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The reflection coefficient for the basic mode in a widening, straight, two-dimensional
waveguide is computed for small wave numbers by using the perturbation method with

the electrostatic case as the unperturbed case.

The probiem is treated as a perturbed infinite

system of inhomogeneous linear equations, and it is shown that the matrix of the unperturbed
system (which corresponds to the electrostatic case) can be inverted explicitly by using

conformal mappings and physically unrealistic modes.

Questions of convergence are

discussed, and other examples for application of the method are indicated.

1. The Physical Problem
1.1. Structure

The problem which we are considering is a two-
dimensional one arising from a three-dimensional
waveguide structure in which the perfectly conduct-
ing surfaces extend from — o to « in the direction
of the z-axis in a Cartesian coordinate system.
The intersection of these conducting surfaces with
the z,7-plane is given by the six lines:

z2>0, y=qr (0<g<)
>0, y=—qm
=0, gr<y<m
213:0, _‘ITZ?JZ—T
<0, y=m=
<0, y=—m.

The segment of the y-axis between —gr and g,
which we shall refer to as the aperture, separates
the waveguide structure into two simple regions,
I and II.

1.2. Conditions on the Electric Field

I
Let the electric field = (F,, I, E.), and assume
that the time dependency is given by e¢'“* where

w=ke, k=wave number, c=velocity of light.
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Then we have the conditions
(1) E,, E,, and E, satisfy Au-+Fk*u=0;

oL,  OF,

oF,
9 T
2) or ' 0y

U

=
(3) the tangential component of /7 vanishes at
the boundaries.

We shall also make the following assumptions:
(4) E,1s an even function of y
(5) E,=0.
. = : . 30
The behavior of /£ at infinity must satisfy

,—0

6) lim |E,—7E,e™]|=0,
I>—

0, —>0

(7) hm [E,,—‘E”ﬂikl_PEu(/—“u] :0’

25>+

(8) ff (K24 E?%)dxdy is bounded over every

finite region.
We shall introduce the following detinitions: |

7 (condition (6)) is called the transmission
coefficient.

p (condition (7)) is called the reflection coeffi-
cient.

FE ™ is called the incident wave.

E,—E," is called the diffracted wave.
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We shall now show that the field is completely
determined by %, alone. Conditions (2) and (5)
give
_OE,

ox

’ aEl/_
@) 5=

This shows that %, determines £, up to an arbitrary
function of z only. But since E, and £, satisly the
reduced wave equation Au-+k*u=0, the same must
be true for both sides of (27). Furthermore, from
(6) and (7) we know that £, must approach 0 at o
This fact gives us the uniqueness we seek. For if
(2), with a fixed £, gave rise to two different
solutions for F,, then their difference could only be
a}function of z alone. If this difference is D(x),
then

d2 2 —
e D(z) +kD(x)=0
and
D(x)—0 at o.
This implies D(x)=0. Thus, in what follows, we
shall limit our attention to the determination of the
y-component of the electric field. Our first task is

to write the boundary conditions on 7.

From (1) we have
(a) AE,+kE,=O.
From (3) we have

oF,

(b) 5 (x, £gm)=0  z>0
(c) %’2 @ +m=0 <0
(d) E,(o,y)=0 qr<ly| <.

Note that in (b) and (¢) we used the fact that ££,=0
everywhere on those boundaries. This implied that

E,
'abx =0, there; and then (2”) was used to get (b) and
(c). Continuity conditions in the aperture are
(e) E,(07,9)=E,07,y) lyl<<gm
oLy o oy —OFy (- . |
O 35, O =507y |ygm

And from (6) and (7)
(g) lim |E,—7E,e™|=0

(h) lim |[E,—E,e**—pE,e~"|=0.

T4

2. Method and Summary

The problem described above has been treated be-
fore, and the material has been presented by Marcu-
vitz [1951, p. 141] and by Saxon [1943]. Quantita-
tive data have been given by Marcuvitz [1951, p.
307]. Furthermore, the problem has been treated
earlier as a perturbation of the electrostatic case
[Marcuvitz, 1951, p. 153], a method which will be
used as the starting point for the present paper also.

