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The formulas of field strength over an inhomogeneous spherical earth are obtained on
the conditions that (I) the radius and the electrical properties of the earth’s surface dis-
continuously change several times along the wave path, or (II) the surface of terrain arbi-
trarily changes in height along the wave path, but it is still smooth everywhere and the
radius of curvature is sufficiently large as compared with the wavelength.

The case (I) is considered to be more general than those of mixed paths on a smooth
earth, because the latter can be seen as special cases of the former. The case (II) cor-
responds to the case of multiple diffraction of radio waves by several mountains having
finite radii of curvature. In both cases, the unified formulas of field strength are obtained
in the form of a multiple residue series, which is reduced to the ordinary Van der Pol and
Bremmer formula in the special case of homogeneous ground.

The convergence of series of the formulas is very good when the propagation distance
on every section of the inhomogeneous ground is long enough or the diffraction loss is large
enough, and is poor when any one of these distances is so short that the section is effectively
seen as a flat plane, or the diffraction loss on the section is very small. In these cases, the
flat earth or other approximations can be used, and several supplementary formulas are
prepared for cases of poor convergence. Several special applications are given.

Introduction

The problems of mixed paths over a smooth earth have been investigated by many authors,
especially in the case of a flat earth, and many equations and approximations have been estab-
lished according to the given situation. However, the mixed paths in these cases mean the
radio wave propagation path over a smooth ground, in which several sections having different
electrical properties are included, and thus changes in height are not included.

In part T of this paper, these changes in height are taken into account on the assumption
that the ground surface changes discontinuously along the wave path, as illustrated in figure 3.
A series of papers has been established on the theory of propagation over terrain of this model
[Furutsu, 1957a, 1957b, 1959a], and the unified formula of field strength was obtained in the form
of a multiple residue series, which reduces to that of mixed paths in the special case of smooth
arth.  This model of terrain form may not be suitable for the range of very high frequency
where the radius of curvature of the terrain becomes sufficiently large as compared with the
wavelength, and it also may not be suitable for a completely irregular terrain where some
statistical approach would be more appropriate. In the former case, the problem could be
treated as a multiple diffraction by hills or mountains having large radii of curvature, in which
the earth’s surface could be included, as illustrated in figure 23. Also in this case, the field
strength can be obtained in a unified form of multiple residue series [Furutsu, 1956], and part 11
of this paper is devoted to this subject.

The purposes of this paper are the survey of these formulas and the several possible appli-
cations to the practically important cases, such as the evaluations of the effects on the ground
radio wave of a ridge, a cliff, and a blufl at a close line (part 1) or those of several hills or moun-
tains, taking into account their curvatures if necessary (part 11).

1 This work was sponsored by the Air Force Cambridge Research Laboratories, Office of Aerospace Research (USAF), Bedford, Massachusetts.
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Part I. Radio Wave Propagation Over Inhomogeneous Spherical Earth
1. Equation Formulation

Solving Maxwell’s equation in terms of the vector potential, A, the equation in the Car-
tesian coordinate system (z)=(xz, 7, z) becomes (the earth surface is assumed to be flat for the
time being)

() AW ==kl @), F=atueletolie), (222} (1)
: . or Qy 0z
Here, the time factor ¢** is omitted and 7 is the current density of the external system. Other
notations are those ordinarily used.

In the case of the vertical dipole excitation at the arbitrary point 2/, we may first presuppose
that the horizontally polarized wave will not be induced by the terrain of the form assumed
and thus, using the z-axis in the vertical direction from the ground, put

A(x)=(0, 0, ¥(x, ")), k2ul(x)=(0, 0, é(x—z")). (1.2)

This presupposition will be justified later. Thus, the solution can be represented by the Green
function defined by the equation

(VE2)+ 1 (z,x")=—6(x—x'). (1.3)

Here, the boundary condition on every horizontal surface made by the medium discontinuities
is found to be the continuity condition of

W), (k-z 63” ¢>, (1.4)

where 0/0n=0/0z and the earth’s surface is flat in this case.

Even when the curvature of the earth’s surface is taken into account, eq (1.3) is still valid
in a small but practically sufficient domain of the earth’s surface; it is sufficient to assume, for
any small line element having the components (dx, dy, dz), the length ds given by the metrics

ds?*=z/a)*(dx*+dy?) +dz2.

Here, the coordinate system is taken so that the earth’s surface is given by the surface z=a, «
being the earth’s radius. Fuarther, the boundary condition (1.4) is also valid on the condition
that the earth’s radius is sufficiently large as compared with the wavelength.

In spite of the fact that eqs (1.3) and (1.4) are valid only in the case where the medium
changes with the z-coordinate but not with the z, y-coordinates, we are going to treat the case
where the height and electrical properties of the earth’s surface take spatially discontinuous
values, as is illustrated in ficure 3. Indeed, from the definition of ¢, it is readily proven that
the boundary condition (1.4) does not hold on the vertical boundary surfaces of medium dis-
continuity. However, as is seen in the following, this fact does not give any serious effect
to the result of the assumption that eq (1.4) also holds on the vertical boundary surfaces.

For any continuous functions of ¢’ and ¢’/, the Green theorem can be given in the form

(fig. 1)

Fraure 1. The integration domain for eq (1.5).
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ﬁl‘//' VETEY AL = VETY L] do=—[(s), ¥ (s)]. (1.5)
Here, the left side is the volume integral in the space X and

W (), " (D) ]=—[¢""(s),¥"(s)

f |:¢ Az on Wl) U (/r2 on v ):I )

Here, o/on is the inward normal differentiation on the surface s of the arbitrary space =
[t is especially to be noted that the lemma (1.5) holds even when £ takes discontinuous
values across the surfaces contained in the space 2, if both of the functions ¢’ and ¢’/ satisfy
the boundary condition of (1.4) on these surfaces.

We here introduce the solution y,,(x, 2’) of (1.3) for the smooth and homogeneous earth
having the propagation constant £,. By the use of (1.5) and also the boundary condition,
the symmetrical relation of ¢, (z, 2’) is readily derived; putting ¢’ (z)=y,,(z, x,) and ¢"/(x)
— Y, (x,x,) in (1.5), the points z, and z, being arbitrary points in space, and taking the whole
space for =, we have

‘pm ("tl ) ".2) T ‘pm(-'t'.“ 'l‘l) — ll)[/m ('\‘v -’:1)7 ‘pm('\‘s ~'.2) |Sm - ()7
Iljm (".1 1] .Ifg) — ll/m ("'Zv 'I'l) . ( 1 7)

[t is appropriate to begin with the simple terrain as in ficure 2. Here, the propagation
constants &, and k5 of the ground are -mqum('(l to be different.

Now in the preceding Green theorem (1.5), let ¢/ (2) =y (24, ) and "/ (x) =y (x, 1;). Here
Yy is the Green function to be obtained, and ¢3 is the Green function for the homogeneous ground

of the elevation z=a, and of the propagation constant k,. Taking the space 2 as the whole
space except the space enclosed by the surface s; defined in figure 2, and the point 2, being in X,

we have (a, >as)

or

lp:sz(-"h 1) = Yo (24, 1) + [Wao (24, 83), \02('\'3, )], 24 >y (1.8)
Yo (s, @) = [ (2, 83), ¥alss, @1)], 24, (1.9)

when the point z, is below the surface s;.  Here, it is noted that the integrand of the surface
integral is continuous at the boundary of the medium £, and the atmosphere because both
Ys and ¢, should satisfy the same boundary condition, and therefore there is no contribution to
the surface integral on the right side of eqs (1.8) and (1.9).

