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The reflection coefficien t for the basic mode in a widening, straight, two-dimensional 
waveguide is computed for small wave numbers by us ing the perturbation method with 
t he electrostatic case as the unperturbed case. The problem is treated as a perturbed infinite 
ystem of inhomogeneous linear equations. and it is hown that the matrix of the unperturbed 

system (which corresponds to the electrostatic case) can be inverted explicitly by using 
conformal mappings and physically unrealistic modes. Questions of convergen ce are 
discussed, and other examples for application of the method arc indicated. 

1. The Physical Problem 

1.1. Structure 

The problem which we are considering is a two
dim.ensional one arising from a three-dimensional 
waveguide structure in which the perfectly conduct
ing surfaces extend from - OJ to OJ in the direction 
of the z-axis in a Cartesian coordinate system. 
The intersection of these conducting surfaces with 
the x,y-plane is given by the six lines : 

x~o, y = Q7f (O< q< l) 
x~ O, y=-q7f 
x= O, Q7r~y ~7r 
x= O, -q7f ~ y ~- 7r 
x~O, y = 7f 
x~O, y=-7r. 

The segment of the y-axis between - Q7f' and Q7f', 
which we shall refer to as the aperture, separates 
the waveguide structure into two simple regions, 
I and II. 

1.2. Conditions on the Electric Field 

.... 
Let the electric field E = (Ex, Ey, E z), and assume 

that the time dependency is given by eiwt where 

w= !cC, !c= wave number, c= velocity of light. 

1 This resea rch was supported by the Electronics Research Directorate of the 
Air Force Cambridge Research L aboratories, Omce of Aerospace Research 
(USAF), Bedford , M ass. , under Contract No. AF 19(604)5238. 
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Then we have the conditions 

(2) 

.... 
(3) the tangential component of E vi1nislt es at 

the boundaries . 

We shall also make the following assumptions : 

(4) E y is an even fun ction of y 

(5) E z= O. 
.... 

The behavior of E at infinity must sa tis f.,-

(6) lim IE y-TEoelkxl= O, 
x~-co 

(7) lim IE - E eikx_ pE e-ikXI=O y 0 0 , 

x .... +'" 

(8) f f (Ei + E ;)dxdy IS bounded over every 
finite region . 

, Ve shall introduce the following detinitions: 

T (condition (6)) is called the transmission 
coefficient. 

p (condition (7)) is called the reflection coeffi
cient. 

EoeikX is called the incident wave. 
E y-E oe ikx is called the diffracted wave. 



We shall now show that the field is completely 
determined by E y alone. Conditions (2) and (5) 
gIve 

(2') oEy= _ oEx • 

oy ox 

This shows that E y determines Ex up to an arbitrary 
function of x only. But since Ex and E y satisfy the 
reduced wave equation LlU+ PU= O, th e same must 
be true for both sides of (2') . Furthermore, from 
(6) and (7) we know that Ex must approach 0 at ro. 

This fact gives us the uniqueness we seek. For if 
(2') with a fixed E y , gave rise to two different 
solu'tions for Ex, th en their difference could only be 
a function of x alone. If this difference is D(x), 
then 

and 

D (x)--.O at ro. 

This implies D(x) =0. Thus, in what follows, we 
shall limit our attention to the determination of the 
y-component of the electric field. Our first task is 
to write the boundary conditions on E y. 

From (1) we have 

From (3) we have 

oE 
(b ) oyy (x, ± q7r) = O 

oE 
(c) oyl' (x, ± 7r) = 0 

(d) E y(o, y)=O q7r< Iyl < 7r. 

Note that in (b ) and (c) we used the fact that Ex= O 
everywhere on those boundaries. This implied that 
oE 
' oxx= O, there; and then (2' ) was used to get (b ) and 

(c). Continuity conditions in the aperture are 

(f ) oEy (0+ )= oE1! (0- I ) 
oX ' Y ox ' ./ 

And from (6) and (7) 

(g) lim IE y- TEoeikXi= O 
X-7 - 00 

(h) lim IE y- Eoe ikX - pEoe -ikxl = 0. 
X-'>+'" 

2 . Method and Summary 

The problem described above has been treated be
fore and the material has been presented by Mareu
vitz' [1951 , p. 141] and by Saxon [1943]; Quantita
tive data have been given by Marcuvltz [1951 , p. 
307]. Furthermore, the problem has been treated 
earlier as a perturbation of the electro~tatlC. case 
[Marcuvitz, 1951, p. 153], a method whlCh will be 
used as the starting point for the present paper als? 

