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In two cases of a linear antenna driven from a coaxial line, it is shown that the apparent
terminal admittance to the coaxial line can be additively separated into two parts when the

transverse dimensions are small compared with the wavelength.

One of these two parts

depends only on the wavelength and the dimensions of the antenna, while the other part

can be interpreted as a capacitance that depends only on the radii of the coaxialline.

This

capacitance may be found exactly from the solution of an integral equation, in the sense that
further corrections cannot be interpreted simply as a capacitance.

1. Introduction

In the experimental determination of the properties
of a dipole antenna, the antenna must be driven from
a transmission line, usually either a coaxial line or a
two-wire line. In particular, the most common
method of obtaining the input impedance to the
antenna consists of measuring the standing wave
ratio and the position of a current minimum on the
transmission line. From the point of view of
electromagnetic theory, the transmission line and the
antenna are inseparable parts of the same problem.
However, because of the complexity of the problem,
it is often studied, for theoretical purposes, on the
basis of an approximation of the following nature.
First, the dipole antenna is considered ' to be
driven by a delta-function generator (sometimes
called a slice generator) or perhaps some other
generator that is distributed but equally unphysical.

From this idealized problem, an mput admittance
1s defined. Then the apparent terminal admittance

for the transmission line, i.e., the quantity directly
obtainable from the measurements on the trans-
mission line, is found from this input admittance and
a lumped corrective network placed at the junction
of the transmission line and the dipole antenna
[King, 1955]. Such an approximation, is of course,
without meaning unless all transverse dimensions of
both the transmission line and the dipole antenna
are small compared with the wavelength. When
these conditions are satisfied and this approximation
1s taken to be valid, the following statements are
usually made:

A. The input admittance determined from the
idealized antenna problem is independent of the
geometry of the transmission line, and

B. The lumped corrective network consists of
inductors and capacitors only, and the values of the
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1Tt is not possible to list the relevant references from the vast literature on the
dipole antenna. A small sample may be found from footnote 1 of Wu [1961].
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inductances and the capacitances are independent
of the frequency (although they may be negative).

Although this separation into two effects is ex-
tremely desirable and is indeed responsible for most
of the present understanding of dipole antennas,
questions may be raised against both statement A
and statement B. Some of these are the following:

A. For the idealized problem with a delta-function
generator, the definition of the input admittance is
not entirely straightforward. If it were defined
simply as the ratio of the current at the driving
point to the driving voltage, then the result would
have been infinite. In order to get a finite answer,
it is proposed [Wu and King, 1959] that a certain
logarithmic singularity in the current distribution
should be subtracted out. If k=2x/\ is the wave
number and « is the radius of the dipole antenna,
then this singular term contains a factor ka, while
the current distribution in general depends inversely
on an expansion parameter which in turn depends on
the logarithm of the ratio a/x. Accordingly, when
the antenna is quite thin, this subtraction procedure
is probably acceptable. However, it becomes un-
satisfactory when the antenna is thicker. For
example, when ¢/A=0.01, ka is about 0.06 while the
inverse of the expansion parameter is perhaps slightly
more than 0.1. Furthermore, the recent experi-
mental measurements of Rama Rao [private com-
munication] show conclusively that the subtracted-
out part of the current distribution is actually present
on a dipole antenna except possibly very close to
the driving point, and hence it cannot be attributed
to the idealization of the delta-function generator.
Thus, this subtraction procedure deserves further
examination. More recent theoretical work [Chen
and Keller, 1962; Duncan, 1962] does not substan-
tially improve this situation.

B. Even if the concept of a lumped corrective
network is meaningful, it still requires an argument
why this lumped network can be represented by
frequency-independent inductances and capacitances
only. In the case of the dipole antenna driven




from a two-wire transmission line, the determination
of these values involves the introduction of an
arbitrary cut-off. And in that case there are reasons
to believe that this cut-off ought to depend on the
frequency [King, 1956].

Although these questions are present in principle
even for the very thin antenna, they are much more
relevant from a practical point of view for antennas
that are thicker but still satisfy the condition that
the transverse dimensions are small compared with
the wavelength. Since it now seems very probable
that this class of antennas of intermediate thickness
will soon be investigated experimentally, it is desir-
able to have a more critical understanding of these
problems. Mathematically, the problem of the
antenna with a coaxial transmission line is far
simpler than that with a two-wire transmission line
because of the absence of complicated corners, and
hence, only this simpler case is to be considered.
Most of this paper is concerned with the geometry
shown in figure 1, namely, an antenna in a parallel-
plate region driven from a coaxial line. The reasons
for choosing this particular geometry are (a) that
the corresponding idealized antenna problem with a
delta-function generator can be solved exactly by
Fourier transform or Fourier series, and (b) that this
is a very close approximation to the geometry
actually used by Rama Rao in the measurements
mentioned above. The same considerations are
later applied to the geometry of figure 2, which is
much more interesting in connection with possible
future measurements on the class of thicker antennas
mentioned above.
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Antenna in a parallel-plate region=driven from a
coaxial line.