Just in the same way, by exchanging the roles of the Green functions ¥, and 3, we have
(ay>as)

or

Wap (4, 1) =3(2, 1) + (a2 (4, $2), ¥3(s2, 1) ]. (1.10)

These two equations are complementary to each other, and, by the method of successive
substitution, we have the required solution in series

Yoo (24, 1) = (@, 1) 4 [Ys (24, 53), Ya(ss, 1) ]
+ (Yo (s, 82), ¥a(ss, 83), ¥olss, )]+ . . o, 24 >ay.  (1.11)

Ficure 2. The form of terrain and the integration
domain for eqs (1.8) and (1.9).
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Here,
W, ¥, ¥ =¥, ¥'1, ¥"1=1¥, ¥, 1],

and, on the vertical boundary surface, the boundary condition (1.4) is taken into account.
On the other hand, when the points z; and z, are located over the different earth media,
say on the sides of the media k; and £, respectively, the term s, (24, s5) in the bracketed terms of
(1.8) and (1.9) may be given by
Yo (14, 83) (24, ),

except in the vertical domain of s; which is not important for the integral, because ¥ (ss, )
rapidly tends to vanish with the distance a,—z by the term exp [—iyA2i—Fki(a,—z)] in the
ground.

Thus

Waz (4, x1) ihn (4, 1) + (s (24, 83), Yalss, #1)], 2 >0y
[y, 83), Yolss, 21)], 2, as.

The above result is just the equation obtained from (1.11) by the omission of terms of
higher order than the third in the series. The higher order terms become important only when
the point x4 or z; is located in the immediate vicinity of the vertical boundary surface. Also
the surface integral over the vertical boundary surface can be neglected because of the large
attenuation of ¥(ss, #;) in the ground, and so far the presupposition that the horizontally
polarized wave will not be induced is self-consistent.

There may be another problem of singularity of solution at the diffracting edge or unique-
ness of solution for the form of boundary assumed. But it is known [Born and Wolf, 1959]
that, insofar as the field components can be expressed as convergent Fourier integrals, which
is the situation in our case, they are free from having singularities of too high an order, and their
uniqueness is assured.

The above result can easily be extended to the general case where there are several bound-
aries of the earth medium discontinuities, as in figure 3.  As is illustrated there, we successively
assume, along the wave path from the point z, to x,,;, the values ks, ks, ks, . . ., k, for the
propagation constants of the different sections of inhomogeneous earth, and the values a,
@, sy, . . ., @, for the radii of the surfaces of the respective sections, and r,, r5, 74, . . ., 7, for
the propagation distances, respectively. Also, the solution in this case will be denoted by
Vo, o(x,1, #) and thus the solution ¢, o(Bpe1, 2;) will be the one to be obtained from
Yo 2(X,1, ) by setting k,—k, ; and a,—a,_;.

On referring to figure 3, we now set ¢/ (x)=y, ... Aty @y AR =it o o(x, ) In
eq (1.5), and take, for the space =, the whole space excluding the space of the medium £,
and the atmosphere above it in the range z<la,_;, the point x, being assumed to be within 2.
Then, as in eq (1.8), we have

‘l/zz ..... 2(7’71+1, ‘.171) :‘Pn—l ..... 2(‘I?rz+l, -171) + [‘//n ..... 2('I7n+1, -S’,,), ‘#nfl ,,,,, 2('*/!7 ml)]v 2n+l>anfl
(1.12)
or

¢n, ,..,2(mn+1; ml):[\bn,..., 2(17714—], '\)n)y ‘pu—l‘ _4.,2('\'11, m])]y Zn+1<an—ly (113)

depending on whether the point x,,, is within or without the space I, respectively.

Fiaure 3. The form of terrain and the domains of
integrations for eqs (1.12), (1.13), and (1.14).
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In the same way, by letting ¢/ (2) =y, .. o(x,q, ) and ¢ (2) =y, (x, 27) in eq (1.5), we
have

’ 2(.]7,, +1) ml):"pn(-rrwly -rl)+1¢n,..., 2(-1:n+1; Sl), ¢n(v8'/, .'I'rl)]. (]14)

Here s’ is the whole upper surface of the media k, for which a,>a,, m=2,3, ... n—I,
plus the surface of z=a, above the media for which a,,<a,, plus the vertical boundary surface
of the medium f,, as is illustrated in figure 3, and both the points x, and z,,, are to be outside
the surface s’.

When the solution ¥, .. 2(x,, 2,) is known, we can, by the successive substitution
of eqs (1.12) and (1.14), express the solution ¢, . 2 (%41, ¥;) In a form of series similar to
eq (1.11):

\///1 ..... 2('17n+1; 11:'1) :‘l/n~l, BoOn Z(III-}-ly '/I:l) +[‘pzz(mn+1) '\'n); ‘pn—l, 00 2('\'717 II)J
+[\1/n~1, ceey 2(4I'n+1y Sl)y ‘ﬁn(sl; '\'n); ‘l/zhl, ey 2("313 -"‘ll)J+ LY (] ]5)
or, in just the same way,

¢11 ,,,,, 2(]‘11 <1 .1'1) :[‘///1 (J‘,, +1 '\'n) ) ‘//n I ‘.’('\'nv .7'1) I
+N/n('ru01v~/l)7‘p/1—1 ..... 2('\'nv'\‘,)7¢n<'\ AR /I) '\[/n 1teeies ( ny ll)|+ ) (]16)

N

depending on whether the point x,,, is within or without the space =, respectively. Thus,
eq (1.15) gives a recurrence formula for ¢, . ..

As in eq (1.11), we can neglect the terms of higher order than the third or second in the
series above except for the range immediately near the boundary.

2. Formula of Field Strength in the General Case
The attenuation coefficient A is here defined by
¢/l ..... 2(‘1,/1 +1) ‘rl> :2“1(3/1 = 1#/',, yI'n -1,..., /‘2‘1 21>¢(l('1‘u +1y 'lll) )

i T ‘ .
kb()('ru—kly'rl): "‘ € Ml,y ]‘:"n‘*—rnfl—]r DRI +’42y (2])
471

where ¥o(r,.q, ¥;) may be regarded as the solution in free space. Then, on the assumption
that the boundary surfaces between the different sections of the inhomogeneous earth are
all vertical and parallel with each other, the result of evaluation according to eq (1.15) is as
follows (figure 3):
1 - . mmy .
4‘1(3n+1‘rn, Tp—1,..., "2‘21>: ; ,Z (/"//‘n>2“1(45n+l"/1)/,11 (' n—])l,,, lp—1
nyln=1, « « o (2
m 3
Xl("u—?)t,.,_l.t T(’a)t4 13 T'(r. )l'; 1,717( 1,82).  (2.2)

Here, t,, stands for the set of roots of the equation

W’ (£) — g W () =0, (2.3)

where

W(—t)—exp (—i2m/3) (mt/3)4E & (2 o2 )

kl\ m I/A/m Vert. ])01.

