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The wave fun ctions pertaining to a b ilinearly strati fi ed medium arc presented in t his 
paper. Solutions to the equation 'V'[K(r)V,p]=O have been investigated for several profil es 

of K(1·) . An anal y~is is giv en to th e equation V'[K-v,p] = - pl.o which arises from the 
formu lation of th e quas i-static electric fi eld in a homogeneo us a nisotropic m edium. 

1. Introduction 

It is known that the core of all electromagnetic 
problems involving' a spherically stratified medium 
consists of two second order linear differ en tial 
equations of the form: 

and 

where 

~ (r) 
K(r) = - ' 

~o 

(1) 

Based upon the two sets of scalar functions S " and 
Tn fOUT sets of vector wave functions may be 
co~structed to describe the electromagnetic field 
within such a medium. The formal solutions to the 
spherical Luneberg lens [Tai, 1958], the cylindrical 
Luneberg lens [Tai, 1956], and the Maxwell fish eyes 
[Tai, 1958], have already been reported base~ upon 

, this method. We shall present here the solutlOns to 
(1) and (2) corresponding to a bilinear distribution 
of K(r) that contains the stratification of the conical 
lens of Luneberg [1944] as a special case. 

In studying the scattering of electromagnetic 
waves by small spherically stratified particles, it is 
not necessary to find the complete wave solution. 
By means of the Rayleigh method, or its extension 
[Tai, 1952], it is sufficient to investigate the solution 
to the potential function if! which satisfies the 
differential equation 

1 The research reported here was performed under Contract AF 33(616)-6782 
sponsored hy Aeronau tical Systems Division, Wriqht-Patterson Air Force 
Base with the Ohio State University Research Foundation. The part of this 

I pape~ on Ule wave flmctions was presented orally at the URSI Meeting in 
Washington , M ay 1961. 

(3) 

We shall summarize here those cases in which thr. 
wave functions have already been found for the smnp, 
profile of K (1'). 

Finally, a brief discussion will be given to the 
solution of the equation 

where '-; denotes a homogeneous dielectric tensor. 
Equation (4) arises from a cons ideration of the 
quasi-static solution to the electric field m an 
anisotropic medium. 

2 . Wave Functions Pertaining to a 
Bilinearly Stratified Medium 

A bilinearly stratIfied medium is defined as one 
with the dielectric "constant" varying according to 
the folIo wing rela tion : 

(5') 

By writing 

(5) becomes 

(6) 

where Ko and K ", denote, respectively, the values of 
K(r) defined at r = O and r = 00 . At r = r 2, the value of 
K(r2) is equal to the mean of Ko and K ", . One may, 
therefore, choose the proper values of K o, K"" and rz 
to simulate a monotonically increasing or decreasing 
function of K(r) 'which has a finite asymptotic value 
at r= 00. 
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For convenience, the independent variable l' in (1) 
and (2) will b e changed to P by letting p= kr, th en 
(5) becomes 

(7) 

where Pl = lcr , a nd P2= h 2 . By substituting (7) into 
(1 ), and letting 

(8) 

one finds that th e function Un satisfies the followin g 
differential equation: 

where 

2n+ 1 
al = K oo (Pl - P2)---' 

pz 

and the prime on Un in (9) denotes the derivative 
with respect to p. The function Un has two reguhtr 
singulari ties and one irregular singularity at infinity 
of the second species. Adop ting the notation of Ince 
[1944], one would designate this by [0 , 2, 12], The 
same type of function occurs in the theory of the 
spherical Luneberg lens [T ai, 1958]. However, in 
that case it was the Tn function which is of this type. 
The S n function in the theory of the Luneberg lens 
is expressible in terms of the confluent hypergeo­
metric function. 

By substituting (7) into (2) and letting 

(1 0) 

one finds that V n satisfies th e following equa t ion: 

V~I+ (2n+ ] _ _ 1_ + _ 1_ ) V~ 
P P+ Pl P+ P2 

where 

Th e function V n has one more regular singular at 
P= - P2' It is of the type [0,3, 12], 

W h en one pu Ls 1'2= 0 in (7), the distribution of K(r) 
becomes the same as the profile of the conical lens of 
Luneberg l1944j. The Un and Vn functions then re­
duce, respectively, to the types [0, 1, 12 ] and lO, 2,1 2]' 
The type [0, 1, ] 2] is simply the confluen t hypergeo-

Inetric fun ction. It is in teresting to observe that the 
same two types of functions are involved in the 
electromagnetic theory of the spherical Luneb erg ~ 
lens. 

