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An integral equation for the electric field in a continuously stratified ionized medium
is derived; this is then manipulated to yield equations for the reflection and transmission
coefficients, at the same time being susceptible to physical interpretation. The equations
are solved by successive approximations, the first terms being Fresnel-type coeflicients.
Various applications of the results are discussed.

1. Introduction

In arecent paper, Wait [1962] has followed an idea of Brekhovskikh [1960] and has obtained
approximate forms for the reflection coefficients of VLEF and ELEF radio waves when the
ionosphere is not sharply bounded. In the isotropic case, the method is to obtain a first order
nonlinear differential equation for R(z), a function of the height z that reduces to the reflection
coefficient below the ionized layer. This equation is solved by successive approximations,
the first approximation being the familiar Fresnel reflection coefficient. Neither Brekhovskikh
in his comprehensive text (p. 220) nor Wait discusses any physical interpretation of the cor-
responding integral equation. Here, we show that by means of a different, yet ultimately
equivalent, formulation of the problem, the resulting equations are susceptible to physical
interpretation. The theory is applicable to all angles of incidence and to anisotropic iono-
spheres. The interpretation is made possible by the recent investigations of Westcott [1962a] in
which he has derived various expressions yielding the effect of particular regions of the
ionosphere on the reflected wave.

2. Isotropic Model

Vertical propagation in an isotropic ionosphere, including the effect of the collision fre-
quency, is governed by the differential equation

&E , ,, X Ny

where the z-axis is vertical, /£ denotes a particular horizontally polarized component of the
electric field, k= w/e the time factor ¢*¢* being suppressed, N=Neé?/eme?, and Z=v/w. We shall
write 1—X/(1—iZ)=n* where n is the refractive index.

We consider the following configuration for the ionized medium. For z<a there exists
free space for which n=1; for z>b there exists homogeneous medium extending to infinity
for which X=X, Z=7,, n=n,. For a<z<b the properties of the medium are functions of z,
varying from n=1 to n=mn,.

Let ¢ denote an intermediate height in the range a <¢<b. We multiply the equation

E" +kntE=0 1)

by e~ "@=9 and integrate from ¢ to 6. To this, we add the result obtained by multiplying
by ¢*¢=9 and integrating from @ to . We have, upon integrating by parts twice in succession,
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b b b
fE/le-—ikn,l(z—f)(]z:Ele—ikn,l&z—f) +ikn1f B e ikn1 (=0 g
JE ¢ ¢

b b
= (B’ +ikn E) e~ "0 'r—k%%fr Fe=#mGE=ddz  (2)

Similarly,
¢ ) . ) ¢ § .
E"e*C0z=(E'—ikE)e* 9| —f2 | Ee*0(z, (3)
a la a
We now consider a wave incident below the ionosphere. We therefore restrict ourselves
to that solution of (1) for which

E=e¢= "L Re'* (z<a),
E:Te—iknlz (221)),
z=0 being the phase-reference level for both coefficients /£ and 7. Then

(E'+ikn E)e~#m@=0|"=0,
and
(E'—ikE) e*=0| = (—ike~**+ikRe™—ike~ " —ikRe"™) ¢ @0
=—2ike s,

The sum of the two integrals (2) and (3) is now given by
s b
f B ez 4 f B e knie=0d
Ja J§

: $ . 4 )
:—iklﬂ'(g“)—iknlE(g“)+2’ike‘”¢—k2f Ee‘k‘z‘f’(lz—/ﬁn?f Eem#*mGE=0dz,
Hence, when the final term in eq (1) is taken into account, we obtain

¢ 3
ﬂc(l+n1)E(g‘)—2ik6‘“f+k2f (1—n?)Ee™*=0dz +lc2f M—n)Ee~ %M=D dz=
a JE

reducing to

2 — ik 7k - X [ ik(z— B
F(f)ﬁ_mﬁ §+1+721 Jo1—1Z A +1+n1 [ <

—lAn =82
1—iZ 1—121) E(z)e* Mm% Pde.