Fiaure 1.

2. Idealized Problem With Delta-Function
Generator

In figure 3 is shown the geometry for the idealized
problem of an antenna in a parallel-plate region
driven by a delta-function generator. Rotational
symmetry obtains. Before dealing with the present
problem, recall momentarily the situation in the case
of a dipole antenna. When a dipole antenna of half-
length 4 is driven at its center by a delta-function
generator of voltage V| the current distribution on
the dipole antenna is determined by the following
integral equation [Wu and King, 1959]:

ﬁhd” ()[E(z—2")+K(z+2")]

=417 WV sin kz+2C cos kz], (2.1)

where {;1s the characteristic impedance of free space,

K=o doz+2a sin 9/2)2-172

X exp (M4 Qasine2)7), 22)
and the constant €' is determined by the usual
boundary condition

1(h)=0. (2.3)
By an entirely similar derivation, the current dis-
tribution on the antenna for the geometry shown in
figure 3 1s determined by the following integral
equation:

\ COAXIAL LINE

e 2h —

Ficure 2.  Monopole driven from a coaxial line.
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Fiaure 3. [Idealized problem with a delta-function generator.

I:Js d2'I(2")[ Ky (2—2")+ K, (212")]

=4mwi gV (sin ks) ! cos k(s—z), (2.4)

where V' is again the voltage of the delta-function
generator, and

KO @)= i K(z+42ns). (2:f

n=—wo

S}
(1
=

If 7(z) is extended by reflections such that

I(2+2s)=1(—2)=1(2), (2.6)

then (2.4) may be rewritten in the alternative form

Iw dz’I1(z"K(z2—2')=4n 5tV i exp [1k]|z—2ns|],
‘ @.7)

where the right-hand side is to be understood in the
sense of Abel summability, for example. KEqua-
tion (2.7) can be solved by Fourier transform with
the result

I)=—@mevet > | de

n=—wJ0C,
X exp [i{(z—2ns)](§2—k?)

X A{la (B— &) HPlak®>—)'2] 7Y, (2.8)
where the contour € of integration is shown in
figure 4, together with the branch cuts for the
integrand. Alternatively, by the Poisson summa-
tion formula, (2.8) may be written as

I(z)=4kV ¢51s™! i (K*—nPn*s~2) "' exp (inwz/s)

n=—cw

{Jola(k2—n*rs~ )2 I HP [a(k2—nPr2s~2) 2]} 7L (2.9)
When s approaches a multiple of N2, (k2—n2n2s72)
vanishes, and hence the sum on the right-hand side
of (2.9) approaches infinity.
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Fiaure 4.  The {-plane and the contour C,,.

3. Green's Function for the Parallel-Plate
Region

Let (r, 6, z) be a ecylindrical coordinate system.
Let G, be the Green’s function in the region 7 >a de-
fined by the differential equation

07 10 1, N\ o
(otror—rtoath ) Gt

:_%5@ﬂqxa.cm>

the Sommerfeld radiation condition, and the bound-
ary condition

(0for)rGy(r, 1, 2)=0 (3.2)
for r=a. Let G, be the Fourier transform of @,
defined by

Golr, 1", §>=fm deGy(r, ', 2)e~ %, (3.3)

then, following standard methods given, for example,

by Morse and Feshbach [1953], @, is explicitly given
by

Golr, 1, §) =y inlHP (¢a) | H ()
[HD (£a) o, (Er<) — Jo(Ea) HP (r<)],  (3.4)
where
==, (3.5)
and 7~ (7<) is the larger (smaller) one of 7 and 7’. Let



GO, 1, O)=Err")"| y+1In % Eaf—% ir:l '1; (3.6)

where v is Euler’s constant. If all the Bessel func-
tions in (3.4) are expanded in powers of their argu-
ments and only the leading terms retained, the right-

hand side of (3.6) is obtained. It follows that G
is a good approximation of G, when

|&rs|<1. (3.7)

Let G be the inverse Fourier transform of G
then, for kr- <1, GV is a good approximation of
@, except when zis small.  When 2z=0, the difference
is given by

Dy(r, r)=Gy(r, ', 0)—G (r, v, 0)= (27r)‘1f0 d¢
{3 it e 1 15 ) T )
— oG H ()]
— () |:7+h'1 Sta—t iw]%}. (3.8)

If kis small, then the right-hand side of (3.8) may be
approximated by its value at £=0. Hence D,(r,7")
is approximately independent of the wavelength and
is given by

©

Dy(r, r’)~z1! f d¢

0

{ Bo(5a)]- K (r) Ko(ta) L1 (gr<)
FLGO K G+ @) r-+ln & ,ca,rl}, 3.9)

where 1, 1,, K,, and K, are modified Bessel functions.