The essential feature of the present approach is
the explicit inversion of an infinite matrix which
characterizes the electrostatic case. In the special
case where ¢=%, this has already been done by
Magnus and Oberhettinger [1950], who used alge-
braic relations connecting the matrix elements for
this purpose. The present paper uses instead, inte-
gration in the complex plane, an approach which is
of much wider applicability. The details may be
described as follows:

The first step toward finding the reflection coeffi-
cient at the interface is to expand the field in each
of the regions (I and II) in Fourier series. The modes
are determined on each side by applying all the
boundary conditions except the matching condition
at the interface. The solution is then assumed to be
a series in these modes with constant coefficients.

Applying the matching conditions at the interface
gives rise to two infinite sets of linear equations, one
arising from matching the fields, and the other from
matching the normal derivatives. Using these
two sets of equations we can eliminate one group of
coefficients, leaving an infinite matrix equation for
the other group and a scalar side condition involving
the reflection coefficient. Solving this matrix equa-
tion, then, will allow us to apply the scalar side con-
dition, and this will yield the value of the reflection
coefficient.

The matrix equation which arises from the match-
ing conditions is derived in full and is valid for all
values of the wave number, k<1. The coefficients
of the expansion of the field in region II give the
unknown vector. The equation is solved using a
perturbation method. The electrostatic case (k=0)
serves as the unperturbed case. We shall see that
the ability to solve the electrostatic case for arbi-
trary right-hand sides provides us with enough power
to determine the higher order terms in the electro-
magnetic case (kz0). Using this fact, and the scalar
side condition, we shall determine the reflection co-
efficient up to terms of order A2

The one remaining facet of the method is the proof
of solvability of the electrostatic case for arbitrary
right-hand sides. Since the equation in this case 1s
Laplace’s equation, we may use conformal mapping
as an aid. We map the whole waveguide onto the
infinite strip, using the Schwartz-Christoffel formula.
This enables us to make use of the fact that each un-
known is a Fourier coefficient which can be written
as an integral (across the aperture) of the field. The
field is written as the derivative of a harmonic po-
tential. In this way the matrix equation may be
solved in the electrostatic case for a specific right-
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hand side. However, this same technique can be
used for more general right-hand sides. In order to
accomphsh this, we introduce into the OI‘lOlIldl prob-
lem ‘‘unrealistic’” modes, i.e., modes which do not
die out at + . The Nth unrealistic mode will g give
rise to a right- hand side consisting of N+-1 nonzero
entries. lhus solving for all such unrealistic fields
will yield a solutlon matrix whose product with the
original matrix is a triangular matrix. The entries
in the triangular matrix can be computed, using the
conformal mapping; thus, the original matrix can be
inverted. Therefore, we ‘shall have solved the elec-
trostatic case for dlbltl.ny right-hand sides.

3. Infinite System of Linear Equations

Tn all that follows we shall use the notation that
the restriction of Z, to region I is denoted by /£ and
similarly for /7). When 10fvumtr to the entire wave-
guide we shall write simply Iﬁ,, Inasmuch as our
ultimate goal is to apply a perturbation technique to
this plol)lem we shall assume that £<1 so that

v — k2 >0 for all integers n#0.

By separating variables in (a) and applying condi-
tions (b) and (h) in region I we have

@© .kn
Ei(a, ) =E,[e®+pe="]4+3 ¢, 0" cos d‘J (1)
n=1
where

k,=ivn’—k*¢®, n=1,2,....

In region IT we have the additional condition (d)
placed on the modes. So we must introduce a set of
functions, ¢y, satisfying (a), (¢), (d), and (g). In
addition, Tet the Nth function sau%iy

, N
(e) ¢n(07,y)=cos ris ly|<qm

in the aperture. The reason for condition (e”) is
that the wave coming in from the right is a super-
position of cosines in the aperture.

It will be necessary for us to have the ¢y explicitly,
so we shall derive them here. The Nth mode must
satisfy the conditions indicated in the sketch below.

Separating variables, we see that ¢y can be ex-
panded in a series of the form

8

aMet® cos ny (region I1)

¢.’V(x; 2/) :ZO

where

. { —i/ni—2 n#0
Lk n=0.

At =0 we have

N >
cea y|<<gqm
gr<|y|<m.

