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An integral equation for t he eJect ri c fi eld in a continuously strati fi ed ion ize ci med ium 
is d eri ved ; t hi s is t hen manipulated to yield equations for t he refl ect ion and tran s mi ssion 
coeffi cients, at t he same t ime being s usceptible to p h ysical in terpretat ion . The equat ions 
are solved b y s uccessive approximat ion s, t he first term s being Fre~ne l -type coeffi cients. 
Var io us appli cations of the r esults are disc ussed . 

1. Introduction 

In a r ecen t paper , W ai L [1962] has followed a n icl ea of Bl'ekhovs kikh II 960] a nd has ouLain eci 
approximate for111 s £or t he r eflect ion coeffLcien Ls or VLF a nd ELF radio waves when the 
ionosphere is no t sharply bounded. In Lhe isotropic case, Lhe lll eLhod is to obtain a first order 
nonlinear d ifferen tial equ ation for R (z), a funct ion of the h eigh t z t haL reduces to t he r eflection 
coefficient below t h e ioni zed layer. T his equation is solved b.v s uccess ive app roximations, 
Lhe fLrst approximation b eing the familiar Fl'esnell'efi ec Lio ll coeHicient. Neit her BrekllOvskikh 
in h is comprehensive text (p . 220) nor 'Wait discusses a ny phys ical in Lel'preLaLion of the cor
respondin g in tegral equaLion . H er e, we S llOW LhaL b y m eans o r a d ifl'erenL, yet ul LimaLely 
equiv alent, formulation of the problem , t he r es ul t in g equations ar e s uscep Lible to ph:ysical 
in terpreta tion . T h e t heory is applicable to all a ngles of incidence and to a nisotropi c iono
sph er es. T h e inLel'p retfLLion is made possible by t he recenL inves t iga tions of vVes LcoLL [1962<1 ] in 
wh ich h e h as derived various exp ress ions y ield ing t he effect or p a rtic ular region s of (h e 
ionosph ere on Lbe r efl ected wave . 

2 . Isotropic Model 

Vertical prOpltglttion in an isotropic ionosphcre , j nclud ing Lh e efrecL of Lh e coll is ion fr e
quc ncy, is govcrn ed by th e diifercn tilll equaLio ll 

wh ere the z-axis is vertical , E denotes a particuln,r horizontfLlly polarized compon en t of th e 
electr ic fi eld , k= w/c the time j'fLctor eiw t being suppressed , ./~= Ne2/tomw2, and Z = v/w. W e shall 
write l -X/(l -?Z )= n2 , wh er e n is th e refrac t ive index . 

W e consider th e following configuration for the ion ized m edium. For z<a t her e exisLs 
free space for which n= 1 ; 1'01' z> b t here exists homogen eous medium ex tending to infini ty 
for which ./y =./ ~j , Z = Z" n = n j. For a<z<b t he properties or the medi llm ar e functions of z, 
varying from n= 1 to n= nj . 

Let r deno te l1,n in termediate lleigh t in th e range a::;r::;b. W e mul tiply the equation 

(1 ) 

by e-ikn j (Z- , ) and in Legntte from r to b. To this, we add th e result obt},in ed by multiplying 
by eik( Z- , ) and i n tegnt t ing from a to r. We have, upon in tegrating by p ar ts t wice in succession, 

6S 



l bE " e- ikn j (z-ll dz= E' e- ikn j (z- r) I: + i kn jlbE' e- iknj (z-Il dz 

= (E' +iknjE) e- ikn j (z-r) I: -Fni i bE e-ikn j (z- Il dz . (2) 

Similarly, 

(3) 

W"e now consider a wave incident below the ionosphere. \iVe therefore restrict ourselves 
to tha t solu tion of (1) for which 

z= O being the phase-reference level Jor both coefficients Rand T. Th en 

and 

The sum of the two integrals (2) and (3) is now given by 

H enco, when the final term in eq (1) is taken in to account, we ob tain 

ik (1+ nj)EW - 2ike -ikr +F rr (1-n2)Ee ik(Z-lld z +F e (nI-n2)Ee-iknj(z - ll dz= 0, 
.Ja .J r 

(4) 

This constitutes a suitable in tegral equation for the field at any point .I in the medium ; 
the integration process is extended over those portions of the ionized medium where the re
fractive index differs from unity or from n t . In particular, if free space exists above Z= b 
(that is, if n j = 1), the in tegral equation becomes 

It should be pointed out that the right-hand sides of both eqs (4) and (5) are independent 
of a, provided that a is any point in t he free space below the ionized region. 