For the parallel-plate region, define the Green’s
function @, in the region r>a and |z|<s by the
differential equation

? 10 1. o ,
St et ath) 60,77, 2)

,.2

= 5(—1)8(2), (3.10)

the Sommerfeld radiation condition, and the
boundary condition
o/on)r@,(r, ', 2)=0 (3.11)

when 7=a or z= +s, where 0/0n denotes the normal
derivative. It then follows from the method of
images that

Gy(r,1’, 2)= _i Go(r,r’,2—2ns).  (3.12)

In view of (3.6) and (3.12), let

GO, v, 2)= >, GP(r,r’,2—2ns)

n=—o

= S L i (B*—nPx?[s?) !

=—m®

Xly+1In 3 (B2—nPr?/s?)ia—% i)~ let™™*/s. (3.13)
Then, for s>r.,
G,(r, 1", 0)~GY &, 7, 0)+Dy(r, 7). (3.14)

This splits @, into two parts, one part has a very
simple dependence on 7 and 7/, while the other is
independent of the wavelength.

4. Green's Function for the Coaxial Line

In the region ¢ <r<b, the Green’s function for
the coaxial line is defined by the differential equation

¥ 10 1. & ,
wTror et agﬂ”fz,) Gelr, 7", 2)

:'—]}7 6(/’—/")6(2), (41)

the radiation condition for |z~ , and the boundary
conditions

(o/or)r@G, (r,r", z)=0 (4.2)

for r=a and for r=b. If G, is the Fourier transform
of G., then it is given by, similar to (3.4),

Ge(r,7",2) =}; mileo(Ea) HGV (£0) — HV (§a)J,(£D) |
XH P (&b)J 1 (Ers) —Jo(Eb) H (Er>)]

X[HP (ga)J (Er) —Jo(fa) H P (fr<)]. (4.3)
When
l£b| <1,
@, is approximated by
GO, ', O)=—(")"1(In bla)~\.  (4.5)

If G is the inverse Fourier transform of G@?, then
again G is a good approximation, if kb1, to
G, except when z is small. Analogous to (3.9), the
difference for the special case z=0 is given by

D.(r, #)y=G.(r, 1, 0)— GO (r, 1, 0)
-l f d¢ {—[Lo(¢h) Ko(¢a) — Ko(5a) [o(5b)

KK (e0) I (§75) Lo (50) Ko () [ Ko ($a) 11 (7<)
+1o(sa) K, (§r<) |—[$%rr" In (bfa)] 71} (4.6)

More explicitly,

86



GO, 2)

and

=1[2krr’ In (bja)]~! exp (ik|z]),
s LA

4.7)

G.(r, v, 0)~i[2krr" In (b/a) (4.8)

5. Antenna in Parallel-Plate Region

With these properties of the Green’s functions in
mind, the problem shown in figure 1 can be analyzed.
Similar ploblems have been investigated by, for ex-
ample, Papadopoulos [1960], but the motivation for
the IHV(‘Stlg‘dt]OIl and the method of approach are
quite different. Lt the incident current on the inner
conductor of the coaxial line be

JE(E) =tE (5.1)

Let £.(r, 2), E.(r, z), and IH,(r, z) be the components
of the electromagnetic field corresponding to (5.1).
Then Hy(r, 0) can be expressed in two different ways
in terms of /£,(r, 0).  On the basis of the Green’s func-
tion for the parallel-plate region, the relation is

Zﬂmm:fmmm[”memam@@wmx (5.2)

if the Green function for the coaxial line is used
instead, it is

b
Hqy(r,0)= (zr)~1—21k 5t f r'dr’ E.(r',0)G.(r, 1", 0),
(5.3)
where the extra first term comes directly from (5.1).