'L(Im (kl(l/‘)) >< )
i —Fk2 [k, Horiz. Pol. (2.4)

These notations are similar to those of Fock [1946].
The factor f,,(z, a,) is the ordinarily defined height-gain function for the end point a;:

Sy (21, @) =W (t:—41) /W (£2), Y= 2/ka) %, (21—a), (2.5)
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and the other two kinds of terms that appear in the preceding formula for attenuation co-
efficient A are as follows:

A<2n+l\[}’n)f": v (T/Q)klrn(:z/kla');(tn_ (1;)7) ‘lfl,,(znirly a’n)exl) I _7/{ ("n/a’) (kl ((l,l_d) + (kl(l/2>3t,,)+7l'/4 } ]7

2.6
T(Tn) 1y, 1,= {1 (Om—a0) 2[Rr@) 4 Em—1t,} 1 (E—q2) 71 i
erzf;,,L<(1/rz> am) — quf m((l,, y @), 2> Ay
Xexp [—i(ru/a) {ki(a,—a)+ (k1a/2)}, } X 2.7
(]m.fzn (@) Gn) — (/rl.f;n (@n, @), An > Ay

The term A(z,../r,),, depends only on the electrical properties of the nth section through
¢, and ¢, and on the propagation distance r, and the elevation @, of the nth section, but does
not depend on those quantities of other sections.

On the other hand, the term 7'(r,),, ., depends on both the mth and nth sections through
t, and t, and also through ¢, and ¢,, and therefore it serves as the coupling term between the
two sections. Besides, it depends of course on the height difference between the two sections
through the ordinary height-gain function f, (a,,a,) and also through another height-gain
1'1111(*ti0n_/';"((1,,1, a,) defined by

G (s ) = — (g f2)? JIE?&,,B o (s ), 2.8)
which is proportional to the first-order derivative of the ordinary height-gain function.

There i1s a clear one-to-one correspondence between the terms of the formula (2.2) and
the respective sections of the inhomogeneous earth, i.e., the height-gain function f,(z,as)
expresses the effect of the elevation of the point z; from the ground, of course, and the term
T(ry)s,., expresses the effect of propagation along the surface of the section of No. 2. In
the same way, the term 7'(ry);,,, corresponds to the propagation along the section of No. 3,
the term 7'(ry)s,.., corresponds to the propagation along the section of No. 4, and so on, and
finally, the term A(z,./r,),, corresponds to the propagation along the nth section, over
which the point z,,, exists.

The convergence of the multiple series of the attenuation coefficient A is very good
when the propagation distance of every section of the inhomogeneous ground is sufficiently
long, and in this case, the first term of the residue series is a sufficiently good approximation.
This situation is just the same as in the ordinary Van der Pol and Bremmer formula for a
homogeneous spherical earth.

On the other hand, the convergence of the series becomes poor when the propagation
distance over one of the sections is very small. In this case, the flat-earth approximation or
other proper approximation can be suitably used.

In the extreme case where the width of the one of the sections tends to zero, it will represent
a ridge on the ground, as in figure 5. In this case, the responsible series in the formula takes
the asymptotic form as r,, tends to zero (fig. 4),

711301 EtmT(}",,l) o ,mT(I“n) O ey ]YO") (rn) Ll,t”E {(I('/V;,((lm, al)»/.i,l(amy (Ln) — (lnjlll(a/m al)\f; ,,(amy an) f

X {ki(a1—an) (2/ka)d+t,—t,} 7 (ta— q2) 7" exp [—i(ra/a) {ki(an—a) + (kia/2)t,}], (@n>an, ).

2.9)

¥icure 4. The form of terrain and the notations for
eq (2.9).
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The above result is applicable to the case of diffraction by ridges on spherical earth, as
it will be seen in the example of the following section.

It may be remarked that, in the special case of a,=a, ;= ... =a,, the formula (2.2)
reduces to that previously obtained for mixed paths on a smooth earth [Furutsu, 1955].

3. A Few Examples of Applications

The simplest application of the foregoing formula (2.2) will be to the case of one ridge on
a spherical ground, where the electrical properties on each side of the ridge could be different,
as illustrated in ficure 5. By the use of the result (2.9), the attenuation coefficient A is then
b . )
given by

4‘1: El;‘ /:("/"4);“1(25 /’4)/4 ’[’(3) ("2)/;. f.'flz(zl ) a!) . (3 1 )

One of the immediate applications of this formula will be the estimation of the effect
of a ridge on a spherical smooth earth (fig. 6), and another will be the similar estimation of the
effect of a cliff on the ground radio wave (fig. 7). In the case in which the propagation distances
7y and 7, on both sides of the ridge (or cliff) are long enough and the height A of the ridee (or
cliff) is low enough, i.e.,

ky(ra—~/2ah) (kya) 31, ky(ro—+2ah) (ka) 51,

so that simply the first term of the series would give a good approximation, then the effect of
the ridge (or eliff) can be expressed by multiplying the field strength in the case of smooth
arth by the factor /3. Here, using the notation ¢} and # for the first values of the set of
values #; and #,

F={ ’14./;‘4’(“3, ”4)././'_,’((’37 ;) _(IZ.[/f,’((’:sv ’14),/‘/?_!((’:» ap) } X {ki(as—a,) 2[ka) + 18— 8} 1 (B—g2) ™" (3.2)
or, when a,=a, and ¢;=q¢,,
F =[1—ki(as—ay) (2/k1a0)* (3 —q3) 7' fis(as, as). (3.3)

Thus, depending on whether the boundary is a ridge or a cliff, the field strength is eiven
in the form (figs. 6 and 7)

E=(E)-olxxr(p), E=(E)n-oFix (p), )

respectively. Here, K and K’ correspond to k& and £/, respectively, and according to K. A.
Norton, K and b are defined by

K=|q|712718, —b==x/2+2 arg (q), (B5)
p=kih(ka)~'3 k =w/e. (3.6)

and

Hence p is proportional to the height of the ridge or cliff.

The set of graphs in figure 8 shows the numerical values of the factor /g, giving the effect
of a ridge on the ground waves, and it is displayed as a function of p, which is proportional to
the height of the ridge, for a useful range of values of K and b.

Ficure 5. The form of terrain and the notations for
eq (3.1).
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Ficure 6.
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F1Gure 8.

In the same way, the set of graphs in figure 9 shows the numerical values of the factor
ek ¢iving the effect of a cliff on the ground wave, and it is also displayed here as a function

The form of terrain for eq (3.3) and
figure 8.

of p for the same range of K and b.
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Ficure 7.

The form of terrain for figure 9.
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4. A Few Examples in Flat-Earth Approximation

The results of eq (3.4) are not available in the case where the propagation distance on
one or both sides of the ridge is very short. Then the effect of the ridge depends on the propa-
cation distances from the ridge, so the result is not so simple as the preceding cases.