3. Reflection and Transmission Formulae 

In eq (4), let .\= a, in which case 

66 



Then 

reducing t.o 

( 6) 

In particular, if nj= 1 (that is, if Xj= O), this reduces to 

1 . [b X ' . R=2 tk 1- ·Z E( z)e - 'k-dz . 
• a t 

(7) 

It is obvious that the limits may be replaced by - 00 and + 00 respectively, since the integrand 
vanishes in these extended regions. 

Similarly, we place 1;= b in eq (4), in which case 

Hence, 

reducing to 

(8) 

If free space exists above z = b, this result simplifi es to 

T= l +~ ilc .f13z E(z )eikZdz . (9) 

It should be pointed out that results (6), (7), (8), and (9) are independent of a and b provided 
that a and b lie in the respective homogeneous regions below and above the ionized medium. 

4 . Varying Region Extending to Infinity 

If there exists no homogeneous medium. of refractive index nl above z= b, then the varying 
medium will extend to infinity. In particular, the medium becomes infinitely overdense 
there if X --'7 OO as Z --'7 OO. Under these circumstances, we multiply eq (1) by eik (z-n and in
tegrate from a to I; as before, but now we multiply eq (1) by e- ik(Z-n and integrate from I; to 
ex:>. The same analysis as before leads to the consideration of 

(E' + ilcE) e- ik(z-n 100 • 

It should be observed that this factor does not converge at the upper limit if a homogeneous 
m edium extends to infinity . It was for this reason that previously we employed the factor 
e-ikn1(z- n to secure a result that vanished when 8= b. For convergence in the present case, 
we r equire E' +ikE--'70 as Z--'7 OO . This limit certainly exists if the region becom es infinitely 
overdense, since the allowed W.K.B.J. solut ion for E then becomes exponentially small in 
magni tude as Z--'7 OO. We obtain the result 

E(!;) = e - ikl +~ ik ( I ~ E(z)eik ( Z-lldz+~ ik ( OO ~ E(z)e-ik (Z- lld z . 
2 .J a 1 - tZ 2 .J 1 1- tZ 
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We could have multiplied by e-ikn1 (z-n in the second integral, where nl is arbitrary (Rlnl> 0), 
but this would have been an irrelevant procedure in this case since nl would have no definite 
meaning in the ionized medium. 

The formula for R becomes 

R _1 'k ( '" X E() - ikZd -2 ~ J a 1-iZ z e z , 

where a occurs below the ionization. No formula for T exists in this case. 

5. Physical Interpretation 

There are three distinct contributions to the field Em in eq (4). These are: 
(i) 2e- ikr/ (1 + nl); 

(ii) elements of the form 1 tnl . 1 ~iz E (z) ozeik(Z- r) originating below the height L 

(10) 

(iii) elements of the form 1 tnl C 3Z-1 ~z) E (z) oze- ikn1 (Z- rJ originating above the 

height \. 
The vector sum of all these waves yields the total electric field at the height r. (i) is a 

kind of transmitted wave complete with the appropriate Fresnel transmission coefficient. 
(ii) represents a plane wave propagated vertically upwards as in free space (according to the 
factor e- ikr), originating from the elementary layer of thickness oZ situated at z<5' All such 
layers below 5" yield waves of similar forms. (iii) represents a plane wave propagated vertically 
downwards as in a homogeneous medium of refractive index nl (according to the factor e iknll) , 

originating from the elementary layer of thickness oZ situated at z> 5". All such layers above 
5" yield waves of similar forms. 