4)

This constitutes a suitable integral equation for the field at any point ¢ in the medium;

the integration process is extended over those portions of the ionized medium where the re-

fractive index differs from unity or from n,. In particular, if free space exists above z=¥b
(that is, if n,=1), the integral equation becomes

E({)Ae‘”f—l—— zk[ F( )e E0dz —l—»— zlcf E(z)e‘“”‘“ds. (5)

It should be pointed out that the right-hand sides of both eqs (4) and (5) are independent
of a, provided that a is any point in the free space below the ionized region.

3. Reflection and Transmission Formulae

In eq (4), let {=a, in which case
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18 Q== i,
Then
) o 2 . 2k v X
—ika v, ika_ _ ,—ika —ikny(z—a)
¢ 198 1+m, ¢ 1+4n, J; <l—iZ l—zZ > Bl

reducing to

]_ ~21ka 71k(1 n)af ( > —1iknyz,
k= 1+n1 +1—}—n1 ' 1—iZ 1—zZ E(z)e rdz. (6)

In particular, if n,=1 (that is, if X;=0), this reduces to
@kf E’(z)e‘“"d@’ @)

It is obvious that the limits may be replaced by — o and -+ = respectively, since the integrand
vanishes in these extended regions.
Similarly, we place =0 in eq (4), in which case

E(p)=1T¢ %

Hence,
. 2 ” ik vX
7‘ —iknb , — Tk ik(z—0b)
¢ 1+n, ¢ 141 Ja 7 E(z)e G

reducing to

]7: 2 e—m(l nl)b+ —ik(l—nl)b I‘b, Y ]J( )elkz dz (8)

1-4+n; l+n, 1—Z '
If free space exists above z=0, this result simplifies to
= l—l— -k f - ]’ (2)e™dz. %)

It should be pointed out that results (6), (7), (8), and (9) are independent of ¢ and b provided
that ¢ and b lie in the respective homogeneous regions below and above the ionized medium.

4. Varying Region Extending to Infinity

If there exists no homogeneous medium of refractive index n; above z=b, then the varying
medium will extend to infinity. In particular, the medium becomes infinitely overdense
there if X-—>o as z—>o. Under these circumstances, we multiply eq (1) by ¢%*“=9 and in-
tegrate from @ to ¢ as before, but now we multiply eq (1) by ¢~ #*¢=% and integrate from ¢ to
@, The same analysis as before leads to the consideration of

(E' +ikE)e~ #E0|=,

Tt should be observed that this factor does not converge at the upper limit if a homogeneous
medium extends to infinity. Tt was for this reason that previously we employed the factor
¢~ G0 (o secure a result that vanished when z=b. For convergence in the present case,
we require K’ +ikE—0 as z—o. This limit certainly exists if the region becomes infinitely
overdense, since the allowed W.K.B.J. solution for /£ then becomes exponentially small in
magnitude as z—>. We obtain the result

T(()—e"’“f—i—A?kf F( 2) =0z S @kf X E(a)e’”‘“ Odz.
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We could have multiplied by e~ #™1%=9 in the second integral, where n; is arbitrary (Rin,> 0),
but this would have been an irrelevant procedure in this case since n; would have no definite
meaning in the ionized medium.

The formula for R becomes

_]' y © X —1ikz/] o
R—§ %kﬁ mE(Z)e da, (10)
where a occurs below the ionization. No formula for 7 exists in this case.

5. Physical Interpretation

There are three distinet contributions to the field /£(¢) in eq (4). These are:
1) 2¢~M/(14mn);

(ii) elements of the form Xl

1_? T— F(?) 6ze™ ==Y originating below the height ¢;
l

(ii1) elements of the form 1+ (

height ¢.

The vector sum of all these waves yields the total electric field at the height ¢. (i) is a
kind of transmitted wave complete with the appropriate Fresnel transmission coefficient.
(i) represents a plane wave propagated vertically upwards as in free space (according to the
factor ¢~ ™) originating from the elementary layer of thickness 6z situated at z<¢.  All such
layers below ¢ yield waves of similar forms. (iii) represents a plane wave propagated vertically
downwards as in a homogeneous medium of refractive index n; (according to the factor ¢*mf),
originating from the elementary layer of thickness éz situated at z>>¢.  All such layers above
¢ yield waves of similar forms.