In this case, the effect of the earth curvature may be neglected and the flat earth ap-
proximation is appropriate; the convergence of series of the formula (3.1) becomes very poor
in this case. However, there is a general rule to overcome this difficulty which will be treated
in part II. The results in the flat-earth approximation are then obtained as the asymptotic
forms for a—=w i.e., the infinite radius of earth. The formula (3.1) in the case of a flat earth
becomes as follows:

Referring to figure 10, it is convenient first to introduce the notations that will be used
later:

dy=—i(ks/kD)kry/2, dy=—1 (ki [3)%12/2,
Jo=(zs—a) Vk2re'™,  fi=(21—a) VI 2rsei™",
fo=(as—a) Vk2re™,  fo=(ay—as) Vhki/2re'!",

1 Nk —k3, Vert. Pol.

’ﬁ:?’ ky= QS ' (=254
L ki NkE2—Fk?, Horiz. Pol. (4.1)

Xy

Ficure 10. The form of terrain and the notations for

eqs (4.2) and (4.4). Ky

Z, a2
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The attenuation coefficient in this case will conveniently be expressed by A® (z;(ry, .|z,
which means the attenuation for the wave propagation from the point z; at the height z, to the
point z; at the height z; across the ridge of the elevation a; which exists at the distance 7, from
the point z; and the distance r, from the point ..

In the special case where both the points #, and z; are on the ground, i.e
21=as or f;=f=0,

., when z;=ay,

A® (@y|ry, 1olan) = F(ds, filds, f2) =€~ VD[ (Vo fud-vna fo) —inm (Vdfng+V/dofng) =
X [\ ;/,73/"711(5 <f4‘|‘ i\ (74)((5’ (fz‘{‘?'\ ;{;) S <(14/"1'4>{ & (04,(\ ’;/rf‘\ }1'4;/'2)/(74)
_(5”(94y (frf‘ ?'\‘(—[;) /P4)}‘|‘ (([2/‘”'2){(7 (‘72; (\ 77;f4+\};4f2)/02) —& (Pz; (fH‘?'\ Z)/Pz) }” (4-2)

Here
-~ 2 2 2 2 @ —72 “ —2
& 2,71/.:)2( ) T dre”? e "dy,
VT Jz J (n/2)z

0= N fy— Vo fotiVding,  pe=ivdmo/n—Ff,
er= VN fo— VI fitiNdo/na,  py=ivdangna—fs. (4.3)
In the general case of z;#a, and z,#a,,
AP (z5]ry, 1o 20) = F(dy, fst-fslds, f2 1) +3 { F(ds, £ 4S50, fo— 1)
— Fday fu-F50, fo )+ O, f—folds, fotf)— FQ, fu+Asldoy fot-f2) )

+HFO, f4+S5[0, fo+f0) +F (O, f—F35]0, f—f) — F(O, fs+15[0, f2—1f1) —F(O, fa—F3[0, fo+11) }.
(4.4)

Immediate applications of the formula (4.2) are possible for the effect of a ridge on the
ground wave, and the effect of a cliff and the effect of a bluff along a coast line, as illustrated
in figures 11 to 13, some numerical results of which will be displayed in the following. The
notations that will be used are:

) : Height of ridge, bluff, or cliff, in meters S

f : Frequency in megacycles per second

o : Conductivity of land in millimho per meter

seft frtn, oy T \/i
(/)“‘)m \ Y=g00/ Vs 1o

L -)7rf , )
S } D { f<<] Sa/e. (4..))

Case 1. One Ridge on Homogeneous Ground

The ridge is assumed to have the height /& from the flat ground and the transmitting and
receiving points to be at the distance 7, and 7, from the ridge on opposite sides, as illustrated in
figure 11.

The two curves in figures 14 (a), (b) represent respectively the attenuation coefficient
and the phase delay in the case of a homogeneous earth. Here, the abscissa is the Sommerfeld
numerical distance for the whole propagation distance. On the other hand, the curves in

T

. é I . Ficure 11.  The form of ridge and the notations for
‘ > rpQ ('

7 7% ” figures 15 (a) and (b).

iessin = =S ) ==
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ficures 15 (a), (b) represent the same attenuation coefficient and the phase delay in the case
where one ridge is present between the transmitter and receiver. Here, the parameter ¢ is the
numerical distance on one side of the ridge, and )" is the numerical height introduced in eq
(4.5) which is proportional to the height of the ridge.

Case 2. A Bluff at Coast Line

The bluff is assumed to have the height 4 along a coast line, and the transmitter and re-
ceiver to be at the distance 7, on the sea side and 7, on the land side from the coast line, as
illustrated in figure 12. The sea is assumed to be a perfectly conducting plane, while the land
has the finite conductivity o.

The curves in ficures 16 (a), (b) represent the values of the attenuation coefficient and the
phase delay in the case where there is no bluff at all at a coast line. The abscissa S is the Som-
merfeld numerical distance for the propagation distance on the sea side measured in land con-
ductivity, and the parameter L is the numerical distance on the land side.

On the other hand, figures 17 (a), (b) show the values in the case where there is a bluff
at the coast line. Here } is again the numerical height proportional to the height of the bluff.

Case 3. A Cliff

The cliff is assumed to have the height 4 on the flat ground, and the transmitter and re-
ceiver to be at the distance 7, on the lower side and r, on the higher side, as illustrated in
ficure 13.

The curves in figure 18 display the corresponding values in this case.

In case 1, ridge diffraction, the magnitude A of the attenuation coefficient decreases with
the height & of the ridge in most cases, but for the large transmission distances of >>1 it
ceases to decrease at some height and then tends to gradually increase with the height. This
fact may be interpreted by noticing that the diffraction loss by the ridge is rather smaller than
the transmission loss along the dissipative ground at large transmission distances; a ridge could
give an obstacle-gain even on a flat earth.

In case 2, where the radio waves propagate across a coast line having a bluff, the rate of
change of the relative phase with the distance 7, (which is proportional to the numerical distance
Sin figure 17) from the coast line becomes larger as the height of the bluff increases and is some-
times much more than that without the bluff.

Besides the subjects just mentioned, it is also possible to evaluate the diffracted wave
by a ridge of finite thickness, as illustrated in figure 19.

In summary of part I, it may be remarked that the general formula (2.2) for the attenu-
ation coefficient, given in the residue series, takes the unified form independently of the number
of sections of the inhomogeneous earth, but the corresponding formula in the flat earth approxi-
mation is probably more difficult to derive and would take a more complicated form. Kquation
(4.2) or (4.4) is an example of the latter for two sections. Practically, the case of three sections
will be the limitation in which the flat earth approximation is possible, unless some special
assumptions about the propagation distances are made. Also, the effect of reflecting waves
from the boundaries of discontinuities on the transmitted waves are completely neglected
here. But they are generally believed to be very small in most cases. In fact, the result
has been proven to be exact at least for the trapped wave (or surface wave) mode [Furutsu,
1959b].