If the right-hand sides of (5.2) and (5.3) are equated,
the following integral equation for /2,(r, 0) is obtained :

b
f )"([I"E,—("l, 0>[Gz,(_7’, 7],7 O)

—@Q(r,7",0)]|=1Crrk) "', (5.4)
From here on it 1s assumed that
kb1 and s>b; (5.5)

hence (3.14) and (4.8) can be used in (5.4).
Let f(r) be the solution of the integral equation

[ ar gD,y —Dute =11, 66)

and let

A:L%g@ﬁ. 5.

(]
~3
~

Note that f(r) is independent of A, although in gen-
eral it can be a rather conlphmted function of rla
and 7/b. It is desired to express /.(r, 0) in terms of
f(r). For this purpose, (3.14) and (4.8) are substi-
tuted into (5.4) to give
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b
f r’dr’ E.(r", 0)[Dy(r,r")—D,(r, 7")]

:r‘l{i(%k)“fo—lwfbdr’E,(r’,O)}, (5.8)
where o
12k In (b/a)]"1—4s71 Z‘, (k2—mnPr?[s?)~1
[y+In 3 (k*—n*r?/s¥)ia—Lan]~ 1. (5.9)

Note that the quantity in the braces of (5.8) is
independent of 7. Accordingly, a comparison of
(5.8) with (5.6) shows that /£,(r, 0) is given by

B (r, 0)=x f(r)/r, (5.10)
where X is independent of 7 and satisfies
xX=1{o(2mk) 147 AX.
Hence, x is explicitly given by
X:’ifo(‘zrk)“l{ 1—1A[2k In (b/a)]?
+3s71A Z‘, (k*—n’r%s?) 1
[v-+In 3 (k*—n’r?/s?)ia—% 'iwl‘l} - (5.12)

By (4.7) the reflected current on the inner conductor
of the coaxial line is, for —z>b,
PR == (5.13)

(5.14)

where
I'=1—27¢" [In (b/a)]"1x A.

By the theory of transmission lines [King, 1955],
the apparent terminal admittance Y, is related to
T by

14-T

)u:)t‘l"l

(5.15)

where Y, is the characteristic admittance of the co-
axial line. Accordingly, the apparent terminal ad-
mittance is given by

Y,=2x{¢In (b/a)]™!
{2—27[¢oIn (bfa)]" XA} /{27

With (5.12),
lowing form

[Goln (b/a)]"xAY. (5.16)

(5.16) can be expressed in the fol-

)YIL: )Yp*’;w(YTy (5]7)
where
(YT:47T€04’1——1, (5.]8)
and
Y ,=—2twkigls™ > (B>—nin?(s?) =t
[v+In 3 (B*—n2r?/sD)ia—% x|t (5.19)



Equation (5.17) gives a separation of the apparent
terminal admittance into two parts, one of which is
independent of & while the other corresponds simply
to an end-correction in the form of a capacitance
independent of the frequency and s. The value
of (7 may be found from (5.18), (5.7), (5.6), (3.9),
and (4.6).

6. Current Distribution

The current distribution on the antenna is given by

b
I(2)=—4mik{s! [ rdr' E.(r', 0)G,(a,r, 2). (6.1)

Ja

Hence, under the assumption (5.5) and for s> 23>0,
I(z) is given approximately by

I(2)=—2mwikizs xA i (k2—n2r?/s?) 1

N=—co

[y+In 3 (k2—n?*n?/s?)ta—3% im] " le™™s . (6.2)
Comparison with (2.9) shows that the equivalent
driving voltage is
W=zl (6.3)
Contrary to the remark after (2.9), the right-hand
side of (6.2) has no singularity when s is an integral
multiple of N2. Indeed, when s=m\/2, (6.2)
gives
1(z)=2 cos mmz/s. (6.4)

This has been observed by Rama Rao.

7. Application to the Dipcle Antenna

With (6.3), (2.9) and (6.2) give the current distri-
bution expressions that are very closely related to
each other. This suggests a reinterpretation of the
kernel of the integral equation. In this section,
statements are made in the context of the geometry
of figure 2, 1.e., half of a dipole antenna driven from
a coaxial line. These results are perhaps to be ex-
pected in view of the conclusions of the last few sec-
tions, but they can also be obtained by an analysis
ol the Green’s function for the dipole antenna inde-
pendent of the similarity to the case of an antenna
in a parallel-plate region. Since the principle of the
analysis is quite similar to the problem treated above
but 1s somewhat more involved in its details, only
the results will be stated here.