The work of Westcott [1962a] shows that this is the correct interpretation of the elements
involved. Kach individual layer of thickness 6z in an ionized medium gives rise to reradiated
waves, their originating strength depending on the exact value of the electric field within the
layer 6z. In Westcott’s series of papers he considered these reradiated waves as propagated
in free space, thereby excluding the possibility of a homogeneous medium existing above z=b
of refractive index other than unity. His formulae would not converge if such a medium
existed there. We have modified the theory to allow for this, at the same time providing
the reflection and transmission formulae derived in section 3. It should be observed that
our method has not proved the interpretation placed upon the elements involved ; to accomplish
this would require the more elaborate analysis of Westcott, considering from first principles
the Hertz vectors involved in the reradiation processes.

—tkny(z—{) T \
7 1—zZ1> E(z)éze originating above the

6. Approximation Methods

In order to calculate the reflection coeflicient (6), it is necessary to know £(z) throughout
the medium beforehand. TIf E(z) were known, R would also be known, implying that there
would be no need to evaluate R from formula (6), which after all is but an identity. But an
iterative method of solution may be adopted, using approximate solutions derived from eq (4).

A series of approximations may formally be written down based on successive substitution
into eq (4). We write

_ ik ¢ 1‘( (2) =D+ f ( )E (2) e~ #m=0d 5,
e = Bt 1+n1 A l—zZ ol




Now

and if throughout the range @ to b

max I:l

1 —ikny(z=3) | |—=A,
1—2/ 1—@/1> e ‘:I M,

then
2kM(b—a) i
|En(§')l<—lm— max |E,_,(2)|.
It follows that the series for £ converges rapidly provided
2kM(b—a)

[14n| Y

that is, provided the layer is sufficiently thin [(b—a) small enough] or provided M is small
enough (the ionization density small throughout).
If free space exists above z=b, the formulae simplify. The successive approximations are

Eo(§)=e™™,

F?I(g_) ?/kf 1 I;n 1( )EMUAIJ(] + ’ka ]Jn l< )6 ik(z— g'd,,

1. X -
== —— E,_(2)e*=%ldz.
: qkﬁ e By (e el
If M denotes the maximum of X/|1—iZ|, the series converges rapidly if
BhkM(b—a) 1.

If X" contains a small constant multiplier «, evidently this process yields (¢) as a power-series
expansion in powers of a, since /£, () oca™

The meaning of the individual terms in the series becomes clear. 72,(¢) represents the
reradiated field if the cause of the reradiation process at each level is given by £,(¢) and not
E(¢). Similarly, £,(¢) represents the reradiated field due to the field %;(¢) only acting on the
free electrons, and so on.

Substituting the successive terms of /() into eq (6) for 12, we obtain the corresponding
series for /2.  The first two terms of (6) become

1= o 2ik o i1 ,“af< X, ) — k(2]
T4 & {m)? 1 1—iZ 1=iz) ¢ i

If n,=1 above z=b, this reduces to

R—

i g
T

o2k (11)

1_

from eq (7). Under these circumstances, eq (9) yields for the first term in 7,

I'= 1-{—‘) zkf (L

This value of R arises from the contributions to the reflected wave produced by the incident
field ¢~ 2 being regarded as the sole cause of the reradiation process at each level. Tt corre-
sponds, in fact, to the use of the Born approximation.

For this case, we have from eq (5),
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E((‘)** Zkf ot —-ikze—ik|z—g‘[d2’

yielding the second term in the series for £:

_._1_ /5 X(2> —1k i I‘ ‘Y 7ik —ik|t—z]|
Ifg—z Q]tf 1__170) [4' ik Z(t) ‘e dt.

With no collisions, we may write this development of /2 in the form

b b “ b
R=Ri+Ry=r ik f Xo-trdz—1 12 f X(z)dz[e—zikz f X(t)dt+ f X(t)e"""“dt]- (12)

If we place

v=1'nkE,

then differentiation and the use of eq (1) show immediately that

dv ik
— 2 2,42
—=—— (n?—n
dz n ( %),
where »=1 when z>b and
—Re™?
Mnl(g——ikz_%_]{eikz)

when z<Za. This is the equation derived by Wait [1962] and which was solved by successive
approximations. The corresponding integral equation would be

P R
i‘(s“)—l-{—,nfl r('”b —niv’)dz, (13)

no doubt simpler than our eq (5), but certainly less comprehensive in physical content. More-
over, our eq (6) yields R directly as a series expansion, but Wait has shown how eq (13) may
be solved approximately, yielding R as a series expansion only indirectly through the expansion
of ».

