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The wave functions pertaining to a bilinearly stratified medium are presented in this

paper.

of «(r).

Solutions to the equation V-[x(r)Vy¢]=0 have been investigated for several profiles

An analysis is given to the equation V:[x'Vy]= —p/e, which arises from the

formulation of the quasi-static electric field in a homogeneous anisotropic medium.

1. Introduction

It is known that the core of all electromagnetic
problems involving a spherically stratified medium

consists of two second order linear differential
equations of the form:
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Based upon the two sets of scalar functions .S, and
T, four sets of vector wave functions may be
constructed to describe the electromagnetic field
within such a medium. The formal solutions to the
spherical Luneberg lens [Tai, 1958], the cylindrical
Luneberg lens [Tai, 1956], and the Maxwell fish eyes
[Tai, 1958], have already been reported based upon
this method. ‘We shall present here the solutions to
(1) and (2) corresponding to a bilinear distribution
of k(r) that contains the stratification of the conical
lens of Luneberg [1944] as a special case.

In studying the scattering of electromagnetic
waves by small spherically stratified particles, it is
not necessary to find the complete wave solution.
By means of the Rayleigh method, or its extension
[Tai, 1952], it is sufficient to investigate the solution
to the potential function ¢ which satisfies the
differential equation

1 The research reported here was performed under Contract AF 33(616)-6782
sponsored by Aeronautical Systems Division, Wricht-Patterson Air Force
Base, with the Ohio State University Research Foundation. The part of this
paper on the wave functions was presented orally at the URSI Meeting in
‘Washington, May 1961.

V- [k(r)v]=0. (3)

We shall summarize here those cases in which the
wave functions have already been found for the same
profile of «(r).

Finally, a brief discussion will be e¢iven to the
solution of the equation
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where « denotes a homogeneous dielectric tensor.
Equation (4) arises from a consideration of the

quasi-static solution to the electric field in an
anisotropic medium.

2. Wave Functions Pertaining to a
Bilinearly Stratified Medium

A bilinearly stratified medium is defined as one
with the dielectric “constant” varying according to
the following relation:

o-n ()
By writing
r =y
1 K. 2)
(5) becomes
‘K,
G
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where K, and K denote, respectively, the values of
k(r) defined at =0 and r= . At r=r,, the value of
k(ry) is equal to the mean of K; and K. One may,
therefore, choose the proper values of K, K., and 7,
to simulate a monotonically increasing or decreasing
function of x(r) which has a finite asymptotic value
at r= o,
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For convenience, the independent variable 7 in (1)
and (2) will be changed to p by letting p=Fkr, then

(5) becomes
(p)=K. <p+p1> )

where py=Fkr, and py=Fkr,. By substituting (7) into

(1), and letting

ASVn: (P+p2)p"+1[/’vru (8)

one finds that the function U, satisfies the following
differential equation:
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and the prime on U, in (9) denotes the derivative
with respect to p. The function U, has two regular
singularities and one irregular singularity at infinity
of the second species. Adopting the notation of Ince
[1944], one would designate this by [0,2,1,]. The
same type of function occurs in the theory of the
spherical Luneberg lens [Tai, 1958]. However, in
that case it was the 7', function which is of this type.
The S, function in the theory of the Luneberg lens
is expressible in terms of the confluent hypergeo-
metric function.
By substituting (7) into (2) and letting

Tn:P"-H‘Ym (]0)

one finds that V, satisfies the following equation:
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The function V, has one more regular singular at
p=—ps. 1t is of the type [0,3,15].

When one puts 7,=0 in (7), the distribution of «(r)
becomes the same as the profile of the conical lens of
Luneberg [1944]. The U, and V, functions then re-
duce, respectively, to the types [0,1,1,] and (0,2, 15].
The type [0,1,1,] is simply the confluent hypergeo-

metric function. It is interesting to observe that the
same two types of functions are involved in the
electromagnetic theory of the spherical Luneberg
lens.

3. Some Potential Functions

In either purely electrostatic problems dealing with
a spherically stratified medium or scattermg problems
involving small spherical particles, one would en-
counter the equation

v-[k()vil= (12)
By applying the method of separating variables in a
spherical coordinate system, one finds that ¢ can be

expressed in terms of the following characteristic
functions, i.e.,

Yy=W, (1) Py (cos 0) o mé, (13)
where W, (r) satisfies the equation
< [ ’m ]—n AW, =0,  (14)

and P} (cos 6) denotes the associated Legendre func-
tions. The solutions to (14) for several profiles of
k(r) are given below.