Consider the case N0, and multiply both sides by
cos my and integrate

ox(0, )= Z al™ cos ny= 4
n=0 ko

} 1 qm 7V'
O 08 = —
o = [) cos 7 ydy=0

W) —
a//l

=]11\:>

qm J\T 1
L COS MY COS ? ydy.
Thus

dn(z, ) =2 S,we''=" cos my

m=1

N=1,2,... (2

where, for m=1, 2, 3, . and N=0,1,2, . . .

20 (fx N 2 2m sin (gmm
S, v== f cos my cos — ydy=(—1)" {gmm)
7r J o (/

a(m*— N
Similarly, for N=0, we get
é,(z, y) _‘(I(’””’—}-Sj S,petn® cos my. (3)
m=1
The field in region IT may now be written
iy (x, y) = Z‘, dupn(, ). (4)
n=
Applying condition (e¢), we have
T(1+p)+Z Cn 00557/ Z dnpn(0,y)  lyl<qm
n=1
but, by definition,
m
n(o,y)=cos "y [yl<gm
Therefore,
E,(14p)=d,
Cr=0x =il 2 o 6 0a (5)

Differentiate (1) with respect to x

oE ] (x, 7/)

ikr __ -
5 1kE e ¢

U kn
ik (2 (= n
e et COE—
qn=1 q

Liet

a m\dy !
V(2 y) :%M-

Condition (f) gives
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By (1= p) 45 32 eokn €08 7 y= 33 dubn(0, 7).
q n=1 q m=0
Solving for the Fourier coeflicients on the left-hand
side,

Z A0, y)dy (6)

o m=0

: 1
'LkE0<1‘—P) :E

2 g n
_ , " od =1,2,....
Cn W,m-fa mZztodmtl/m(o,y) cos gya’y n=1,2,

(7)
Combining (5) with (7),
2
W= == ) Z‘,dmzpm(o 1) COS — de =il B o oo
(8)
From (2) and (3) it can be seen that
Yo (x, y) =tkqe™* +1 é S,ol.et " cos ry (9a)
r=1
¢m<x y =1 i b rmeil7x cos 1Y m=1,2,..
r=1
(9b)

Therefore,

S dodn(0,y)=ikqd,+i z“’;o A S S, nl, cos 7.
m=0 m= r=1
(10)
Substituting into (8),

:_Z_J' M{Icg(lo—l—z.o dp i 1.S,,, cos ry}cos n ydy
Wkn 0 m=0 r=1 Q
n—1,2 " .

dn=i‘, dmf)]i—’sms =1%o 0 0 o (11)

m=0 r=1

Equation (11) is an infinite system of linear equations
in the unknown Fourier coefficients, d,.

A scalar side condition is obtained by substituting
(10) into (6).

©

B — p) = f qwi@kgd +oidmz el cos 1y dy
qm Jo =1

m=0

i ({m Z % Srm sin rmq. (12)

(]
71' r=1

=1ikqd,+

It can be seen from (3), (5), (4) and condition (g) that
the transmission coeflicient, 7, is given by

r=q(1+p), (13)

which gives a simple relation between the reflection

and transmission coefficient. Using the value of d,
found in (5), we have from (12)

©

= l
Z dm Z[ é;r“ S

m=0 r=1

m Sin gur=kE,(1—p—q—npq). (14)

This scalar condition (together with (5)) will be used
to evaluate p after (11) has been solved for the d,’s.

4. Perturbation Method

In order to use the perturbation method in the
solution of the equations of the previous section, we
must establish their explicit dependence upon k.
Having done that, we shall solve the electrostatic
problem (£=0) explicitly and use it as the unper-
turbed case.

Equation (11) depends upon k only in its term, k

=~—¢< )

- k- kg
“"—_+ 72 2
e G A N

Equation (14) depends upon £ only in its term, /,.

l— —iP—T——ir \/1—k—=—1r+’lk2+

Neglecting all terms involving powers of £ higher
than the second, eq (11) can be written in matrix
notation as follows: let

=
d:<d0, dl; dg, oo )
T=the matrix of elements Tn,:% Sss n0,

. 2 (o
S=matrix of elements S’”:;r f COS 7 COS gydy
0

(as previously defined),

U=matrix of elements
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2

Unr:""’l_ <l)_g7> an ”IL,T;éO,
2\r* o

=={) n or r=0.

=
Now we add (5) to (11) and use the notation that 1
is the vector

.
1=1{1,0,0,0, .. .}.