The work of Westcott [1962a] shows that this is the correct interpretation of the elements 
involved. Each individual layer of thickness oz in an ionized medium gives rise to reradiated 
waves, their originating strength depending on the exact value of the electric field within the 
lay er oz. In Westcott's series of papers he considered these reradiated waves as propagated 
in free space, thereby excluding the possibility of a homogeneous medium existing above z= b 
of refractive index other than unity. His formulae would not converge if such a medium 
existed there. We have modified the theory to allow for this, at the same time providing 
the reflection and transmission formulae derived in section 3. It should be observed that 
our method has not proved the interpretation placed upon the elements involved; to accomplish 
this would require the more elaborate analysis of Westcott, considering from first principles 
the Hertz vectors involved in the reradiation processes. 

6. Approximation Methods 

In order to calculate the reflection coefficient (6), it is necessary to know E(z) throughout 
the medium beforehand. If E(z) were known, R would also be known, implying that there 
would be no need to evaluate R from formula (6), which after all is but an identity. But an 
iterative method of solution may be adopted, using approximate solutions derived from eq (4). 

A series of approximations may form ally be written down based on successive substitution 
into eq (4). We write 

E () -~ (l~ E () ik(z-rJd +~ (b(~_~)E () -iknl (z- rJl 
n 5" -l + nl J a 1- iZ n-I Z e z l + nl J r 1- iZ 1- iZI n- l Z e G z. 
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Now 

and if throughout the range a to b 

then 

It follows that the series for E converges rapidly provided 

that is, provided the layer is sufficiently thin reb-a) small enough] 01' provided M is small 
enough (the ionization density small throughout). 

If frce space exists above z= b, the formulae simplify. The successive approximations are 

E ( )_1 · 1 r r X E () ik(z- rJ l +1 ·1 f~ .X E () - ikl' - rld 
in t - 2 UC J a l -iZ " n _ 1 Z e GZ 2~/C r l -iZ f n _ 1 Z e Z 

=~ ik.r 1 ~Z E n - 1 (z) e-iklz-rldz . 

If M denotes the maximum of X I I l -iZ I, the series convcrges rapidly if 

HkM(b- a) « 1. 

If X contains a smaIl constant multiplier a, evidently this process yields E (t) as a power-series 
cxpansion in powers of a, since E n(l) cx an. 

The meaning of the individual tcrms in the scries becomes clear. E1(1) rcprcsents the 
reradiated field if the cause of thc rcradiation process at each level is given by Eo(t) and not 
E (t ) . Similarly, E 2 (t ) represents thc rcradiated field due to the field El Ct) only acting on the 
free electrons, and so on. 

Substituting the successive terms of ECt) into eq (6) for B , we obtain the corrcsponding 
scrics for B. The first two terms of (6) become 

If nl= l above z= b, this reduces to 

(11) 

from eq (7). Under these circumstances, eq (9) yields for the first term in T, 

This value of B arises from the contributions to the reflected wave produced by the incident 
fi eld e- ikz being regarded as the sole cause of the reradiation process at each level. It corre
sponds, in fact, to the use of the Born approximation. 

For this case, we have from eq (5), 
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yielding the second term in the series for R: 

R -! 'k (a X( z) -ikZ l.! 'k ( a X(t) -ikt -iklt-z i lt 
2-2'/, Ja l -iZ(z) e G Z 2'/, Ja l -iZ(t) e e G . 

With no collisions, we may write this development of R in the form 

If \ve place 
v=iE' /n1kE, 

then differentiation and the use of eq (1) show immediately that 

dv _ ik (2 2 2) -- - - n - nv dz nl I, 
where v= 1 when z>b and 

e-ikZ_ R eikZ 
v nl(e ikz+ ReikZ) 

when z<a. This is the equation derived by Wait [1962] and which was solved by successive 
approximations. The corresponding integral equation would be 

(13) 

no doub t simpler than our eq (5), but certainly less comprehensive in physical content. M ore
over, our eq (6) yields R directly as a series expansion, but Wait has shown how eq (13) may 
be solved approximately, yielding R as a series expansion only indirectly through the expansion 
of v. 