3 . Some Potential Functions 

In either purely electrostatic problems dealing with 
a spherically stratified medium or scattering problems 
involving small sph erical particles, one would en­
coun ter the equa t ion 

(12) 

By applying the method of sep arating variables in a 
sph erical coordinate system , one finds that if; can be 
expressed in terms of the following characteristic 
functions, i.e. , 1 

'f= vVn (r)P;;' (cos 8) ~~ mcp, (13) 

wllere 1-11n(l') satis fies th e equation 

(1 4) 

and P'::(cos 8) denotes th e associated Legendre func­
tions. The solutions to (14) for several profiles of 
K(r) are giv en b elow. 

3 .1. Lune berg Lens: K(1') = 2_1'2 

In this case the radial function W n(r) is expressibl e 
in terms of th e hypergeometric function. The func­
t ion which is regular at 1'= 0 is given by 

n 

( 1'2)2 ( 1'2) Wn= '2 F a, b,c; '2 ' (15) 

where F(a, b,c; z) denotes t be hypergeometl'ic func­
tion, and 

a=~+~+~ [(n+~y+2 J /2 

b=~+~-~ [ (n + frY +2 J /2 
3 

c=n+ 2· 

3 .2. Maxwell Fisheyes: K(1') 
4 

The radial function, again, is expressible in terms 
of the hypergeometric function. The function which 
is regular at 1'= 0 is 

" W ,,(r) = (-1'2)2F(a, b,c; - r2), (16) 

I 
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I where 

a=-- - + - n+- +2 n 3 1 [ ( 1)2 Jl 
2 4 2 2 

b=-- -- - - n+- +2 n :3 1 [( 1)2 J ~ 
2 4 2 2 

1' + 1' 
3 .3. Bilinear Distribution: K(I') = K __ 1 

'" 1' + 1'2 

By letting H~n= I'"Z II ' one finds t1wt Z II satis6es 
tIle equation 

'-!: (_I __ l _ )Z = 0 
+ r 1'+ 1'1 1'+ r2 11 • 

(17) 

1n co ntrast to the wave fun ction s for th e sa lli e pro­
file of K(r) , it Cfln be venfied th at t he Junction Z ,,(I') 
bas a regular sillgularity tlt illfillity, h ence it is of 
the type [0,4 , 0]. The functi c n is, therefore, similar 
to the h ypergeo ill etric funGtion which is designated 
by [0,3, 0]. It is obvious frolll (17) lbitt when 1'2= 0, 
conespollcli ll g to tho CO lli Cfl l lens distribution o f 
Luneberg, Z" roduces 10 the hype rgeo ln etri c fun c­
tion. 

4. Equation 'i7 · r';;'·W]=-P/EO and Its Solution 

The foundfiLion of tho electro ll lflgnetic theory deHI­
ingwith a hal'monicttlly vttrying field in tl JlIagneto­
ionic medium is based upon. tlle following::' [axwell 
equations: 

-> -> 
v X E = -,j!-LowH, (18) 

--7 --7 L..\ --7 

v X H= J + jWEOK·E, (19) 

-> 
where J d enotes the current density function not of 

lllagneto-ionic origin . The dielectric Lensor ':, for the 
case that the static magnetic field is poin teelin the 
z-clirection, is g iven b!-

o ] o . 
K3 3 o 

(20) 