T T I
—T—___E_ 7777777777 }\
: LAND | R : R
| 7, | V,WWW/,
! SEA ! ! !
b g e =y == o g —wba ==, ——=}
Ficure 12.  The form of coast line and the notations Ficure 13. The form of cliff and the notations for
for figures 17 (a) and (b). figure 18.
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Ficure 15.  An example of the attenuation coeflicient (a) and the phase delay (b) in the case of one ridge present

Part II. Multiple Diffraction of Electromagnetic Wave by Surfaces Having
Finite Radii of Curvature

1. Statement of Problem and the Result in the Simplest Case of One Diffracting Surface

Many authors have discussed the diffraction of electromagnetic waves by a single object
such as sphere, cylinder, paraboloid, ellipsoid, plane, etc. However, there are many difficulties
when trying to calculate the diffraction loss by actual mountains or hills, because they usually
can not be seen as a single smooth diffracting obstacle, but more or less have irregularities.
Strictly speaking, the actual diffraction of radio waves by mountains is a problem in multiple
diffraction. But it is, of course, impossible to derive the formula of diffraction loss for such
complicated obstacles, and different models have usually been adopted for the diffracting
mountains according to the different range of frequency. However, if we could assume that
every diffracting mountain has a smooth surface whose radius of curvature is sufficiently
large as compared with the wavelength, the problem can be treated on fairly general conditions,
and we can get the result in a unified form, independent of the number of diffracting mountains.

50



10 i— 00!
eSS —— ’ﬁ%qsﬁ’ Y=0
09 L-02 UJE 10 T==gE T
- [‘,r'& HH+ —1
0.5} 50 s !
08 IT — t
| — T || | |
I1 1T | T
\
01 I 10171 20 ‘ ‘ [ T
LI 1 [l
10 — 1 mam
08 — e _
I i i T
= 05 ! ImEE et
2.0 INEERIE
A 05 - i e T ﬁ*ﬁﬁ:\ L=50|[|
27 T T T T o]
04 02 e ;\_..‘,___\_%N 3 o
o - 05
03 T pash = — === 021}
[ — |
. — - — T 0./T]
02 H = i ] B s = = == = H Hoos ]
- i hgy T T 110
0l ; T 1 % I 002 L LJaRaLE ,,: | e ‘t 13K — 7,_f_,0}6_|__
L@ = 212 I L I 11
001 002 005 0l 02 05 10 20 50 10 001 002 005 01 02 05 10 20 50 10

S

F1Gure 16.  An example of the attenuation ceeflicient (a) and the phase delay (b) in the case of no bluff at coast line.
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Ficure 17.  An example of the corresponding attenuation coeflicient (a) and the phase delay (b) in the case of a
blufl present.

In the simplest case of one diffracting surface, the result can be deduced from the ordinary
Van der Pol and Bremmer formula for diffraction by a large spherical surface. Referring to
figure 20, the attenuation coeflicient A, which is the ratio of the field strength to that in free
space, is given by

A= 2l @) S (t— )~ exp [— i { (rfa) (ka2 Sty +m/4) X . ). (1)
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notations for eq (1.1).

Here t,’s are the roots of

and

W’ (8)—gW(t)=0, W(—t)=/r/3e~ " *14¥H (§1%),
S =W(t—y)/W(t),

?‘qz(kla/Z)%X{

The spherical diffracting surface and the

r

L

Ficure 18.
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present.

Ficure

1),

Yi= (2/kya)3ksh;,

The form of ridge having finite thickness.

(h;<a)

kiVki—k3/kZ, Vert. Pol.

(1.

2)

(1.3)

vVk3—kE/k,, Horiz. Pol.

For >>1, the height gain function f,(y) takes the asymptotic form

Js@) =y~ % exp [—i(Gy¥—t 44Ty~ Hes /D)W (2s),

(1.4)

where the argument of the exponential function is expanded with respect to ¢s and the terms

involving powers higher than 2 are neglected.

Thus, when the heights of either or both the

transmitter and receiver take sufficiently large values as v, 7.1, the attenuation coefficient
A of (1.1) takes the following forms:
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Case 1: y>>1, 121
Anexp [—i(kia/3) (rn/a)’12yT +rfre 23 (t—¢?) "W (t) " X exp [—3 {8(kaa/2) 3, +1/2} 1, (),

0:(/'—1’1)/(1, )‘1:\2(l/?1, /‘2:\‘27(l7h;. (15)

Case 2: y>1, >0

Amexp[ i B {(7)+(Q—)}] Vi 30232 (k) (1~ ) W (1)

Xexp [—1{0(kia/2) 3t + (2ky) ~ (k1a/2)*2 (1 fry+ 1/ry) t2 4 3m/4 }],
6= (r—ri—r,) /a. (1.6)

In case 2, the series is convergent for the whole range of 6.  On the other hand, in case 1,
the series diverges for negative values of 6, and hence it must be analytically continued, as will
be shown later. Thus the analytically continued function A of 6 is regular on the whole range
of 0, including negative values. However, in case 2, if the square term of £ were neglected in
the exponential function, the function A of 6 would have a pole at 6=0, even though it is
analytically continued. Thus the square term of 2 cannot be neglected in case 2.

The convergence of series of these formulas is good for large diffraction angles. But,
otherwise, it becomes poor. However, there is some general rule to overcome this poor con-
vergence, as will be treated in the following section.

Since the above results have been developed according to the original Van der Pol and
Bremmer formula given in residue series, they could be valid only when both the transmitter
and receiver are not far from the surface, and it is not immediately clear whether they are
also valid even when calculating the field far from the surface.

But it can be proven [Furutsu, 1956; Wait and Conda, 1959] that the results (1.5) and
(1.6) are correct even when the transmitter and receiver are at great distances from the dif-
[raction surface as compared with the radius of curvature, if we reinterpret 7, (#+2ah,) and
75(##+2ah,) as the lengths of the parts of wave path from the transmitter and receiver to the
first contacting points on the diffracting surface, respectively, as illustrated in figure 20.  The
important part of the mountain surface which decisively contributes to the diffracting waves
is the very small part of the surface in the vicinity of wave path, and the other part is not
important, provided that the radius of curvature of surface is sufficiently large as compared
with the wavelength.

On the other hand, in this small part of the diffracting surface, the surface could be ex-
pressed as a surface of second degree having some finite radius of curvature such as a sphere,
cylinder, paraboloid, ete., and therefore it follows that we could solve the wave equation
exactly in the range of the important part of the diffracting surface. In fact, the Green func-
tion usually happens to be the same in this small range, independently of the kinds of surfaces
adopted, provided that the radius of curvature of the diffracting surfaces is defined along the
wave path.

2. Methods for the Case of Poor Convergence

For kinds of series such as (1.5) and (1.6), there are some general rules to overcome the
difficulty when the convergence of series is poor. Taking into account

\ (= W®) 7_ .,
Res, -, W0 — g (1) =il (2.1)

we have for the arbitrary series 2a(t,)
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S alt) ZQm f wt,a)")% ()o a(t)dt, 2.2)

where () is the infinitesimal contour integration path around the sth pole.

Hence, if the integrand thus formulated does not have any pole besides the poles ¢/’s, as
in case 1 of eq (1.5), the sum of the contour paths is equivalent to the contour path (" around
the set of poles, as illustrated in figure 21.  Further, if the integrand tends to zero sufficiently
rapidly at infinity, we can deform it to the path ;-5 in figure 21; these paths are proven
to be the best paths for numerical integration in the meaning that the integrand decreases
most rapidly on these paths. Furthermore, in the case of (1.5) the integral converges for
negative values ol 6, even when the original series diverged. Thus

Zf:f:f (2.4)

On the other hand, however, if the integrand has extra poles, such as those of the func-
tion W(t), besides the necessary poles of ¢, the foregoing method cannot be used, and another
integrand must be sought.