Let A be the length of the monopole, and assume
that

kb1 and h>b. (7.1)
The boundary condition (2.3) applies, but the usual
integral equation (2.1) is replaced by

Lh dz’' I [ A (z—2")+#(z+2")]

=4mi¢'Visin kz4-2C cos kz], (7.2)
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where

H(2)=2 [In 2/ka)—~-+im/2]6(2)— (d/dz)F(z) (7.3)
is to be interpreted in the sense of distribution theory
[Schwartz, 1950] with F(z) an odd function of z
such that

<

©

F(z):~F(—z):£ dekeiled/i=d (7.4)

for z>0. Since the Fourler transform of .#(z) is
A (§)=2[In (2/ka)—y—+ir/2]—In [(k2—?)/k2, (7.5)

the form (7.2) is not new and has effectively been used
in connection with the problem of the long dipole
antenna [Wu, 1961]. Equation (7.2) leads to a finite
1(0), and the input admittance can now be defined
simply as

W=\ =YID). (7.6)
However, this definition 1s empty unless } can be
related to Y,. This connection is provided by

~

Y.=Y—iwCy, (7.7)
where (7 is again determined by (5.18), (5.7), (5.6),
(3.9), and (4.6).

The meaning of (7.7) 1s as follows. The input
admittance Y is obtained from the theory outlined
in this section, and may be roughly described as the
input admittance for a delta-function generator. In
this theory, there are only two dimensionless param-
eters, say ka and kh. The feed is highly idealized,
and consequently the quantity } has no direct
physical interpretation. On the other hand, in
order to carry out an experiment at all, some form
of a realistic feed must be used, for example a coaxial
line.  When such a feed is used, the input admit-
tance of a monopole may be experimentally deter-
mined by measurements of the standing wave ratio
and the position of a minimum on the feeding line.
The value of the input admittance determined in
such a manner is the apparent terminal admittance
Y,. Equation (7.7) states that, if the theoretical
input admittance 1 is to be compared with the
experimental value Y, a term —iw(’; must be
added to Y. Note that € is a function of the radii
a and b only, and is independent of & and 4. Ac-
cordingly, this term —iw('; is commonly called the
capacitive end correction. A more detailed dis-
cussion may be found in the book of King [1955].

It may be noted that the Fourier transform of the
kernel .# as defined by (7.3) may have a zero on the
real axis. In this case, the same contour of inte-
gration must be used for inverting the Fourier
transform and in the evaluation of the integral of
(3.9).

8. Conclusions and Discussions

For the case of an antenna driven from a coaxial
transmission line, with or without a second ground
plane, the apparent admittance terminating the



coaxial line can be interpreted as the parallel com-
bination of a capacitance Cp with an admittance
independent of the outer radius of the coaxial line,
when (5.5) or (7.1) are satisfied respectively. Ix-
cept for an overall dimensional factor, the value of
C; depends only on the ratio b/a. This function of
b/a, however, has to be computed from the solution
of the integral equation (5.6). This procedure gives
Cp exactly in the sense that further corrections
cannot be simply interpreted as a capacitance. The
fact that the solution of an integral equation is
needed is perhaps not surprising, since the geometry
is sufficiently complicated that an integral equation
is involved even for the static problem. The
admittances independent of the outer radius of the
coaxial line, namely Y7, and Y, are unambiguously
specified, explicitly in one case and through a
modified integral equation (7.2) in the other case.
These specifications are just the same as the one
used in connection with the problem of the long
antenna [Wu, 1961], but they do not give results in
agreement with the subtraction of a logarithmic
term proposed earlier [Wu and King, 1959] except
for sufficiently thin antennas. The present preserip-
tion should be considered to supersede the earlier
one [Wu and King, 1959], at least in connection with
coaxial transmission lines.

The present work sheds no light on the correspond-
ing problem with a two-wire transmission line. 1In
other words, it remains an open question whether
it is proper to consider the apparent admittance
terminating a two-wire transmission line as obtain-
able approximately from the value of ) together
with a lumped network realized through the com-
bination of a finite number of frequency-independent
inductances and capacitances. This lack of under-
standing is probably not a serious handicap when
the antenna under consideration is very thin. How-
ever, so long as this problem remains open, it is
almost mandatory to use a coaxial line drive in the
experimental measurements of the properties of the
class  of thicker antennas mentioned in the
Introduction.
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Finally, it should be mentioned that with slight
modifications, the results here can be extended to
the case of a lossy medium, i.e., the case of complex
k. Also, much of the present discussion can be
adapted to more general cases involving a coaxial
feed; for example, the radii of the antenna and the
inner conductor of the coaxial line need not be the
same.

For helpful discussions, I am indebted to Professor
R. W. P. King, Mr. B. Rama Rao, and Dr. S. R.
Seshadri.
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