We assume that all summations go from 0 to + .

- -
d=—{T+FD)S) D+ E+o)1.  (15)
If T is the identity matrix, we have
- -
{I+TS+KUS} (d)=E,(1+p)1. (16)
Let
T*,‘,,Lz———%- S, sin qmr 7=0,152 000
qr
Uk, —— e %, p=1,2
crm 21,2 Tm gy o e
% =0,
Then (14) becomes
>3 dp 2 (Thut U =hE (1—p—g—pg)  (1Ta)
m=0 r=0

- -
For shorthand, let us define vectors ¢* and u* whose
components are:

= ki (17h)
=0
B=3 Tt (17¢)
r=0
Then (17) can be rewritten as
- - >
(t*+k2u*) -d=kE,(1—p—q—pQ). (18)

Equations (16) and (18) form the system which
we shall solve. First we shall solve (16) using the
perturbation method to invert the matrix. Then

=
we shall use the solution vector, d, in (18) to compute
the reflection coefficient, p.

The method will proceed as follows. We shall show
that the electrostatic system

(T+78} @) =F

-
can be solved for arbitrary right-hand sides, R, in

- -

such a way that ¢*.d=0. When this is known, the
full system can be solved up to terms ol order £* by
setting

> o -
d=e+k*.
Equation (16) becomes
- - ] -
(I4+TS+IUS} (e+k2)=E,(1+0) 1.
Thus, neglecting powers of £ higher than the second,
= ) = o =
{I+TS}(e)+-*{I+TS} () +-*{US } (e)=E,(1+p)1.
We now can find a unique vector, ?, such that
{I+78} (e)=1

-
(which implies that £,(1-+p)e solves the electro-

= -
static system) and #*-¢=0. Now, having found e,

we compute {{JS'} (_(j) and solve
) - -
{I+T8}(N)=—{US}(e)
. - -
in such a way that ¢*. f=0.

-S> o -
Having found d(=e¢-+4k*f), we substitute this solu-
tion vector into (18).

- - - - ICE,, | Py e —
(ko) (o-hif) Ll mpaeD).
e e
183 % 0 =0 f==(0),
Therefore,

2_)* '__)__kEDO_P_(I'_P(I)
- o= E,(1+p)

1=kt o)

= (19)
14 (g+Fku*- e)

Our main result may now be stated as
Tureorem 1. For sufficiently small values of k, the
reflection coefficient p is given by formula (19), where

=

the vector w* has been defined by equation (17) and
-

where the components of the vector e are defined by

2
equations (38) and (39); the vector e atself describes
the solution of the electrostatic problem (k=0).
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5. Electrostatic Case

We bave the system of linear equations

{(I+T8} @) =E,

and we wish to show that it can be solved for arbi-
trary right-hand sides in such a way that the solution

=
vector, d, satisfies the scalar condition

N
i o ai=(0),

To this end we first invert the matrix {I4+7S7}.
The method we shall use is to produce a matrix, D,
and a triangular matrix, A, such that

{I+ T8} {D}=A.

Since A is triangular, its inverse can easily be
computed; thus, the full solution is

{I+TS8}'=DA

First we shall construct the triangular matrix, A.
To this end, let us consider the field in region I. It
has the form

n
e, )=23cue” 1 cosTy (20)
n=0
in the electrostatic case. If we relax the condition
at +e and allow the field to become exponentially
large, new modes may be introduced. We shall
refer to these as “unrealistic’” modes. Let the Nth
unrealistic mode be denoted by £ (z, y). It will
increase exponentially for xz—w, and the order
of magnitude of the function at z—eo is deter-
mined by the first term (n=—N) in the expansion:

(21)

ii SN -5 n
v, y)= 25 cie 1 cos—y.
n=—N q

We wish to determine £% in such a manner that it

satisfies all conditions for £, except for (7). This
implies that, in region II, we have
EN @, n)=2,didu(z,9), (22)
=
where, in the electrostatic case,
¢0(.’E, y) :Q+ ZISmoemz cos my
=
$u(2, )= S Spue™ cos my 0
m=1
0, & .
U (@, ) =5 "= > mS,,e™ cos my alln.  (23)
0 =1

Equations (21) and (22) provide us with an in-
finitude of new fields. Solution of these will yield
the matrices, D and A, which we seek.