The essential feature of the present approach IS 
the explicit inversion of aI~ infmite matrL,{ whi~h 
characterizes the electrostatlC case. In the speclal 
case where q= %, this has already been done by 
Mao-nus and Obel'hettinger [1950], who used alge
braic relations connecting the matrL,{ elements for 
this purpose. The present paper uses instead, . in t~
o-ration in the complex plane, an approach whlCh IS 
~f much wider applicability. The details may be 
described as follows: 

The first step to'ward finding the reflection coeffi
cient at the interface is to expand the field in each 
of the reo-ions (I and II) in Fourier series. The modes 
are det~:mined on each side by applying all the 
boundary conditions excep~ th~ matching condition 
at the interface. The solu tIOn IS then assumed to be 
a series in these modes with constant coefficients. 

Applying the matching condit~ons at t he ~nterface 
gives rise to two infinite sets of lmear equatIOns, one 
arisino- from matching the fields, and the other from 
matchinu the normal derivatives. Using these 
two sets b of equations we can eliminate one group of 
coefficients leaving an infinite matrix equation for 
the other o'~'oup an d a scalar side condition involving 
the reflection coefficient. Solving this matrix equa
tion then will allow us to apply the scalar side con
diti~n, an~l this will yield the value of the reflection 
coefficient. 

The matrL,{ equation which arises from the match
ing conditions is derived in full and is valid for all 
values of the wave number, k<1. The coefficients 
of the expansion of the field in region II give the 
unknown vector. The equation is solved using a 
perturbation method. The electrostatic case (k = O) 
serves as the unperturbed case. v'! e shall see tha;t 
the ability to solve the electrostatlC case for arbI
trary righ t-hand sides provides us with. enough power 
to determine the higher order terms III the electro
mao-netic case (k~O) . Using this fact, and the scalar 
sid~ condition, we shall determine the reflection co
efficient up to terms of order lc2• 

The one remaining facet of the method is the.proof 
of solvability of the electrostatic case. for ~rbltrar'y 
right-hand sides . Since the equation 111 tlns cas~ IS 

Laplace's equation, we may use confon~al mappmg 
as an aid. We map the whole wavegUlde onto the 
infinite strip , using the Schwartz-Christoffel formula. 
This enables us to make use of the fact that each un
known is a Fourier coefficient which can be written 
as an integral (across the aperture) of the field .. The 
field is written as the derivative of a harmol1lc po
tential. In this way the matrix equation may be 
solved in the electrostatic case for a specific right-
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hand side. However , this sam e teehnique can be 
used lor more general righ t-hancl sides. In order to 
aecomplish this, we introduce into the original prob
lem " unrealistic" modes, i .e., modes wbich do not 
<lie out at + co. The Nth unrealistic mode will give 
Tise to a right-hand side consisting of N + l nonzero 
()O tries. Thus, solvin g for all such uJ1l'ealistic fields 
will yield a solution matrix whose product with the 
()riginal matrix is a tr iangular matrix. The en tries 
in the triangular matrix can be computed, using the 
conformal mapping ; thus, the original m atrix can be 
inverted. Therefore, we shflll h ave solved th e elec
trostatie case lor arbitrary righ t-hand sides. 

3. Infinite System of Linear Equations 

In all t hat follows we shall use the notation t hat 
the r estriction of E y to r egion I is denoted by E~ and 
s imilarly for E~[. 'Wh en r eferring to the en tire wave
g uide we shall write imply Ey. Inasmuch as our 
ultimate goal is to apply a perturbation technique to 
this problem , we shall aSS WTle th at 1c< 1 so that 

By separating variables in (a) and applying condi
t ions (b ) and (11) in r egion I we b ave 

where 

n=1,2, .... 

In region II we have th e additional condition (d) 
placed on the modes. So we must introduce a set of 
functions, CPN, satisfying (a), (c), (d ), and (g). In 
addition, let the Nth fun etion satisfy 

N 
(e ' ) CP N(O-, y)=eos - y , 

q 

in the aperture. The reason for condition (e ' ) is 
that the wave coming in from the right is a super
position of cosines in the aperture. 

It will be necessary for us to have t he CPN explicitly, 
so we shall derive them here. The Nth mode must 
satisfy the conditions indicated in the sketch below. 