3.1. Luneberg Lens: «(r)=2—7*
In this case the radial function W,(r) is expressible

in terms of the hypergeometric function. The funec-
tion which is regular at 7=0 is given by

H',,r(z;)g F(a, b,c; §>,
,¢;2) denotes the hypergeometric func-
n, 3, 1 1\? 1
o=gryts[(v+3)+2]
[l

(15)

where F(a,b
tion, and

c:n,+g~

ok e K(r):(l%rz)z-

The radial function, again, is expressible in terms
of the hypergeometric function. The funetion which
is regular at =0 is

IIrlz(r>:(_r2)g[f(az b,C,' _7‘2)y (16)
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where
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3.3. Bilinear Distribution: «(r)=K rn
/‘+"2
By letting W,=,"7,, one finds that 7, satisfies
the equation

oo 20, 1 1 7,
7 +[f7— . Hj Z,

n 1 1\ =
+1'(r+r1 /‘+/'2)A”70’ =
In contrast to the wave functions for the same pro-
file of «x(r), it can be verified that the function Z,(r)
has a regular singularity at infinity, hence it is of
the type [0,4,0]. The functicn is, therefore, similar
to the hypergeometric function which is designated
by [0,3,0]. It is obvious from (17) that when r,=0,

corresponding to the conical lens distribution of
Luneberg, 7, reduces to the hypergeometric func-

tion.
4. Equation v.[x-vy|——p/e, and Its Solution

The foundation of the electromagnetic theory deal-
ing with a harmonically varying field in a magneto-
ionic medium is based upon the following Maxwell
equations:

VX = — jupwH, (18)

VX H=dJ+ jwek-E, (19)

=
where o/ denotes the current density function not of

magneto-ionic origin.  The dielectric tensor «, for the
case that the static magnetic field is pointed in the
z-direction, is given by

K11 K12 0
1)\'\'2 K2 K11 0 (20>
0 0 Ks3

Numerous authors have recently investigated the
complete wave solutions resulting from (18) and
(19). We would like to mention particularly the
works of Bunkin [1957] and Arbel [1960], where
both use the Fourier-transform method in deriving

the formal solution to the problem. The resultant
integrals can be evaluated by the asymptotic method }

to yield the far-zone field of a radiating element
No explicit solution is yet available for the near-
zone field except the brief description given by
Mittra and Deschamps [1962] in the Abstract of the
recent  Copenhagen Electromagnetic Symposium
(July 1962). The interesting problem of the scatter-
ing of an electromagnetic wave by an obstacle in
an anisotropic medium is yet to be solved. The
problem of the scattering of a plane wave by a small
spherical anisotropic body in air has successfully
been solved by Berk and Lengyl [1955]. With this
brief introduction it seems of some interest to un-
cover whatever information we can gather from
(18) and (19), even in a restricted form. We shall
consider here the quasi-static solution to the electric
field by neglecting the right term of (18), and hence
start with
=

VX E=0, (21)
and the divergence equation resulting from (19) and
the equation of continuity, i.e.,

N R O (22)

€

In view of (21), one may introduce a potential
function ¢ such that

>

E——% (23)
Substituting (23) into (22) one obtains
o P 5
Vel® - W=—= (24)

€

In a cartesian coordinate system, (24) can be written
as
o

o P
SN

==

+ 022 €

2
K11 (Olﬁ (25)

NOL2
where we have already made use of (20). To facili-
tate the analysis, we shall first consider the case
where p represents that of a single charge located
at the origin; i.e., we let

=
p=qd(r—0), (26)

>
where 6(r—0) denotes the three-dimensional delta

function. Equation (25) can then be written as
oW o, , oW q 7
A ATA AT 4 SRR —0). (27
T o T B2 e 0TV 27

By means of the Fourier-transform method or by
transforming (27) into the standard form of Poisson’s
equation by letting 2’ =ax and "= ay, one finds that
the solution to (27) is given by

q (28)

S | S
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where

Re—[c2(ziprA)Elz2]

Based upon this elementary solution, the field of a
dipole situated at the origin ‘and of moment p pointed

in the z-direction can be derived. The result is
given by
2R
N A 29
lpp 4:7T€0K1111)g( (H )

where

R=+z*Hy2 422
The corresponding electric field can be found by

&
means of (23). The dependence of £ upon the
modified radial distance R, concurs with the principal
term of the near-zone field of an oscillating dipole
in a magneto-ionic medium as obtained by Mittra
and Deschamps through the wave solution. KEqua-
tion (28) may also be used to find the characteristic
functions pertaining to the homogeneous equation

22 0B,
through the technique of multipole expansion. It

is, however, more convenient to find these solutions
by chdnomg (30) into the standard form of the
Laplace equation

o oW O
ox2 Oy 022

=0 (31)
where
=l =01/

The characteristic functions, when expressed in a
spherical coordinate system, are then given by

1//7””( =[A, R+ B, Rz VP (cos 0,)3% m¢, (32)
where
:[aZ(x2_|_y2) ~}_22]1/2
=R[e*+ (1 —a?) cos?9]/?
COS fy=—m= cOEY :
" Ro [a(1—a?) cos? 0]\

The dipole field as given by (29) corresponds to the
function
BiR2P(cos 6,).

In the work of Berk and Lengyl [1955], only the
characteristic functions
{x
Yy

R.Pi(cos 0,)5 p=aRPi(cos 0)% ¢

are needed to satisfy the required boundary condi-
tions for the corresponding magnetostatic problem.
There seems to be no simple way to find the solution
for the complementary problem of a small spherical
dielectric body placed in an anisotropic medium.
The only problem of this nature that can be solved
neatly consists of a perfectly conducting spheroid
with a contour defined by

(2 412) + 22=K2

When such a spheroid is placed in an anisotropic
medium, then an incident field defined by

(33)

vi=—Ex (34)
would produce a scattered field given by
K,
D=1 e Pi(cos 0,) cos ¢. (35)

The author gratefully acknowledges the discussions
which he had with Dr. H. Unz on the problem
involving an anisotropic medium.
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