7. Examples 

As the first example, we may consider the model for which free space exists above and 
below the slab with bounding surfaces z= O and z= h; homogeneous medium exists in thp, slab 
such that n 2 = 1-X. It ma~- easily be shown that the reflection coefficient is given by 

. (n2- 1) (1 - e2iknh) 
R = (n+ 1) 2e2iknh_ (n - ] )2' 

In order to apply the second-order reflection formula (12), X is assumed to be small within 
the slab. EA,])anding R to the second order in X, we easily obtain 

R = iX(l- e -2ikh) + iX2(1- e -zikh-2ikhe -Zikh). (14) 

We may also use eq (12). Since X is constant throughout th e range of integration, we 
obtain 

These integrals are trivial to evaluate, the result without any approximation being equal to (14). 
Secondly, we may consider a symmetrical Epstein [1930] profile, tending to free-space 

conditions above and below the layer. Let 

ae~Z 

X = (e8z+ 1)2' 
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The work of Epstein (or of Budden [1961]) shows that the reflection coefficient has the value 

R = r(- 2ik/{3) r(N + 2ik/(3) r(1 - N +2ik/(3) 
r(2ik/{3)r(N)r(1 - N) , 

where N is given by N (N - 1) + k2a/{32= 0. Since a is assumed to be small , we take N = Pa/{32 
approximately, in order to calculate the first term in the development of R in terms of a. To 
this first order, we may neglect the N in the two gamma functions occurring in the numerator. 
J n the denominator 'we write 

r(N)r(l - N) = 7r/sin (7rN) ' . 1/N 

sin ce N is small. Tben to the first order 

R = r( - 2ik/(3) r (1 + 2ik/(3)N 

7rN 

{32 sinh (27rk/{3) 
(15) 

This result should also be recovered by the direct applicaLion of formu la (11 ). This yields 

This may be evaluated by considerin g the corresponding complex contour integral Laken 
around the rectangle with vertices (± L, 0), (± L , 2i7r/ (3) , the contour enclosing one double 
pole at z= i7r/{3. The result turns out to be identical with (15). 

8. Integral Identities 

The reflection formulae (7) and (10) ma~T be used to obtain certain interesting inflllite 
integrals, when the valu es of R, X , and E are known from other considerations. 

Our first illu stration involves the exact solut ion of a tractable model. Consider the 
exponential profile X =eaz/k2 with no collision frequency. The work of Budden [1961] shows 
that 

R r (- 2i lc/a) -4ikla 
r (2ilc/a) a , 

E (z)= H~\~/ a (2ieazI 2/a) . 
~ - i 7r lr(2ik/a)(ei7r /2/a)-2ikla 

Direct substitution into eq (10) and simplification yield 

Finally, let 
v= 2lc/a, t= 2eazI2/a, 

where v is real and positive and arg t = O along t he positive real axis. The integra.l reduces to 
the result containing the single parameter v: 

- V7r - lr (- iv)e7rvI221-iv= r oo tI -i. H g) (it)dt . 
.J o 

Our second illustration concerns an approxim ate solu tion of eq (1). Let n2 vary 
monotonically from 1 when Z= - ro to - ro when z = + ro, in such a way that E tends to the 
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form e-ikz+ Reikz for large negative z. Evidently n2 possesses a zero at some real value of z ; 
we shall suppose that this transition point occurs at the origin O. Provided that the value of 
kis lal\ge e'nough (that is, at the higher frequencies), many authors (see for example [Heading, 
1962, page 29]) have shown that an approximate solution for E along the whole real h eight 
axis is given by 

E =Cn- 1/2 C.f1Ulz} /6 Ai [G ei1r/2klzndzy /] (16) 

where Ai denotes the standard Airy integral and C is a constant. This result is a generalization 
of the simpler W.K.B.J. solutions 

n- I/ 2 exp ( ±ikiZndz} 

solutions that cease to be valid near the transition point z= O, and that require connection 
formulae to effect a suitable connection across z= O. Equation (16) , however, suffers from 
none of th ese disadvantages ; this solu tion if' valid even at the transition point. 