7. Examples

As the first example, we may consider the model for which free space exists above and
below the slab with bounding surfaces z=0 and z=/h; homogeneous medium exists in the slab
such that n°=1—X. It may easily be shown that the reflection coefficient is given by

(n2_1> (1 2iknh)

Jif= (n_+_]>2 J2iknh__ (n_]>z'

In order to apply the second-order reflection formula (12), X is assumed to be small within
the slab. Expanding R to the second order in X, we easily obtain

R=1X(1— 2" 41 X?(1— 2" —2ihe~2M). (14)

We may also use eq (12). Since X is constant throughout the range of integration, we

obtain
1 ) h X 1 h ) z h )
R== szf e ¥k —= kZXzf dz I:e‘Q””f dt+ f e‘”“dzf:l-
2 JO 4 Jo JO Jz

These integrals are trivial to evaluate, the result without any approximation being equal to (14).
Secondly, we may consider a symmetrical Epstein [1930] profile, tending to free-space
conditions above and below the layer. Let

_ e
T (e +1)?
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The work of Epstein (or of Budden [1961]) shows that the reflection coeflicient has the value

I (—2ik/B) T (N +2k/B) T (1— N"{"‘Z?IL/B)

E= T @ikB T (V)T (1—N)

where N is given by N(N—1)-+k%/p?=0. Since ais assumed to be small, we take N=Fk«/s*
approximately, in order to calculate the first term in the development of 2 in terms of a. To
this first order, we may neglect the N in the two gamma functions occurring in the numerator.
In the denominator we write

I'(N)T(1—N)=a/sin (#N)=1/N
since N is small. Then to the first order
R=T1(—2ik/B) T (1+2ik/8) N

.\
sin (2i7k/B)

wialk?

ﬂ2 sinh (24 ()ﬂ'/t/ﬂ) (15)

This result should also be recovered by the direct application of formula (11). This yields

__* }ka [‘m eﬁ:()/‘zikz(]s.
i . @)

This may be evaluated by considering the corresponding complex contour integral taken
around the rectangle with vertices (+L, 0), (&L, 2ix/B), the contour enclosing one double
pole at z=ix/B. The result turns out to be identical with (15).

8. Integral Identities

The reflection formulae (7) and (10) may be used to obtain certain interesting infinite
integrals, when the values of 2, X, and £ are known from other considerations.

Our first illustration involves the exact solution of a tractable model. Consider the
exponential profile XN'=¢**/k* with no collision frequency. The work of Budden [1961] shows
that

n— I'(— 92](/01) ik
T (2ik/a) ’

HY o Qie=e)
— i T 2ikfa) (¢ /o)

)=
Direct substitution into eq (10) and simplification yield

—2kn T (—2ik/c) a“"“”“e””“:f ee"HG, o (212 a)dz.

Finally, let
v=2k/a, t=2¢°%*/%/c,

where » is real and positive and arg =0 along the positive real axis. The integral reduces to
the result containing the single parameter »:

T (— i) e/t f 11-iv IO (it) L.
JO

Our second illustration concerns an approximate solution of eq (1). Tet n* vary
monotonically from 1 when z=—o to —» when z=-+®, in such a way that Z tends to the
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form e~ %2 Re'™ for large negative z. Kvidently n” possesses a zero at some real value of z;
we shall suppose that this transition point occurs at the origin 0. Provided that the value of
k is large enough (that is, at the higher frequencies), many authors (see for example [Heading,
1962, page 29]) have shown that an approximate solution for £ along the whole real height

axis is given by
7 z 1/6 G z 2/3
F:(‘n““(f 7z(lz> Ai [(g e“”"’k[ ndz) ], (16)
JO JO

where Ai denotes the standard Airy integral and ('is a constant. This result is a generalization

of the simpler W.K.B.J. solutions
n~Y% exp (iik[zmlz)
0

solutions that cease to be valid near the transition point z=0, and that require connection
formulae to effect a suitable connection across z=0. Equation (16), however, suffers from
none of these disadvantages; this solution is valid even at the transition point.