From the Wronskian identity, we see that

U ) s 08 ) i Y o
{qolt)— ()W) =1, o(—H)=, J;; {ewwmiz (5 o Jermmermmry (2 t/)}

Hence, in principle, we could multiply the integrand by this function to any power we wished.
For example, by multiplying it once, eq (2.2) is replaced by

> a(t)= % £ fc <W’(t) Ziit()z) (t—@W2(Dalt)dt. (2.6)

Thus, even if the old integrand had the undesirable extra poles of the function W(#),
the new integrand would not have them. Thus we have the contour integration path ' and,
further, the path (',4C, if the integrand decreases sufficiently rapidly at infinity. This
situation actually occurs in the series of (1.6).

Here the question may occur whether it is possible to multiply the integrand by the
square of the funection (2.5) and to deform the integration path to the path ;45 The
answer is no, because, though the integrand has no extra pole besides t,, it diverges at infinity
on the way deforming the path from the (' to the path ;4 (,. Hence, generally, there exists
only one integrand for which the integration path (', is available.

Usually the Kirchhoff approximation terms appear as the leading terms of these integrals,
and are obtained from the asymptotic forms of the integrands for large magnitudes ol ¢; for
mstance,

—1 v’ (t) —qo(t) 1
i W) § " Tan &7
on the path (; or any path of (0, ¢ %) in the range 7 >B>7/3, and it tends to zero as [t|—
on the path (.

t—PLANE

Ficure 21. The infinitestmal contour path C, and
the integration paths Cy and C, for eqs (2.2) and
(2.4).
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Using these asymptotic forms in the integrand of A for case 2, it becomes

we—in/2

A~exp [ ] \//r L (ka/2)1/3 L f dt exp [—1{0(kia/2)Y 3+ (2k,) 1 (1 /r 4 1/rs) (feya/2) *3t%} ]
117 v2m Jo

1

—exp[] L e* [ et i=oNEnn R, @8)
A% ;CMH

with

exp [ J=exp [—i(ka/3) { (r/a)>+ (r:/a)®}].

The result of exact evaluation takes the form

A—exp (] {l ot m? f e“z(lt~n6’($)}7

T J E/metm/4
=0(ka/2)"®,  n=(ka/2)"* V2/k) A /ri+1/r). (2.9)

Here, the numerical values of the function G(£) have been calculated by Logan [1959]
for a surface of perfect conductor, and by Wait and Conda [1959] for a wide range of surface
impedance. It may be remarked that the corresponding numerical integration method for
the case of poor convergence has been used more previously by Fock [1946] and Rice [1954].

3. General Formula for Diffraction by Two or More Surfaces

As illustrated in figures 22 and 23, we now consider the general case where the waves
propagate over several mountains with the subsecripts 2, 3, . . ., n along the wave path
from the point x; to z,.,, and the radii of curvature (along the wave path) a,, as . . .,
a,, and the propagation constants ks, ks, . . ., k,, respectively. The diffraction angles
of the respective mountains will be denoted by 6., 65, . . ., 0,, and thus d,=a,0,(m=2,
3, . . ., n) will be the distance of that part of the wave path contacting the mth mountain.

Now, on the assumption that the whole wave path lies in a plane profile, the result of
evaluation gives the following expressions for the attenuation coeflicient A which are just
the generalizations of (1.5) and (1.6). Using the notation 7, for the set of roots of eq (1.2)
in the case of ¢=g¢,, they are [Furutsu, 1956]:

(‘HSC L: (a'm//'m,mil):‘/‘(klam)71“<<l (ZS")'S“)

4‘1:{("71+1,11+(ln+ DRI +"32%"/2“*_1'21)/k;1_l"n—9l‘n]'n,n—rl . .. /.3‘."121}1/2
><t )2 T("nu,n)(),["T(En)t,, ... T(&) 137'("32) /;‘./37'(52) /._,,Iv(/"_’l)/._,,o- (3.1)

ny -+ osl3, 12

Case 2: (az/ry)? (kyay) "4 > 1, (az/rs2)* 4 (kyay) ~111,
(am/]'m,m:tl)SH(klam) - 1“<<1 (3 S U?,S n)

/1:{(7‘,,+1',L+dn+ S —l—rgz—f‘(/z)/k;[_z"‘nﬂ,n"u,nq e 7‘43"32}1/2
><t Z’ t’1'(7'n+1,n)o,1,1T(fn)1,, T :4.13’['(53) rsT(":;z) 13,1._,7'(52,31)1._,- (3.2)

EARTH
Ficure 22. The form of diffracting surfaces and the Fraure 23.  The form of terrain and the notations for
notations for eq (3.1). eq (3.2).
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Case 3: ((1/2/7‘21)3“(1610/2)_1/42 1; (an/rrl,-H ,71)3/4(]{'1@71)_1/42 1
(anl/rm,nzﬂzl)a/;‘(]‘Tlam)71“<<1 (3§m Sn—])

A:{(([7L+rn,n—l+ . +(l3+732+(]2)/k11_3rn,,n,—lrnvl,n—2 . e . ,)43”32}1/2
><t Et [T(En,2n+l) lnT(rn,nAI)Z,I,I,Z,IT(EII—I)I",] o T(E) ng(1":52) 13,12T(€2,51) ly* (3.3)

Here, 7, , is the distance between the mth and nth mountains and

En="0n(k1a,/2)"3,
T(8) (=227 (@ 2) V¥ (fyy— g2) " W (E,) "2~ Etm87/
T(r) ., ,=exp [—1(2kr) " { (k100/2) Ptn— (k1a4/2) 3, }7),
T(E, 2) o =24 (t—2) "W (tn) . (2, @) ettt/ (3.4)

m m

In case 1, both the transmitter and receiver are sufficiently apart {from the diffracting
mountains (fig. 22). The formula (3.1) in this case consists of two kinds of terms, one of
which, 7(¢,),,, depends only on the diffraction angle, the surface impedance and the radius
of curvature of the mth mountain, but does not depend on those quantities of other diffracting
mountains.

On the other hand, the other kind of term 7(r,, ,), ., depends on the radii of curvature

n
of the mth and nth mountains and their electrical properties through ¢, and ¢, and also the
propagation distance between them, but does not depend on other quantities. Therefore, it
serves as the coupling term between the mth and nth mountains. There is no other kind
of term.

This fact facilitates the understanding of this formula considerably; there is a clear one-
to-one correspondence between the terms in the formula and the respective parts of the wave
path: for instance, 7'(ry), o corresponds to the wave path from the point x; to the second
diffracting surface, the term 7(&),, corresponds to the wave path along the same diffracting
surface, and T'(rs) 13,19 corresponds to the propagation in free space from the second to the
third diffracting surface, ete.

As already stated, this formula is essentially the generalization of the formula (1.6) for
one diffracting surface which was derived from the original Van der Pol and Bremmer formula
on the restrictive condition that both the transmitter and the receiver are not so far from the
diffracting surface as compared with the radius of curvature. But here it is derived {rom this
general formula as the special case of one diffracting surface, on the more general condition.