Separating variables, we see t hat CPN can be ex
panded in a series of the form 

CPN(X, y)=~ a~V)eilnX cos ny 
n~O 

wh ere 

(region II ) 

n~ O 

n= O. 

At x= o we h ave 

'" r N I cos - y 
CPN(O, y)=~ a~,N) cos nY= i q 

n~O I 
,, 0 

lyl< q7r 

q7r<lyl<7r· 
Consider the case N ~ O , and multiply both sides by 
cos my and in tegratc 

a~l() =~ cos my cos - ydy . 
') [ Q7r N 
7r . 0 q 

Thus 

CPN (X, y)=~ S mNei1",X cos my N = l , 2, . .. (2) 
"'~l 

wh ere, for m = l , 2, 3, ... and N = O, 1,2 , .. . 

S __ 2 f h N . N 2m sin (qm7r) 
mN--- cos my cos - ycly= (-1) (2 "" T2j 2) ' 7r 0 q 7r m -1 \ q 

Similarly, for N = O, we get 

CPo(X, y)= qeik£+ ~ S moeilmX cos my. 
m= l 

Th e field in region II may now be written 

'" 
E~I(X, y)=~ dnCPn(x, y). 

n~O 

Applying condition (e), we h ave 

but, by definition, 

Therefore, 

m 
CPm(o, y) = cos - y 

q 

n = l , 2, .... 

Differentiate (1) with respect to x 

L et 

Condition (f) gives 

(3) 

(4) 

(.'» 
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Solving for the Fourier coefficients on t he left-hand 
side, 

and transmission coefficient. Using the value of do 
found in (5), we have from (12) 

'" '" I L:; d", L:; -~ STm sin q7r7'= kED(I-p-q - pq). (14) 
7n=O r=1 q7rT 

(6) This scalar condition (together with (5)) will be used 
to evaluate p after (11) has been solved for the dn's. 

2 f a" '" n Cn=-k' L:; dmo/m(a, y) cos - ydy 
7r n~ 0 7n=O q 

n = I , 2, .... 

(7) 

Combining (5) with (7), 

. 2 f a" '" n dn=--7' L:; elmo/mea, y) cos - yely 
men ~ 0 m=O q 

n = l , 2, .... 

(8) 

From (2) and (3) it can be seen that 

'" %(x, y) = i lcq eikX+i L:; S To lTeilTx cos Ty (9a) 
T=1 

'" o/m(x, y ) = i L:; IrS rmeilrx cos ry m = I ,2, • ... 
r=1 

(9b) 

Therefore, 

'" '" '" L:; elmo/me a, y)=ikqelo+i L:; elm L:; S rmlT cos ry. 
m=O m=O r=1 

(1 0) 

Substituting into (8), 

4. Perturbation Method 

In order to use the perturbation method in the 
solution of the equations of the previous section, we 
must establish their e:>"'j) licit dependence upon k. 
Having done that, we shall solve the electrostatic 
problem (lc = O) explicitly and use it as the unper
turbed case. 

IT 
kn 

Equation (11 ) depends upon k only in its term, ~~. 

~f2=k2 
-,,!n2 - k2q2 

2 f P"{ '" '" } 11 eln=-lc lcqelo+ L:; elm L:; IrS rm cos ry cos":' ydy 
7r " 0 m=O r=1 q 

n= I,2, . .. 

n = 1,2, .... (11) 

Equation (11) is an infinite system of linear equations 
in the unknown Fourier coefficients, dn• 

A scalar side condition is obtained by substituting 
(10) into (6). 

It can be seen from (3), (5), (4) and condition (g) that 
the transmission coefficient, T, is given by 

Equation (14) depends upon k only in its term, IT' 

Neglecting all terms involving powers of k higher 
than the second, eq (11) can be written in matrix 
notation as follows: let 

T= the matrix of elements Tnr='!.. Srn, n~O, 
n 

= 0, n=O, 

21«" n 
S = matrix of elements S rn=- cos ry cos - yely 

7r 0 q 

(13) (as previously de:ruled), 

which gives a simple relation between the reflection U = matrix of clemen ts 
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..., ..., 

= 0 nor r= O. 

n,r;;cO, such a way that t* · d= O. When this i lmown, the 
full system can be solved up to terms of order Jc2 by 
setting 

..., 
Now we add (5) to (11) and use the notation that 1 
is the vector 

~ 

1={ I,O ,O,O, ... }. 