To be specific and consistent, let

arg n=0 for 2<0,
arg n=—Y%r for z>0,
arg z=0 for z >0,
arg z=m for z<0.

When z>0, we use the standard asymptotic expression
Al (x) ~Fm~ V2 14 exp (—2a%?).

Since n” is negative, we must write n=e¢~ ™*m, where m >0; hence

z 1/6 z 2/3
E=_Cet4ym~1/2 ([ e’””mde) Ai |:<§ k f mdz) :I
Jo 2" Jo
~ Cr—12¢txl6 <E k>_l/ﬁm‘”2 exp <-—k Z'm(l?)
2 2 . 0 -

an exponentially evanescent solution as z—e. This solution therefore satisfies the boundary
condition there.
When 2<0, let z=¢"¢, where {0, vielding

(NS T3 (T L\
[B=Cl 7 (e“'f na’g‘> Al [(5 e“’“kf ne“’dg‘) ]
0 ~ JO
. ¢ 6 3 ¢ 2/3
:Cn‘l/ze”/"(f ndf) Ai [-—<~kfnd§‘> :I
0 2 0

We now quote the standard asymptotic expression
Al (—x) ~a~ V214 cos (2032 —tm) =37 Y2~ V4 [exp (322%2—%70)+1 exp (—2Z1a%2—1mi)],

yielding

E~COn=2¢tx/6 (f mig‘)w - Y2 <; lcf%ulg‘)_m
< 0
Xl:e\p (Ucf n(—Odi—= m)-l—z exp <"‘2]Lf odi—-— m):l

—gw e Cets (1) exp (. )+ exp (- )]
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In order to introduce the incident and reflected waves, we note that if ¢ is large and

positive, then
¢ ¢ —z
[n=ods= [Mu—pds+ [,
0 JO . (1

since n=1 below z=—¢,. Hence

¢ £1 =
f n(—)di=—2— {14 f n(—f>(zf:—z+fo (— ) —11ds,

where the upper limit is replaced by = since the integrand must vanish at these additional low
heights. Tt follows that as n—1,

1 & =L - : “ (A
E~§ T 2CealS <§ k) l:e"”’" exp (1!5[ [n(—¢)—1]d¢§—- 7rl>
Jo &

+1e™ exp <~ik [m [n(—¢)— 1]([(—% 7ri>:|-

In order that the incident field should be of unit amplitude, we choose

("1-—] ~172,in/6 (O " —He i e [ 1.
=g m e <2 exp '1,'. , [n(— ) —1]c ;_E T
It follows that

R—i exp (*Q'ik f ) [n(—g)—l]d;),
JO

X=1—n?

2z 1/6 X 3 . z 2/3
n-Y2 < f m/z) Al I:(f eta/2 [ 71.(Z,3>]
14:__77 N J 0 2 JO e o

#l Tt <j k)ﬂlﬁo\'p (ik fm [/1(—7(“)*1[(145“:1 7ri>.
2 2" ’ ‘), M 4

Final substitution into eq (10) yields after cross multiplication

Do

G —1/6 ©
Sruseser (2) 7 exp (~7',k () 11d¢ )

i © ) Z 1/6 . 3 . 2 2/3
ik f (1—mn?)e~ep 12 (f ')L([2> Al |:<— e“‘/'-’kf nd;) :I(lz.
e 0 2 Jo

This formula embraces the buildup of the reflection coeflicient from every layer of a slowly
varying medium of the type postulated.

Lylli— =

9. Reflection and Transmission Formulae for Anisotropic Ionospheres

The relevant equations leading to the analysis of this section are given, for example, by
Budden [1961, chapter ITI]. The differential equation for the electric field E within an aniso-

tropic ionosphere is
curl curl E=FE+E*ME, (17)

where the 33 susceptibility matrix M is given by

X

— U2 nYU+ImY?  im¥YU+n YZ]
Memr— 3 L—mYUHmY‘Z —UmY? dAYUAmnY? |

—mYU+InY? —idYU+mnY? ——Uﬁr‘fn?)"2
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Here, X, Y, Z are the usual dimensionless parameters describing the ionosphere, U=1—17,
and — ([, m, n) are the direction cosines of the earth’s magnetic field. The vector ME is pro-
portional to the electric polarization vector.