In case 2, one of either transmitter or receiver, say the point z,, is on or near the diffracting
surface (fie. 23). The only difference from that of case 1 is in the last two terms; they were
replaced here by the term 7'(&, z),, and the others are just the same. Here, f, (2, a,) is the
ordinarily defined height-gain function. Again, the special case of this formula agrees with (1.5).

In case 3, both the transmitter and receiver are on or near the respective diffracting
surfaces. The change to be made in the preceding formulas is so evident that it might not
be necessary to mention it here explicitly.

Sometimes it may be necessary to take into account the contributions of the waves which
are reflected from the surfaces between the diffracting mountains. Mathematically speaking,
these reflecting points on the surfaces are just the phase stationary points of the integrand,
and we could get the result from these formulas by multiplying the reflection coefficients of
the surfaces and also adjusting the diflraction angles so that they correspond to the reflected
wave paths.

4. Summation of the Series

Finally, there remains the problem of convergence of the formulas (3.1) to (3.3). There
are two kinds of series in the above formulas; one is of the form

_12 T(rm+1,171> lm+1, tm T(Em) tm 7'(/7771, m—l) Uyt —1? (4l>
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and its convergence is poor when ¢, is near or smaller than 1. Now the treatment for the case
of poor convergence is exactly the same as in section 2. Using the same method, we have
the result

eq (4 1) - vT("m-H, m) tm 41 OTO’m. m—l)ﬂ, tp—1V 2 (kl(lm,/z) 1/3]4'@:":'— gflny Mms (]m> . (42)

Here, on referring to eq (2.9),

F(&, n, )=~ ¢'®n” f T

VY (E/met™/4
Nm— (kla‘m/2> 1/3\/(2//]51) (]/)_’m-‘klﬁ m+ 1/7:1:,71711,—7]5;
E:,.: (kl(lm/Q) W { (klrer»], m) -1 (kl(l’m+l/2) 1/3{m+1 + (kll)m, m —1) ot (kl([mfl/2> 1/.'1,111” -1 } ) (43>

and &, depends on the preceding and succeeding diffracting surfaces through #,.,, and thus
it serves as the only coupling variable between the diffracting surfaces.

When the diffraction angle of the mth surface is small and/or the radius of curvature is
sufficiently small, the second correction term becomes very small in most cases and can be
neglected as compared with the first leading term; in the case of ¢, 5,<1 the series (4.1) takes
the simple form

m . o/ ’ [ ] 4 e S
ZS I (,"'H’]' "/)’m +1: 0 I (""" ”'_1>“' ’ln—l%(f<(E"’_£m)/7""{'}lr/ 1) \ kl/(l /”m K1, m+ ]/)‘m,m—l,)) Sm<<] )

tm

. 2 27 _p :

E(2)=—¢" e dt. (4.3a)

Vo Jz

Another special case is the case in which the diffraction angles of the m-+ 1th mountains

are sufficiently large, as &,.1/n,..°>1. It follows then that &,/5,<1 and thus g, in (4.2)
can be neglected:

Z — ,ly( /'/n +1, m) tm D 0 7‘("//1‘ m —1)(), tyy— 1 \ 2’(/‘“1”//1/2> ]/:‘I(v<£m, nm, (I//I> . (4:;1))

tm

Similarly, on the condition of &,/9,>1 and &/9,>—1(l#m),

= R ; . ; - 1 ) . ,
N z(kla'm/Q) 1/&]4 (Em_fm»ﬁm, (/”[)_"l{ \ 2 (/\’,'1(17,,/2) 1/3 l:‘) g - 6*11/1_(;(5"0 ] = A‘[(é,ﬂ, a’m)y gm>>}ém . (4';(.)
SNTEm
Here, the function M(§,, a,,) is introduced for later convenience.
The other kind of series is
Z[TO':Q)!;, wl (&, 21) zz'iT('kz)rs, (J[{v\_, T(-‘Ez*f;y 21ty (4.4)

which always occurs with the height-gain function of receiver or transmitter. Using the same
method as in section 2, it takes the form, on the condition that &,/9,>1([#2) and &/7.> —1,

2T ek 2)umg (&) (1t ilkilk) 21 b (Cfka) ke,

( kkE—kE/k2, Vert. Pol.
= (4.5)
k2—k/k,, Horiz. Pol.
Here, z, is the height of the point z; from the surface, and the function ¢(¢) has been numeri-
cally calculated by Logan [1959] for the case ol a perfect conductor and by Wait and Conda
[1959] for a wide range of surface impedance.
Special applications of the supplemental formulas will be as follows:

Case 1: Enlm>>1 (n>m>2).
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This is the case where the diffraction angle of every diffracting sarface is sufficiently large.
On using (4.3¢) in the formula (3.1), the attenuation coefficient A takes the form

A={(rpp1. vt dut . . . Frotdetra) [k oy n?n, nor - - . el
XM (&ny @) M(Ep—yy Qny) . . . M(&, as), (4.6a)

or, when either or both transmitter or receiver is on or near the diffracting surface, the formulas
(3.2) and (3.3), respectively, give on using (4.5),

A={rpp 2 tdat . . . Fratdo)/kY rur, aln, o1 - - . Tarp}'?
KM (&, @n) . . . M(&, a3)g(&)f(21, @), (4.6b)
A={(dp+7rn, nat . . . Frot+d) ki 3r0, nog o . . Tarp}'?
XSty @) g(EDM(En1y @ny) . . o M(&, a3)g(£)f(21, @2).  (4.6¢)

These results just correspond to the so-called multiplication rule in diffraction.

Another application that may be of interest will be that in which one of the diffracting
surfaces does not serve as a diffracting obstacle but simply as a reflecting surface, as in figure 24.
In this case the coupling between the preceding and succeeding surfaces becomes very serious.
From the leading term of formula (4.3a) we have

Case 2: En/Mm&—1
Z 7‘ (”m+l, m) [m+1, ’"1,[‘(5'")“111 T(’,m,m—l)lm‘ lm—l

ET(/',,,_;_L "I)IIII-H, 0 7'(7‘711, m—l) 0, ’m—l\ 1517(] /"m+1, m+1/"m. m—l) ‘—‘XP [7 (gm"g:n)Z/n;zn]

:]VO."H-L I!l+"1u, m—l) ’m+l~ tn—1 >< (‘X]) [?{ (Em/nm)z_om(rm, mAl/(rm-H, m"}"'m, m—l)) (kla'rr1+l/2> lml‘m+l
_0,,1 ()‘m-!—l, nz/(rm—{—l ,m—l_"rm mfl>) (klamA]/Q) l/Bl‘m—l } Jy gm/ﬂm«’“‘ ] . <47>

When this result is substituted in (3.1), (3.2), and (3.3), they indicate what would happen if
there were no diffracting surface at all between the m + 1th diffracting surfaces: the phase terms of
O 7, 1| Pt 7m0 1) § (k1@ 0/2) '3t are respectively combined with the terms of
T(¢41),,, to give the new diffraction angles 6;,., due to the omission of the mth surface (fig.
24). The correction to the leading term can be proven to give the reflected wave from the
mth surface.