To be specific and consistent, let 

arg n = O 
arg n=-}f7r 
arg z= O 
arg Z= 7r 

for z<O, 
for z>O, 
for z> O, 
for z<' () . 

, Vhen z>O, we use the standard asymptotic expression 

Since n2 is negative, we must write n=e- i1r/2m, where m > 0; hence 

1 . (3 ) -1/6 (rZ ) "'ZC7r- 1/2 e'1r/6 Zk m - 1/2 exp -kjomclz, 

an exponentially evanescent solution as z-,;>co. This solution therefore satisfies the boundary 
condition there. 

J 

When z<O, let z=e i1r t, where t > O, yielding Ii' 

( f ' )1/6 [ (3 rr )2/3J =Cn-1/2ei1r/6 Jo ndt Ai - zkJo ndt . 

We now quote the standard asymptotic e)..rpression 

yielding 
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In order to introduce the incident and r eflec ted waves, we note that if rl is large and 
positive, then 

i f i f! i-z 
n(- r)dr= n(- r)dr+ dr, 

o 0 f I 

since n = l below Z= -Il' H ence 

rf r~ f oo Jo n(- g-) dg-=-Z- rl + Jo n(- r)dg-=- z+ Jo [n(- g-) - l]dg-, 

where the upper limit is replaced by DO since the integrand must vanish at t hese additional low 
heigh ts. It follows that as n -71, 

In order that the incident field should be or uni L amplitude, wc choose 

] . (3 ) - 1/6 (. r oo 1 .) ('- I = 2" 7r- 1 /2e '~/6 2 k csp ~kJ o [n (- r)- 1]dr-4 7r~ ' 

It follows t hat 

R= i esp ( - 2ik.Fo oo [n (- r) - I]d .\} 

X = 1- n2 , 

( rz )1/6 . [(3 . rz )J2/3 
/ n- 1/2 Jo nd z At 2 ei7r/2lcJ o ndz 

E 1 . (3) 1/6 ( . r oo 1 .)' 2" 7r- 1 / 2e' ~/ 6 2 'C exp ~IcJ o [n (- n - l]cl.\-4~ 

Final substit ution inLo cq (10) yields after cross multiplicaLion 

1 (3 ) - 1/6 (. r oo . ) 27r- 1/2e5irr/ 12 2lc exp - ~lcJ o [n( - g-)-- l ]dr 

1 . f oo . ( rz )116 . [(3 . rz )2/3J = 2 ~lc -00 O - n2)e-'kZn- 1/2 Jo ndz At 2 e' 7r /2IcJ o nd z dz. 

This formula embraces the buildup of the r eflection coefficient from every la:ver of a slowly 
varying medium of the type postulated. 

9 . Reflection and Transmission Formulae for Anisotropic Ionospheres 

The relevant equations leading to the analysis of this section are given, for examplo, by 
Budden [1961 , chapter III] . The differential equation for the electric fi eld E within an amso
tropic ionosphere is 

where the 3 X 3 susceptibility matrix M is given by 

r -U2+ l2P 

M"U(U~p) l -inYU+ lm p 

-imYU+ lnP 

inYU+ lmP 

-U2+m2p 

-ilYU+ mnP 
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Here, X, Y, Z are the usual dimensionless parameters describing the ionosphere, U= I-iZ, 
and - (l, m, n) are the direction cosines of the earth 's magnetic field . The vector ME is pro
portional to the electric polarization vector. 