In evaluating curl E, we choose the customary coordinate system in which 0/0r= —ik
sin 6, 0/0y=0, and 0/dz is replaced by a prime. In component form,eq (17) may be written ag

B +ik sin 0E,= —k*E,—k*(ME),, 3
E)—Fk? sin? 0E,= —k*E,—E*(ME),, (18)
ik sin 0E,—k* sin 05 ,= —k’E,—k*(ME)..

We now multiply these three equations by e~*2 ¢°5¢ and integrate from « to b, namely
over the whole height range in which ionization occurs, assuming free space for z>b and z<Za.
Noting that

la

b b b
[ E/e—ikz cos a,lzzEe—ikz cos 01 _l_?/k. Cos ef Eefikz cos Gdz,
Ja a

b
[ B otz 08 84z— (F' +ik cos 9E)e™ % ©03 9
Ja

b b
__k.Z 0082 0[ Ee—zlcz cos 9d2,
a Ja

we obtain from eq (18)

b

(E.+ ik cos 01,41k sin 0F,) ¢~ = cos 6

b
=—k2f [sin? 0/, + (ME),—sin 6 cos 0/ ,]e ™™= ¢ ¥z,

a

. ) . |h b )
(E,+k cos 0F,) e~z cos ¢ =—k2f (ME) ¢ %= cos 6 > (19)
la Ja

ik sin §F ¢~ = cos 6

a

b b
:—sz [cos? 01, —sin 6 cos OF,+ (ME) ] =%z cos 6
Ja

Multiplying the third of these equations by tan 8 and adding it to the first, we obtain the
simpler equation

(B +1ik sec 0F,+ik sin 0F,) e~ %= cos 8

b b
:—sz [(ME),+tan 6(ME) ]e %= cos 6z, (20)

When the incident field is horizontally polarized, let

E,=cos 0, Rje®*= ¢°% ¢
Ey:(g—ikz cos 9+LRL(3 ikz cos 9’
E,=sin 0, Rje? cos ¢
for z<a and for z>b,
EI:COS 0, TH(:_ikz ¢oB 0,
Ey:J—T_Le—ikz cos 0’
B,=—sin 6, Tje=%*= ¢80,
the - and t-factors being suppressed. When the incident field is vertically polarized, let
= C0S fe= %2 €08 04 cog g R)eth= co8 ¢
Ey= R e™ o3¢,

[,— —sin e~ = c0s 04 gin g R)e > cos ¢

for z<a and for z>b,
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E,=cos 6, Te %= co# 6,
eIl e B G
E,=—sin g Tje~*= co8 ¢,
Forming an arbitrary linear combination of these two fields, we write

E,=B cos ge~ "= o8 0 (A, R+ BR)) cos fet*= o8 ¢,

S8 = A\ O O (AL TR SRTB/ R e 08 € (21)

E,=—B sin ge~ %= c°s 0L (A4 R+ B|R)) sin e cos ¢

for z<a and for z>b,

Ex: (A—LT”_{_BHTH) Ccos ae—ikz CcOo8 97
(22)

. Ey:(AJ_TJ__i_BHT_L)efikzcose’
| E,—=— <‘/1—LT§E+]3HTH) gin Qe —ikzcos b J

Equation (19) now reduces to

b
—24k cos 0(A R, +BiR)=—Fk [ (ME), ¢~z cos6q

while (20) takes the form
—2k(AL R+ BiR)=—k f [(ME),+tan 0(ME) Je~ i o5 0z,

The physical interpretation of these integrals at oblique incidence is demonstrated by
considerations given by Westcott, [1962 b, ¢] and in further papers to be published in this series-

In particular, if the ionized layer is weak so that the field in the medium may be replaced
by the incident field as the first approximation, we obtain

b
AR, + Bulfl:—;l)» ik sec 0[ (My B cos 0+MyA—DM,3 B sin 6) e ~2%2 08 0g 2

/1_LRH”WL‘])).1Z“:—— @kf (M B cos 0-+M;A—M 3B sin 6-+M, B sin 6

+MsA tan §—Ms; B tan 6 sin 6) e #2086z,
Hence, if Z is constant, we obtain

b . 2y 2 b
LRLZ—%— ik sec 0[ Mg~ 21kz co8 "(Zz:il2 ik’sec 0 ([]/@Qm I):Z} [ Xeg=2tke cos bl