We assume that all summations go from ° to + 00. 

If I is the identity matrix, we have 

~ ~ 

{I+ TS+ k2US } (d) = E o (1 + p)1. 

, Let 

T* ~ S rm== -- 1111-q7r 

U* 1 T* rm= - -2 "2 rm 
l' 

Then (14) becomes 

'" '" 

in q7fT r= 0,1,2, ... 

1'= 1,2, . .. 

(15) 

(16) 

::8 elm L; (T~m+PU~m)=leEo(1-p- q-pq) (17a) 
m=O ,=0 

..., ~ 

For shorthand, let us define vectors t* and u * whose 
components are: 

., 
t*- '" T* m-.L..J r1n (17b) 

r=O 

'" 
u;,,=::8 U~m' (17c) 

,=0 

Then (17) can be rewritten as 

..., ~ ~ 

(t*+Pu*) .d=kEo(l-p-q-pq). (IS) 

Equations (16) and (18) form the system which 
we shall solve. FiTst we shall solve (16) using the 
pertUTbation method to invert the matrix. Then ..., 
we shall use the solution vector, el, in (18) to compute 
the reflection coefficient, p. 

The method will proceed as follows . We shall show 
that the electrostatic system 

~ ~ 

{I + TS } (d)= R 
~ 

can be solved for arbitrary right-hand ides, ii, III 

Equation (16) becomes 

Thus, neglecting powers of Ie higher than the second, 

~ 

vVe now can find a unique vector, e, such that 

-7 -7 

{I + TS } (e) = l 

-7 

(which implies that Eo(l + p)e solves the electro-
..., ~ -7 

static system) and t* · e= O. Now, having found e, 
-7 

we compute {US } (e) and solve 

~ ~ 

{I+T S } (f) =- {US } (e) 

-7 -7 

in such a way that t*· j = O. 

~ -7 ~ 

Havino· found d(=e+k2j), we sub titute this solu-
tion vector into (18). 

~ -7 -7 

(t *+ lc2u*) · (e + k2j ) 
lcEo(l-p-q-pq) 

E o(l + p) 

~ ~ -7 -7 

But t*· e=t*·j= O. 
Therefore, 

p 

kEo(l- p-q- pq) 
E o(l+ p) 

-7 -7 

1-(q+leu*·e) 
~ -7 

1+(q+ leu*·e) 

OUT main result may now be stated as 

(19) 

THEoHEM 1. For sufficiently small values of k , the 
1'eflection coefficient p is given by j01'mula (19), where 

~ 

the vector u * has been defined by equation (17) and 
~ 

where the components oj the vector e are defined by 
-7 

equations (38) and (39); the vector e itself describes 
the solution oj the elect1'ostatic problem (k:=O) . 
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5 . Electrostatic Case 

We have the system of linear equations 

~ ~ 

{I+ T S } (d)= R , 

and we wish to show that it can be solved for arbi
t rary right-hand sides in such a way that the solution 

--> 
vector, el, satisfies the scalar condition 

~ ~ 

t* · d= O. 

To this end we fu'st inver t the matrix: {I + TS }. 
The method we shall use is to produce a matrix, D, 
and a triangular matrix, t::. , such that 

U + T S } {D }=t::. . 

Equations (21 ) and (22 ) provide us with an in
finitude of new fi elds. Solution of these will yield 
the m atrices, D and t::. , which we seek . 

M atching (21 ) and (22 ) in the aper ture x= O, 
lyl<q7r, 

'" n '" L: e~' cos - y= L:d;;<I> ,,(o, y). 
n=-N q n=O 

This implies that 

e'j=dt;, (24) 
sll1ce 

n ( n) cos q y= cos --q y 

Since t::. is triangular , its inverse can casily be and 
computed ; thus, the full solution is n 

<l>n(o, y)=cos - y , 
q 

First we shall construct the t riangular matrix, t::.. 
To this end, let us consider the field in region 1. It 
has the form 

'" -!!. x n 
E t(x, y)=L: ene q cos - Y (20) 

n=O q 

in the electrostatic case. If we relax the condition 
a t + 00 and allow the field t o become exponentially 
large, new modes may be introduced . We shall 
refer to these as "unrealistic" modes. Let the N th 
unrealistic mode be d enoted by E },(x, y ). It will 
increase exponentially for X---? oo , and the order 
of magnitude of the function at x ---? oo is deter
mined by the first term (n = - N) in the expansion: 

