite small for practical antennas at VLF frequencies, for
example if »/A=10"* and »/D=0.01 and 7»/r,=.1

and

1

=—9%10- 84-70.15X 1073 and - 0 ——j?()){l()"".

i H,
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