1. g . )
HRL=—5 1k sec Bf (M cos —M,3 sin 6) ¢ =208 62

(m) U—1mY?) cos 0+ (Y U+mnY?) sin 0 ("'« _izeoss
S E) Ae dz,

i
=5 ik sec
1 o (P .
LRH:_§ 'l/kf (M12+M32 tan 0)6-2”\‘2 (L 9(12

. T__ Z2 T mnV2) (P )
:;15 o (YU Zm)@iﬁfztjr;’?)(ll“ mn} )[ X2 080y

b
-;JRH:——;— ik[ (M cos 6—M 5 sin 6+M;, sin 0—DM,; tan 6 sin ) e 2% ¢80 2

1 ., U?cos 20 sec 6— (1% cos §—n? tan 6 sin 6)Y>—2im sin YU (** o _,. .
ik i ((TZ_Y2> Xe2 kz cos Gdé_

75



Moreover, we easily deduce the formulae for the isotropic case with Y'=0 at oblique incidence,

b
LRy=y ik sec 60U f X2tk o5z,

b
;,Rn:% ik cos 26 sec 0U‘1f Xe2ke cos bz,
The transmission coefficients may be found by multiplying eq (18) by e ¢ ¢ and inte-
grating over the height range in which ionization occurs. We then multiply the third of the

resulting equations by tan 6 and subtract it from the first, yielding

(I, —ik cos 0F,) ¢ cos6

b b
=__k2 [ (ME)ye—ikz cos 0(12,

and
b

(E,—ik sec 61,1k sin 017,) et cos 0

b
=k f [(ME),~+tan 8(ME),]e™ ©0s04z.

a

Inserting the values (21) and (22) of the field above and below the range of ionization,
we obtain

b
ALTL—}—BHTl:A—% ik sec 0f (ME), ei*z 086 (z,
b
ATy By Ty=B—5 ik f [(ME),+tan 6(ME),]¢" 5 gz

Finally, we deduce the values of the transmission coefficients to the first order, when the
field throughout the medium is replaced by the incident field:

b

_LT_]_ZI'_%' ik sec 0{ Mz,

1. © .
I T_L:—§ ik sec 0[ (M 4y cos 6— M3 sin 0)dz,

Lo (Y
_]_T”:'_§ Zkf (M12+tan 0]‘132)([2,

b
”Tuzl—% ikf (M 1y cos 6—M 5 sin 6-+M s, sin §—M s, tan § sin 6)dz.
In the isotropic case, these formulae reduce to

b
LTy=1+5 ik sec eU—lf Xdz,

b
\]T“:I—{—% ik cos 26 sec GU‘lf Xidz.

10. Comparison of the Two Methods

We should conclude with a note on the difference between the results of Wait [1962] and
of the method presented in this paper. Considering the isotropic model at vertical incidence,
the first-order reflection coefficient produced here is given by (11), namely

b
R= ik f Xe-eq; 23)

for zero collision frequency. On the other hand, the first approximation to the solution of
the integral eq (13) is obtained by taking v=1, yielding
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v(g‘):1+ikf; (n2—1)d~:1+ikf:Xdz.

Hence, when {=a,

—ika__ D ,ika b
ek X,
or Ja
19 ) b
R:”j’bké’, —2ika f XdZ (24)

when the left hand side is expanded by the binomial since || is small.

It is obvious that this result is only valid for a thin layer, in which case the phase factor
¢~ %"= in the integrand of (23) is replaced by e¢72#,  Hence, for the homogeneous slab discussed
in section 7, eq (24) yields (when a=0, b=h),

B=Ln " xde=t itnx
v=51 . z=51 hX.

The exact first term (14) reduces to this only when &4 is small.  On the other hand, it should
be pointed out that Wait’s expansion for the homogeneous slab is of a different kind, valid

when [kh+/(1—X)|<<1.
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