'" _!!.x n 
E Mx, y)= L: e;;e q cos - y. 

n =-N q 
(21) 

"'IVe wish to determine E }, in such a manner that it 
satisfies all condi tions for E y except for (7). This 
implies that , in region II, we have 

E}J(x, y)= ~d;;<I>n (x, y), (22) 
n=O 

where, in the electrostatic case, 

'" <l>o(x, y)= q+ L:Smoemx cos my 
m = l 

<l>n(x, y)= ~Smnemx cos my n 7"" O 
m=l 

./, ( ) _ 0<1>" _ ~ S mx 
'l'n X , Y ---,;;-- L...J m rnn e cos my 

u X m= l 
all n. (23) 

L et us define 

( 0 
c;;= 1 c!;. 

I.. t c'j 

n> O 
n= O 

Then 
d-;;= c;t + c;; , for all n. 

We apply the derivative condition 

oE},(x, y) 
ox 

oEIJ(x, y) 
ox 

1 ~ N _!!':. x m 
- - L...J me e q cos - y 

q m=-N m q 

i: d;;1fn(x , y) 
n=O 

'" m m '" 
L: - (c;;;-e;:; ) cos - y= L: d;;1fn(o, y) 
m= l q q n =O 

Multiply by cos?!: y and in tegrate 
q 

n 2 I q7r '" n 
- (c ;; -c;t )=- L: di:,1fm(o, y) cos - ydy. 
q q7r 0 m=O q 

Multiply this by f1 and add (25) 
n 

2c;;=d;; + L: di:, - 1fm(o , y) cos - ydy. '" 2lh n 
m=O 7rn 0 q 

However, it is easily seen that (27 ) is merely 
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-7 

{I + TS } (dN )= 2cN (28) 
where 

-7 

dN = (d~', (W, ... ) 
and 

-7 

cN =(~c:i, c '~\, ... , Cfl!.N' 0, ° ... ). 
-7 -7 

If for each N we can compu te CN and dN , we will 
have found the matrices D and Ll . The solution 

-7 

vectors, dN , will comprise D; and the right-hand sides, 
-7 

c;v, will comprise the triangular matrix, Ll . 
Thus, we must do the following Jor each N : 

-7 

(i ) Compute the vector cN' 
-7 

(ii) Find the solution vector dN • 

Problem (i) may b e solved as follows: We m ap 
th e waveguide stru cture " onto the strip Ivl:S 7r in 
the w = u + iv plane. Th e Schwar tz-Christoffel 
form ula gives us th e mapping implicitly . ' Ve m ay 
state the r esult as 
LEMMA 1. The mapping of the interior of the wave

, guide in the z= (x+iy ) plane (as drawn in fig. 1) 
onto the strip Ivl ;2; 7r of the w= (u + iv) pla ne is given 
by 

[
(, /q2eW+ 1 + q ,Iew+ 1)2QeW (1_ q2) l-q] 

z=loO" 
b (~q2e w+ l + , /ew+ l )2 

(29) 

where th e square roots ar e determin ed by 

for w= i 7r + 2 log q- l+ O" 

and (J ;2; 0, 

for w= i 7r + 2 log q- l+ O" 

a nd (J >0, 

The following points correspond to each other: 

w=~7r 

-~ 

and z=i7r - ro 

and z=i7r 

L eL t = e q, O"=e-w. Substituting into (29), 

2 

(, lq2 + 0+ ,11 + 0" ) q 
t = O" 1 q 

(.,/q2+ (J + q JI + 0" )2(1_ q2) q 

666606- 63-7 

J!------I 

- - - - - II - - - - - - - ~ - - - -1- - - - ~ 

FIG URE 1. 

_____ ll _____ ----II <PN=O 

FIG URE 2. 

Equation (30) shows that 0" can b e expa nd ed in a 
power series in t. The field EN can be written as 
the r eal part of the derivative of the potent ial , 
eNw . 

J" d v I E R U T JeL <I'> - - e' W so t lat 1 N= e <I'>N' YI e assert N - ,-zZ 

thllt <I'>N can be expa nded in a seri es of th e type 

Nz ( I - N ) 

c ::~J e q +c11~ ~ve-q - z + ... +C~N ) 
(Xl l z 00 + L.: clN'e -q-= L.: C~N ) t l • 

1=1 l=-N 

This form follows [rom (30) a nd [rom 

'" - N Nw dw - N -N~] + 0" "'N- e -- 0" --. 
dz q2+ 0" 

The r esidue theorem asserts that 

This reduces to t he expression (3 1) for CCl!t' as an 
in tegral over a small eircle around 0" = 0, taken in the 
posi tive sense. 