Matching (21) and (22) in the aperture z=0,
lyl<qm,

o i
en cos —y=> dye,(0,7).
N q n=0

n=-—

This implies that

=gl n >N
eN4-cN,=d¥ 0<n<N
cy=dy, (24)
since
cos > Y=C08 (——775> 7
q q i
and
n
¢n(0yy):COS ;l_y) lyl<qﬂ-
Let us define
o cy n >0
"3y a=0
0 n>N
== c%, 0<n<N
e =),
Then
d¥=¢;f +c;, for all n. (25)
We apply the derivative condition
B 3 m
OEx(z,y) \a(;’ 2/):__% m;chfZe*q ” cos —73 Y
OE™ (x,1 )
#:E) A3z, )
° m , _ m © o
2 — (ea—cp) cos —y=> W, (0,y)  |y|<gm.
m=1 ¢ q n=0
(26)

Multiply by cos gy and integrate

o a2
q<cn ‘*n)_ put

T o
q 2 d%\l/m(o; :’/) cos 7—?/ ydy.
m=0 q

Multiply this by 7%’ and add (25)

P 2 ([ n
= N N £
2 =l —{-m§=.0 a — L (0, 1) cos q ydy.  (27)

However, it is easily seen that (27) is merely
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{1+ TS ) (dy)=2¢5 28)

where

.
W=k, i, o 5 o)
and

N o )

Er—=C o R o & o R W (05 & o)

- -
If for each N we can compute ¢y and dy, we will
have found the matrices D and A. The solution

"
vectors, dy, will comprise D; and the right-hand sides,

X
¢y, will comprise the triangular matrix, A.
Thus, we must do the following for each NV:
-

(1) Compute the vector cy.
-
(i1) Find the solution vector dy.

Problem (1) may be solved as follows: We map
the waveguide structure onto the strip [»|<# in
the w=wu-+iv plane. The Schwartz-Christoffel
formula gives us the mapping implicitly.  We may
state the result as
Lemma 1. The mapping of the interior of the wave-
guide in the z=(z-+iy) plane (as drawn in fig. 1)
onto the strip [o| <7 of the w= (u-+1v) plane is given
by

(_\ (Irzé}r"l'j,tf]_\ éjl}:ii)‘zqeu(l o ([‘2) 1-q
(VePe" +1+ Ve*+1)?

z=log

e e
dz VN ge*+1

where the square roots are determined by

(29)

for w=1ir+2 log ¢~ '+o

and ¢ <0,

arg (¢’e”+1)}=0

™

arg (¢°e"+1)=; for w=ir+2 log ¢~ '-+o

and ¢ >0,

arg (e“+1)}=0 for w=1ir+7, 70,

™

5 for w=1ir+7, 7 >0.

arg (e*41)i=

The following points correspond to each other:

W=1r—® and z=ir—

w=11 and z=1m

w=1ir+2log ¢~ and z=1imq

w=1r-+ and z=1imq+ .

Let 5:(3_“, o=e¢ 7. Substituting into (29),

(e FerVite)'
=0 — :

[ =R € )
V¢ +otqVito)(1—g)

666696

—

‘¢N=0

byt kZPy=0 :¢N=cos%y

b $n=0

3pn

ay

=0

FiGure 2.

Equation (30) shows that ¢ can be expanded in a
power series in ¢. The field £y can be written as
the real part of the derivative of the potential,
Nw
e

(. .
[Let q{\.:;: N so that Ey=Re ®y. We assert
i

that ®y can be expanded in a series of the type

Nz A=N)_
= —z
W), ¢ ), 4 L (N)
CZpn € C1-n€ oo ¢ Co
lz

. .
+33eiPeT = 35 g
=1 I=—N

This form follows from (30) and from

d 140

_ Nw _w: Ta—NN _ .
(‘b‘v—Ne dz A ag —\/(12+0

The residue theorem asserts that

o=z fﬁ oyg'~Mdy  1=I=N.
¢=0

21

This reduces to the expression (31) for %) as an
integral over a small circle around ¢=0, taken in the
positive sense.

e —_ ],; = ,._.,‘?,\Y_‘_ . gli-N-1
! 2m o\ (1—¢) l
(1(1 _([') 4 g=0
5t
(+ot+1+0)"" do. (31)
( “——2 o )21 ag. .
V¢+o+qVlto
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This verifies that ¢®) =0, [>N.
Problem (ii) may be solved by using the fact that

=
in the aperture each component of the vector dy is
a coefficient of a Fourier series in the aperture.

qm
(1;),’:(%7r Ey cos — 7/(11/.