I n evalu ating curl E, we choose the customary coordinate system in which ojox= -ik 
sin 0, o joy= O, and ojo z is replaced by a prime. In component form, eq (1 7) may be written as 

E~' +ik sin 8E;= - FEx- F(ME)x, "\ 

E~/- k2 sin2 8Ey= - 1c2Ey- k2(ME)y, l 
ik sin 8E~-k2 sin 8Ez= -FEz-F(ME)z. J 

(18) 

We now mult iply these three equations by e- ikz co s ° and integrate from a to b, namely 
over the whole height range in which ionization occurs, assuming free space for z>b and z<a. 
Noting that 

( bEll e-ikz cos 0clz= (E' +ik cos OE )e- ikZ cos 0lb - k2 cos2 8 ( bE e-ikZ cos 0dz, 
Ja a Ja 

we obtain from eq (18) 

(E~+ik cos 8Ey)e- ikZ cos 01" = -1c2 ( " (ME)ve- ikZ cos odz, 
a .J a 

(19) 

Multiplying the third of these equations by tan 8 and adding it to the first , we obtain the 
simpler equation 

(E;+ik SQC 8Ex+ ilc Sill 8Ez)e- ikZ cos 01" = -F ( b[(ME)x+ Lan 8(ME)z]e - ikZ cos °dz. (20) a Ja 
When the incident field is horizontally polarized, let 

for z<a and for z>b, 

.Ex= cos 8.LR neikZ cos 0, 

E y=e-ikZ cos 0+ .L R.LCikz co s 0, 

E z=sin 8 .L Rne ikz cos ° 

E x=cos 8.L T lle- ikZ cos 0, 

E y=.L T .Le- ikz cos 0, 

E z=-sin 8.L Tne-ikZ co s 0, 

the x- and t-factors b eing suppressed. 'iVhen the incident fi eld is vertically polarized, let 

for z<a and for z>b, 

E x= cos Oe- ikz cos o+cos 8nRneikZ cos 0, 

E y= II R J.eikz co s 0, 

E z=- sin 8e- ikz co s o+ sin 811H IICikZ co s ° 
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I 

Ex=cos 0UT ll e- ikZ cos 0, 

E y= II T 1-e- ikZ cos 0, 

E z=-sin 0Il T lle- ikZ cos 0. 

Forming an arbitrary linear combination of these two fields, we write 

E x= B cos Oe-,kz co s 0+ (A1- R u+ 13 II R u) cos 8e 'kz cos 0, } 

E y=A e-'kZ co s 0+ (A1-R .l. + 13 II H.de'kz co s 0, 

E z= - 13 sin 8e-,kz cos 0+ (A .l.R u+ B uR II) sin Oe,kz cos ° 
for z<a and for z>b, 

E x= (A 1-T II + 13II T II ) cos 8e- ikZ COB 0, I 
E y= (A.l.T .l. + B uT .l. )e- ikZ cos 0, ~ 
E z=- (A .l.T II+ B uT II ) sin 8e- ikZCOSO. J 

Equation (19) now r educes to 

- 2ile cos O(A .l.R .l. + 13nR .l.)=-lc21a (ME)ye - ikZ cos odz, 

while (20) takes the form 

- 2ilc (A 1-R II+ B II R II ) =-1c2.f[(ME)x+ tan 8(ME )z]e- ikZ COB adz. 

(21) 

(22) 

The physical interpretfltion of the e integrals at oblique incidence is demonstrated b y 
considerations given by Westcott, [1962 b, cJ a nd in further papers t o be published in this eries· 

In particular, if t he ionized layer is weak so that the fi eld in the medium may be r eplaced 
by the incident field as th e first approximation, we obtain 

A .l.R 1-+ 13II R .l. =-~ i lc sec 8 I" (1V12IB cos 8+1\1£22A -11123B sin 8) e- 2ikz cos odz, 

A.l.RII+ BII R II=-~ i lc I" (Mll B cos 0+ 1I1IzA -.M I3B sin 0+1\1£31 13 sin 8 

+ 1V13zA tan 8- M 33B tan 0 sin O)e-ZfkICOS adz. 
H ence, if Z is constan t, we obtain 