195 



This verifies that c('!? = 0, l> N. 
Problem (ii) may be solved by using the fact that 

-> 
in the aperture each componen t of the vector clN is 
a coefficient of a Fourier series in the aperture. 

But 

cl~:=- E N cos - ycly. 1 J Q7r 7n 
q7r _ qtr q 

E N= Rc <pN= R e N eNw clw. 
dz 

(32) 

Writing the full complex integral (and dropping the 
"Re" for now), 

where F(w) is the Schwartz-Christoffel mapping 
given in (29). Using the substitution X= e'" 

1l\'= R __ (_ 2) Cl- q)q N- l+-q N 
[ lU J m 

G", e 9 . 1 q X 
~7rqL 

(~+q-/M=-1) 2~' clX +(1 _ q2/q-l) ~ 
(-/ q2X + 1 + -/X + 1)2q 

(33) 

The path o[ integration is around a circle of radius 

\ in the positive sense, as illustrated in figure 3. 
q 

It remains now to show that solutions of the 
system 

-> -> 
{I + TS } (cl) = R 

satisfy 
-> -> 
t*·d = O. 

).,- plane 

I - -qzf---+----t-

FI GURE 3. 

-> 
The reason for this is that the components elm of d 

-> 
as well as the components of all the vectors dN are ~ 
the Fourier coefficients of the derivative of a potential 

function R e <p=~v (or, in general, of Re <PN= ~ [sin 
uy uy 

Nv exp Nul). In fact, the definition of the tin by 
(17b) shows that 

JQ" 

t~,= 1/;rn (x, y)cly, 
-qtr 

where th e f rn(x, y) are defined in the electrostatic 
case by (9a), (9b) with the additional condition 
k= O. Now the elm are derived by the fact that 

is the expansiol1 for Rc <P (or, more generally, R e <PN ) 

in region II. Therefore we have 

->* -> 1 J Q7r 02V(O,y) OVI(O, Q7r l 
t ·cl=- cly= - ' 

2q7r -Qtr oyox ox (0, -Q tr l 
(34) 

But v is constant on both boundaries, so that there 
-> -> 

ovlox= O. There[ore, t*·d= O. 

6. Convergence 

It has been tacitly assumed in the previous I 

computations that the convergence of the various 
infini te series is good enough to justify the operations 
performed. For example, the final formula for the 
reflection coefficient (19) involves an infinite series 

-> --? 

represented by the dot product, u *, e. It seems to 
be a rather difficult task to prove that our perturba
tion method leads to a convergent procedure for 
the computation of p , at least for sufficiently small k. 
All we shall do here is this: We shall prove that the 
approximation formula of Theorem 1 is meaningful. 
For this purpose, we must prove: 

THEoHEM 2: The irifinite sum represented by the 
-> -> 

product u * . e converges absolutely . 
From equation (17) it can be seen that 

-> -> '" '" i 2 i Q" m u*· e --.-: ~ em ~ ~ sin q7rr - cos ry cos -- ycly 
m=O r= 1 ~q7r7 7r 0 q 

i '" [ '" sinq7rr i Q7r m ] =-2 :8 em ~ --?- COS ry cos - ycly . 
q7r m=O r= 1 r- 0 q 

(35) 

We shall show first that the factor in brackets is 
less t han a constant times 11m for m large. This 
may be seen as follows: The factor in question is the 
mth Fourier coefficient of the function 
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The formuln, 

'" cos 1'Y 
~ --= - log (2 cos (y/2» 
T = 1 l' 

shows that j (y ) is differ en tiable excep t for isolated 
poin ts in any finite in terval. According to Whi t
tak er-Watson [1958], sec. 9.3 , th e mth Fouri er 
coeffi cien t of such a function h as th e ord er of m ag-

, ni tude of 11m . 
I n order to complete the proof of conv ergen ce of 

~ ~ 

u*· e in (35), we must demonstrate th e absolute 
convergence of 

'" 1 
~ - em· 
m= l m 

(36) 

~ 

E ach componen t of the vector e is a coefficien t of 
th e Fourier expansion of th e fi eld in th e aperture. 

em=- E y cos - yrly. 1 [h m, 
q7r. _ Q~ q 

(37) 

Inasmuch fl S Ey vanishes for q7r<ly l < 7r, (3 7) o w b e 
written as 

1 f' m e",=- E ll cos -- ydy 
q7r - ". IJ 

1 [ ~i dw ( !'!. z -!'!.z) 
= ')--. - e(1 +e Q dz. 