J —qT

(32)
But

dw

E\':R(’ (I)A\':R(’ Afp\'zr T

Writing the full complex integral (and dropping the

“Re” for now),
’ 1 dz
J

i 1 awi dw Wiy il
d¥=— Ne? = e? te ¢
L 1 ) =2 Fw)
+e * dw,

27qi ) e dz
where F(w) is the Schwartz-Christoffel mapping
eiven in (29). Using the substitution A=¢"

m m
= Roé—[<-— N ES

(\ (/}\+1+(1\)\+]\ "
(v (/>\+1+\>\+1) ‘

[l

The path of integration is around a circle of radius

N ()
_ 5W(ﬂ —m+loa(——>

@2

= (AR (l=gp) g

-7 (’)‘+1+‘>‘+1) (lx] (33)
WEAFT+Hgn+1)™

—; in the positive sense, as illustrated in figure 3.

It remains now to show that solutions of the

system

(I+T8} @)=R

satisly

A-plane

L
L/

FiGure 3.

5
The reason for this is that the components d,, of d

=
as well as the components of all the vectors dy are
the Fourier coeflicients of the derivative of a potential

function Re @:? (or, in general, of Re <I>N=3

oy
Nv exp Nul). In fact, the definition of the ¢} by

(17b) shows that

[sin

qm
ti';:f U (, y)dy,
J —gqm

where the ¢, (x,7) are defined in the electrostatic
case by (9a), (9b) with the additional condition
k=0. Now the d,, are derived by the fact that

E([m le (I y’:’/)

is the expansion for Re ® (or, more generally, Re ®y)
in region IT. Therefore we have

™ o*(0, ) | @

] . 34
wor Woul g Y

> -
o) = L

O(JW —gqr

But » is constant on both boundaries, so that there
> o
w/drx=0. Therefore, t*.d=0.

6. Convergence

It has been tacitly assumed in the previous
computations that the convergence of the various
infinite series is good enough to justify the operations
performed. For example, the final formula for the
reflection coefficient (19) involves an infinite series

- >

represented by the dot product, u*.-e. 1t seems to
be a rather difficult task to prove that our perturba-
tion method leads to a convergent procedure for
the computation of p, at least for sufficiently small £.
All we shall do here is this: We shall prove that the
approximation formula of Theorem 1 is meaningful.
For this purpose, we must prove:

TuroreEM 2: The infinite sum represented by the

- -
product w*-e converges absolutely.
From equation (17) it can be seen that

%* - i i r. 2 [‘qr m [
" 6 — (2 —— sin qmr — COS 7Y €OS -— yay
m=0 " r=1 2(l7l'l T Jo q
= sin qmr (T m
= Z €n 2 : I f cos 1y (‘OS—?/(I?/ ¥
(]7‘1’ =0 Jo q

(35)

We shall show first that the factor in brackets is
less than a constant times 1/m for m large. This
may be seen as follows: The factor in question is the
mth Fourier coefficient of the function

f(y)— Z sin r(q7r+1/)+s1n r(qr—y)}

7
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The formula

r=1

shows that f(y) is differentiable except for isolated
points in any finite interval. According to Whit-
taker-Watson [1958], sec. 9.3, the ml.h Fourier
coefficient of such a function has the order of mag-
nitude of 1/m.

In order to complete the proof of convergence of

- -
u*-e (35),
('011\'(‘l'g(‘11('(‘ O[

we must demonstrate the absolute

Z >1_ €m.

m=1 M

(36)

=
Each component of the vector ¢ is a coeflicient of
the Fourier expansion of the field in the aperture.

1 s m .
L " B cos™ yay. 37
&n = [‘_w , COS ; ydy (37)

Inasmuch as %, vanishes for ¢r<_|y| <, (37) can be
v A Yl s

written as

1 C— m
en= , cos— ydy
qm J —x» q

i ’l/ 5 m
. 1 - f l ((; q _1,_()
2mqr ) —xi dz

(38)

K ) dz.