II R .l. =-~ i lc sec 0 ( b (1\1121 cos O- M 23 sin 8)e - 2ikZ cos 0dz 
~ .J a 

_~ ·le 0 (i11YU- lmY2) cos 0+ (i lYU+ mnY2) sin 0 ( by -2ik, cosod 
- 2 ~ sec U (U2_ Y2) Ja .Ll..e z, 

Rn= -.!. i le f a 01,([ ?+M tan 8)e - 2ikZ cOSOdz 
.L 2 J a I . 32 

_.!. . j (- inYU- lmY2)+ Lan 0(i lrU- mny2) ( " Y -2ik' COBO l 
- 2 ~/C U (U2 _ y 2) .L .L1. e G z, 

1IR II= -~ ileJ:b (l\111 cos 0- 11113 sin 0+1\131 sin 8- 1V133 tan 8 sin 8)e - 2ikZ cosodz 

_.!. . j U2 cos 20 sec 8- (l2 cos 0- 112 tan 8 sin 8) Y 2-2im sin oYU ( " Y - 2ikz COB 0d 
- 2 ~/C U(U2 _ Y 2) Ja .L1. e z. 
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Moreover, we easily deduce the formulae for the isotropic case with Y = Q at oblique incidence, 

R =~ ik sec eU- 1 { b X e - 2ikz cos adz 
1- 1- 2 Ja ' 

IIR II=~ ik cos 2e sec eU- li b X e-- 2 i kZ cos adz . 

The transmission coefficients may be found by multiplying eq (18) by eikz co s ° and inte
grating over the height range in which ionization occurs. We then multiply the third of the 
resulting equations by tan e and subtract it from the first, yielding 

(E~-ik cos eEy) eikz cos 0lb = _p { b (ME)ye -ikz cos 0dz , 
a Ja 

and 

I
I, { b 

(E~-ik sec eEx+ik sin eEz)eikZ cos a a = -P J a [(ME)x+ tan e(ME)zle ikZ cos °dz. 

Inserting the values (21) and (22) of the field above and below the range of ionization , 
we obtain 

1 { b 
A 1-T 1-+ B uT 1-= A -2 ik sec e J a (M E)ye i k Z cos ° dz, 

A1-Tu+BuTu=B-~ ik i b [(ME)x+ tan e(ME )z]eikZ cos adz . 

Finally, we deduce the values of the transmission coefficients to the first order, when the 
field throughout the medium is replaced by the incident field: 

II T1-= -~ ik sec e { b (Jl![21 cos e- lJ![23 sin e)dz, 
~ Ja 

1-Tu= -~ ikib (M 12 + tan eM32)cl z, 

II TD=l-~ ik { b (M1l cos e-1\113 sin e+ M 31 sin (J - )YI33 tan (J sin e)dz . . L 
In the isotropic case, these formulae reduce to 

1-T 1-= 1 +~ ik sec (JU- lib Xd z, 

u TlI= l +~ ik cos 2(J sec eU- 1i b Xdz. 

10. Comparison of the Two Methods 

We should conclude with a note on the difference between the results of Wait [1962] and 
of the method presented in this paper. Considering the isotropic model at vertical incidence, 
the first-order reflection coefficient produced here is given by (11), namely 

(23) 

for zero collision frequency. On the other hand, the first approximation to the solution of 
the integral eq (13) is obtained by taking V= 1, yielding 

76 
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I 

.1 c, 



Hence, when t=a, 

or 

(24) 

when the left hand side is expanded by the binomial since IRI is small . 
It is obvious that this result is only valid for a thin layer, in which case the phase factor 

e- 2 i kz in the integrand of (23) is replaced by e- 2 i ka • H ence, for the homogeneous slab discussed 
in section 7, eq (24) yields (when a= O, b= h) , 

R=~ ik Soh Xdz=~ ikhX. 

The exact first term (14) reduces to t his only when kh is small. On the other hand, it should 
be pointed out that 'IVait's expiLnsion for the homogeneous slab is or a different kind, valid 
when Ikhyl(l - X) I« l. 
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