~7rqt . - ". i dz 
08) 

W e can co nver t this to a lin e in tegral in th e w-plane 
us in g the Scllwar tz-Christoffcl mapping given in (29 ). 

o The path of integration, C, is illustrated in the 
followin g sk etch (fig . 4): 

The first integral will converge if the path is 
al ter ed in such a way that R e (w)< O, so we shall 
ch ange t h e path into th e one indicated by figure 5. 
Alon g th e bot tom path we m ay put 

w = - 7rt -S, 

B:v rewrit in g th e first in tegral in term s or &, fmd by 
us in g th e in equaliti es 

(l - (l ) t ;;; (l - lb -S)!+ q(l -e-S)! 

;;; (1- q2e- S )? + (l -e - S)i , 

we sec easily that the r esul ting integral can be 
m ajorized by 1/27rm. The sam e an alysis goes 
through on th e upper path of integra tion, and this 
shows the absolu te convergen ce of th e first h alf 
of (3 6). 

For th e second in tegral in (39) we can break up 
th e path as indi cated in figure 6. 

W e sec readily that th e in tegrals along C2 and C3 

cancel each o ther out exactly . We ar e lef t, th en, 
with integrals along Cj and aJ • By put ting 

on C4, and using t he substitu tions 

cos a= (l + e- S )J(1- q2) - t, 

cos f3 = q(e s - J) J(1- q2) - J (40) 

0;;; a;;; 7r 12 

(41 ) 

a da 1 
)' = - - (3 -=- - ta n (3 q , ds 2 0 ;;;)';;; ~ G-J ) (43) 

we fi nel that the second in tegral along (\ has the 
valu e 

(44) 

Applying a similar method to transform Lh e seco nd 
in tegral alon g CI , we find, a fter co mbining the re
sul ts , Lh e single in tegrfll 

(45) 

I I 
w-p lone I 1Ti+ l og -

-- ---"} -- j: --~ 
-1T 1 . I -7Ti I -7T I + log qz 
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w - pl ane 
_____ ~r__+7Ti 

1T1 

F I GURE 5. 
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) 

which is now our expression for the second integral 
in (39). It can be shown t hat (45) is majorized by 
a constant multiple of m- 2/ 3 for large values of m. 
The proof for t his fact is somewhat tedious, and we 
shall give a sketch of it only . 

Because of (43), the integral in (45) is singular at 
8=10g q-2, (3 = 7r/2, where ds/dy becomes infinite . 
To show that (45) exists and even becomes small for 
large m, we introduce the variable 

t= s-log q-2 

and show that t depends analytically on "11/3 such 
t h at (with a constan t c) 

t=c2y2/3+ higher terms in "11/3. (46) 

From (46), we can deduce that (45) behaves for 
large m like 

[
5 sin 2my d 

, "I , 
• 0 "I ' 

(47 ) 

where 8 is a fixed , sufficiently small real number. 
In turn, (47) can be shown to be of the order of 
m - 2 /3 because of 

(48) 

-) -) 

Combining all these results shows that u *. e con
verges absolutely, for we have shown that this sum 
behaves at worst like 

1 
~ m5/ 3 
m ' 

which is absolutely convergen t. 
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7 . Concluding Remarks 

vVe have restricted our investigations to a first
order approximation of the value of the reflection 
coefficient. Higher-order approximations are avail
able, since we have the inverse of the matrix de
termining the electrostatic case. 

The method of solution used in this paper may be 
tedious, but it is sufficiently general to be applicable ~ 
to a wider range of waveguide problems. For ex
ample, it can be used in finding the fi eld in more com
plex waveguide structures such as those illustrated 
in the following sketches. 

In each of these problems there are three distinct 
regions, and this will give rise to two sets of reflection 
and transmission coefficien ts . (At fu'st i t might be I 

thought that regions II and III in problem B could 
be combined into a single region, but elemen tary 
analysis shows that a field of this form is over
determined and can yield only the trivial solution.) 

The au thors thank the referee for a large number 
of helpful suggestions. 
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