In the same way, when the convergence of the double series

Z T(rm—}—ﬂ. mJ—l)f,,H_Q, 1,,,+1T(Em+l)l,,L_HT("m-J-Lm)tm_H‘ t,,lT(glu)l T("lm m—l)( t

‘m m tm—1
bmy tmt1

(4.8)

is poor with respect to both #,, and ¢,,.,, we have the leading term (fig. 25)
m o ~ 2 - . . o - Y D
1 (’ m+2, m+1> 19 OT(’ m, m—l)O, i —1 {klrm-{—i', m+17 m+1, m! m, m—-l/('m-{-Z, m+1+’m+1, m+} m, m—l) S 42

>< % { (f (§—111+1€i7r/47 Bm+1/§‘m+l>+(7 <§‘m("i"“7 Bm/g‘m) }7 (49)

which is valid for 7, <1, 1,,,<1. Here,

m m+|

Fraure 25. Tke forms of diffracting surfaces for eqs
Ficure 24. The siluation in the case of eq (4.7). (4.8) and (4.9).
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Bm: { gm— (lclrm, Ill*l) ‘1(k!”m/g)1/R<klam~]/2)”3fmﬁl }/ﬂm,
(m: {76111+Bm+1 } [()'m 2, m+ 1+"m+1 m) (),II!+1 m %7)‘711 mfl)//lm 1, m ("m-}—ﬂ,m+1+rm+1,m+rm, m—l)]l/2)

/ 1/2 )
)m+2 m-+ 1'm,m— 1/ () m-+1, m+}m m— 1) () m+2, m+1+’m+l III) } / ) (‘/t( .y

& (2, m)= ( > """f r]f-_)(’_’gf etidt,. (4.10)
Jz . 111..,

The result of (4.9) corresponds to (4.3a) and can be applied to the formulas (3.1), (3.2), and
(3.3) for the conditions &,<1, &,..,<1.

When &, /9, >1 and &,.5/n,..>1, the terms of ¢,,_, and #,., in (4.10) can be neglected
asin (4.3b), and it follows that

g"": { (0”’ +1 +0”’) Im, ””1+0”’+11'”’+1~ m } {kl)‘"l+'-’. "l+1/2(rm+l. m JT—')IH. m—l) (rm—t".'. m+1 +)'m+1. m ’}‘"m. m—]) } 1/27
Bm:am\ kl/g(l /,‘NH-L m+ ] /"m. m~1)y (]t('- (4 1 ])

For the case in which (4.11) can be used, the coupling between the mth and m-1th sur-
faces and the other surfaces is lost, and thus they behave independently in the formulas (3.1),
(3.2), and (3.3) for the attenuation coefficient A.

5. Diffraction by Two Ridges
The special case of n=3 and &,&;<1, for which (4.9) and (4.11) are valid, corresponds to
the case of two-ridge diffraction, as illustrated in ficure 26. A straicht application gives the
result

& (52671, Bof ) e (Gae ™™, Ba/53)]. i)

=

Here
So= { (05-+02) 721+ 0473 } \ ]ﬁ/n/Q(/:ﬂLI;) (;'43 +71;:;17+717'-.>71> ,A

o= { (02+93) /'43+02"32} \’k;};zi/z (H?‘PI?)(/“'%;;.;‘F/A) ,
62:02\};/ (1/’ w+]/’ >1) Ba*ex\kl/)(l/'w‘f‘]/lﬂ) (5.2)

Equation (5.1) corresponds to the Fresnel integral in the case of a single ridge. Indeed,
letting 750, it follows that

C3= o= (03-+0:) v 1’4)' >1/~('4<+7)1);
and thus, according to the definition of ¢ (z,n) in (4.10) and ¢ (2) in (4.3a), eq (5.1) becomes
1=3 &' (e, (5.3)

Equation (5.1) is given in terms of the function ' (a, b/a) whose precise analytical treatment
has been studied in another paper [Furutsu, 1955] and also in the appendix of this paper, the
results of which are briefly described for convenience of computation. It is a many-valued
function and the following relations are conveniently available for (5.1):

G 2 ¢ 7
&(a,bla)=2¢" & (a) — & (a,—bla), ap >0, bp<0,
=—¢(—a,b/(—a)), r<0,bp 0. (5.4)

Here az and by are the real parts of @ and b, respectively.

Ficure 26. Two ridges and the notations for eqs
(5.1) and (5.2).
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Model experiments for two-ridge diffraction have been tried by Decker and his colleagues
at the National Bureau of Standards. The results of comparison of the theory and the pre-
liminary experiments are shown in figure 27. Here the theoretical values were obtained by
the use of a high-speed computer. The agreement is surprisingly good.
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Ficure 27. A few comparisons of experimental and theoretical values for diffraction loss for a double knife-edge

path.
a. Knife edges at variable heights with transmitter and the two edges in line.

b. Knife edges at equal variable heights, frequency 24.21 Ge/s.
c. First knife edge fixed, second variable in height, frequency 24.14 Ge/s.
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The result (5.1) was obtained in eq (12.2.15) of the reference [Furutsu, 1956]. Recently
an equivalent formula was also derived by Millington et al. [1962], and the comparisons with
the empirical methods of Bullington and Epstein-Peterson were discussed.

The author expresses his cordial thanks to J. R. Wait for his useful discussions and also
to M. T. Decker for kindly showing the data of his laboratory experiments on two-ridge
diffraction.

Appendix
From the definition of ¢ (2) in eq (4.3a),
0o = — 2 o7 _p
E@)=—F(5), F(e)=2 ¢ f et (A1)
yro Jo

Here

7@:; C,,

Co=—"r Oy, O="-. (A.2)

For |z[>1 and |arg(2) |<37/4, & (z) takes the asymptotic form

& ()~ guy |2]3>1, arg (2)|<3r/4, (A.3)
n=1
where
n—3 1
gn=—"— Gn-1, i=—F7" (A4)
= VT2
In the same way, from (4.10),

2 a 2., 52 25 = -
& (a, bla)= (1;111*1 5) et — e 5 (@) + & (a, ba). (A.5)

T\

Here ¢ (a) is the same function as in (A.1) and

—_ 2 2 6l a ) (b/a)ty 2
& (a, bla)=( —=) e*+* f dt,e™ % f e Nidty,
T Jo Jha

)
&0, bja)== tan~' & (A.6)
T b
The function & (a, b/a) can be expanded in the absolutely convergent series of
& (a, bla)=33 hn. (A7)
n=1
Here
1 ol 1o 1 .
hn:' N { (a'z+bh)hn—l+an }s Aqpy=— 1 b"a",],
n n—3%
2
h=oy—= ab. (A.8)
™

For |a*+b%2>1 and |a/b|<1 and |arg(a)|, |arg(h)|<3w/4, the function &' (a, b/a)
takes the asymptotic form
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@, b)~ = (25 3) 2 o B, [alb]<, farg @), Jarg (0) <3eft. (A9)
AV n=0

Here
{.7.2?14—1:]))erv—nAjM—l_km /0: & (b) y
=15 () VA U e

ki=—m—3) (@48 ko1, ko=n""2b(a®+b%) ",

A=a*(@*+b>) 7%, B=b*(a*+b*) " (A.10)
For the case of |a/b|>1, the following relation is applicable:
& (a, bja)=¢ (a) & (b)—& (b, alb). (A.11)
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