We can convert this to a line integral in the w-plane
using the Schwartz-Christoffel mapping given in (29).

(1-(]%“"“?[ ,’ &2 (\ ’I € "+] + (]\ ¢ "+] )Z,),:u‘/u)
JC

(Ve o™ 1) ¢
+- — [f g (\'I(’"+1+\(‘"+1)4
(‘l_(lz)ﬂﬂﬁlf. (e

(\(I(‘"+1+([\("+1)2"l Jk
(39)

is illustrated in the

The path of integration, (),
following sketch (fig. 4):

The first integral will converge if the path is
altered in such a way that Re (w)<0, so we shall
change the path into the one indicated by figure 5.
Alon(r the bottom path we may put

===, 0= s,
By rewriting the first integral in terms of s, and by
using the inequalities

Pq(1—eo)t
= (l—ge =P+ (1—e 3,

(1— )< (1—ge~

we see casily that the resulting integral can be
majorized by 1/27m. The same ulml) sis  goes
through on the upper path of integration, and this
shows the absolute convergence of the first half
of (36).

For the second integral in (39) we can break up
the path as indicated in figure 6.

We see readily that the integrals along C, and

cancel each other out exactly. We are left, then,
with integrals along €, and ;. By putting
—=I=S) 0=s=log ¢
on (y; and using the substitutions
cos a=(1+e~%)}(1—¢*) 7%,
cos B=g(e*—1)}1—g2)~} (40)
/ ] 1 1
:/j:—é(f""(z»""—(]?)"-'(l—(f“')"-, 0<a<w/2
(41)
l . , ,
E.’f:_g e'(e’—1)"H(1—g%’) 74, 0=B=w2 (42)
L e 7f<l—1 ) (43)
’(/\’ 2 =T 2\¢

we find that the second integral along (’; has the
value

o m-1 log (172
( ] ). [ (’Zi"ry’/é'.
0

(44
2miq )

Applying a similar method to transform the second
integral along ', we find, after combining the re-
sults, the single integral

(_1)m+l

log ¢ 2 X
: f sin (2my)ds, (45)
JO

Tq

I
N 7T|+|og—
i | i

=7l —Ti

; |
—Ti+log —
| 9 q?

Ficure 4.

+i

Frcure 5.
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w-—plane Ti Cq - Cs
LTS
Ti+log =5
S PO U N (S e
: |
-Ti+log—
2

e —>
—Ti (o Ca

FiGure 6.

which is now our expression for the second integral
in (39). It can be shown that (45) is majorized by
a constant multiple of m™* for large values of m.
The proof for this fact is somewhat tedious, and we
shall give a sketch of it only.

Because of (43), the integral in (45) is singular at
s=log ¢2, B=m/2, where ds/dy becomes infinite.
To show that (45) exists and even becomes small for
large m, we introduce the variable

t=s—log ¢7*

and show that ¢ depends analytically on 4'? such
that (with a constant ¢)

t=c*y**+higher terms in y'7. (46)
From (46), we can deduce that (45) behaves for
large m like
J“" sin 2my
— dn,
J o

(47)
y:

where § is a fixed, sufficiently small real number.
In turn, (47) can be shown to be of the order of
m~?" because of

© 2 2
sin Amv dy=T (%) (cos 1r> (2m)~%  (48)
X A 3/ \ 6

- =

Combining all these results shows that w*.¢ con-

verges absolutely, for we have shown that this sum
behaves at worst like

1
mé3

%

which is absolutely convergent.

A 8 | o
| e '
m | m | I o I
1 ! :

Ficure 7.

7. Concluding Remarks

We have restricted our investigations to a first-
order approximation of the value of the reflection
coefficient. Higher-order approximations are avail-
able, since we have the inverse of the matrix de-
termining the electrostatic case.

The method of solution used in this paper may be
tedious, but it is sufficiently general to be applicable .
to a wider range of waveguide problems. For ex-
ample, it can be used in finding the field in more com-
plex waveguide structures such as those illustrated
in the following sketches.

In each of these problems there are three distinct
regions, and this will give rise to two sets of reflection
and transmission coefficients. (At first 1t might be
thought that regions II and III in problem B could
be combined into a single region, but elementary
analysis shows that a field of this form is over-
determined and can yield only the trivial solution.)

The authors thank the referee for a large number
of helpful suggestions.
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