N uill erous a uLhors bttve recen tly investigated the 
complete wave solu Lions resulting from (U~) and 
(19). We would like to mention particularly the 
works of Bunkin [1957] and Arbel [1960], where 
both u se the Fourier-transform method in deriving 
the formal solution to the problem . The resultanL 
integrals can be eVtLluated by the aSYIllPtot ic method 

to y ield the far-zone fieJd of a r adiatillg element 
No explicit solution is yet available for the near­
zone fLOld except the brief description given by 
NIiltm and Descllamps [1962] in the Abstract o f the 
recent Copenhagen Electromagnetic Symposium 
(July 1962). Th e in teresting problem of the scatter­
ing of an electromagnetic wave by an obstacle in 
an anisotropic mediulll is yet to be solved. The 
problem of the scattering of a p lane wave by a small 
spherical anisotrop ic body in fL il' has successfully 
been solved by Berk a nd L engyl [1955]. With this 
brief introduction i t see ill s of sO llle interest to un­
cover whtttever inforll1fLLion we can gath er from 
(18) and (19) , even in a restrictecl [orill . vVe shall 
cons ider here the quasi-static solut ion to the eJectric 
field by n eglecting the right tCl'1ll o[ (]8), and h ence 
Stfll·t with 

-> 
'i7 X E = O, (21 ) 

and the cl ivergence eq uation r esulting frolll (J 9) a nd 
the equ,ltion of conti nUi ty, i. e ., 

rn v iew of (21) , one may introduce a pot(,IlLial 
function t/; su ch thaL 

-> 
E=-'i7t/;. (23) 

S ubs lilutlllg (2:3 ) ill Lo (22) 0 11 0 ohhlill s 

'i7. [ '';. 'i7t/;]=-J:.. (24) 
EO 

III a cartesian coordinate sys lc lll , (24) C<t ll he \HiLten 
as 

(25) 

where we hfLve already m ade use of (20) . To facili­
tate Lhe analys is, we shall first consider Lhe case 
wh ere p represents that of a s ingle chm'go located 
at the origin ; i .e., we let 

-> 
p= qO(T- O), (26) 

-'> 
where 0(1' - 0 ) denotes the th l'ee-ci illl ensional delta 
function. Equation (25) call then be writtell as 

(27) 

B y llleans of the Fourier-transform meLhod or by 
transforming (27) into the standard forlll of Po isso n 's 
equfltion by lett ing x' = aX and y' = ay, one fmcls that 
the solu tion to (27) is g iven by 

(28) 
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t_ 

where 

Based upon this elementary solution , the field of a 
dipole situated at the origin and of moment p pointed 
in the z-d il'ection can be derived. Th e result is 
given by 

-> -> 
p ·R (29) 

where 

The corresponding electric fieJd can be found by 
-> 

means of (23). The dependence of E upon the 
modified radial distanee R" concurs with the principal 
term of the near-zone field of an oscillating dipole 
in a magneto-ionic mediwn as obtained by Mittra 
and D eschamps through the wave solution. Equa­
tion (28) may also be used to find the char acteristic 
functions pertaining to the homogeneous equation 

02f + 02f +a2 02f = 0 
OX2 oy2 OZ2 (30) 

through the technique of multipole expansion. It 
is, however, more convenient to find these solutions 
by changing (30) into the standard form of the 
Laplaee equation 

(31) 

where 
X,,=aX, y,, = ay. 

The characteristic functions, when expressed m a 
spherical coordinate system, are then given by 

fnme=[AnR~+BnR;;(n+J) ]p~n(cos 8,,)~f: m¢ , (32 ) 
o 

where 
R,,= [a 2 (x2+ y2) + z2 ]1 /2 

= R[a2+ (1 - ( 2) cos28]1 /2 

z 
cos 8"= R -

'" 

cos 8 

The dipole field as given by (29) corresponds to the 
function 

B1R ;;2P1 (COS 8,,) _ 

In the work of Berk and Lengyl [1955], only the 
characteristic functions 

R"Pl (cos 8,,)~~ ¢= aRPl (cos 8)~i: ¢=a{~ 

are needed to satisfy the required boundary condi­
tions for the corresponding magnetostatic problem. 
There seems to be no simple way to find the solution 
for the complementary problem of a small spherical 
dielectric body placed in an aniso tropic medium. 
The only problem of this nature that can be solved 
neatly consists of a perfectly conducting spberoid ' 
with a contour defined by 

(33) . 

When such a sph eroid is placed in an an isotropic I 

medium, then an incident field defined by 

f i= -Eox (34) 

would produce a scattered field given by 

(35) 

The author gratefully acknowledges the discussions 
which he had ' 'lith Dr. H . Unz on the problem I 

involving an anisotropic medium. 
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