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The formulas o f fi eld st rength over an in homogeneous spheri cal earth are obtai ned 0 11 
t he condi t ions t hat (I ) t he r fldius and t he electri ca l pr oper t ies of t he ear th's surface dis­
continuously ch flnge several t imes along t h e w ave path , or (II) t he surface o f ter rai n arh i­
tr'ar ily changes in height alon g the \I'ave path, but it i s st i ll smooth el'ery where and t he 
rad ius of cur vature i s suffi ciently large as co mpar ed w i th t he \\"fLve l en ~th. 

T he case (I ) is considered to be more !!,e ll eral t han t hose of m ixed paths on a smooth 
earth, becau se t he I.atter can be seen as spec ial. cases o f t he former. The case (II) cor­
respo nds to the case of mu l t iple diffraction of r ad io II'a l'es b.v sel-eml mo unt ains ha vi nz 
fin i te rad ii o f cur vature. I n bot h cases, t he unified fornlLllas offield strengt h are obta ined 
ill t he fonn of a multi l) le residue series, wh ich is r educed to t he ordi nary Vall del' Pol an d 
B remmer formula in t he spec ial case of h omo~e neo us ground . 

The conver gence of series of t he fo rm ulflS is "ery good \I' hen the p ropagation di stnnce 
on every sect ion of t he inho mogeneo us gro und is Ion!!; enou!!;h o r t he d ifTrac:t ion loss is large 
enoug h, and is poorll' hcn anyone of t hese d istances is so shor t t hat t he sect ion is effect i ve l.v 
seen as a flat p l.ane, or t he d i ffract ion l oss on the sect ion is ve lT small. In these cases, t he 
flat ear t h or other approximations can be used, and several supplementar.v formul as nre 
p r epar ed for cases of poo r CO li , e r~en ce . Se\"eral special clpp l icat ions are g iven. 

Introduction 

The problems of mi xcd p,l ths ovcr it s lll ooLh earth hH,ve bee n invcstigated by ma ny H,uthors, 
especially in th e case of ,1 nat ea r th , and ma.n~T equations and ,tppl'oxim H,tions h,we b een estnb­
lish ed according to Lh e give n sit1ll1 tion . H owever, the mixed paths in these cascs me/11l Lhe 
rad io wave propagation p,lth ovor a smoo th ground, in whi ch several sections having difl'erent 
electricitl proper ties are includ ed , and thus changes in heigh t are not includcd. 

In pa.rt I of this paper, these cha nges in heigh t are taken into ,1ccoun t on the H,ssump tion 
that the ground s urface cl1<1 nges discontinuously along th e wave path, ,1S illustrated in figure 3. 
A series of papers has bee n established on the theory of propitgation over terrain of this m odel 
[Furutsu , 1957a, 1957b , 1959a], and th e un ifi ed form ula of fi eld strength was obta.incd in the £orm 
of a mul tiple residue series, which reduces to that of mixed paths in the special CHse of smoo th 
earth. This model of terrain Jor lll may not be suitable for the range of VOly high frequ ency 
where the radius of curvature of th e terrain becomes sufficien tly large as co mpared wi th th e 
wavelength , and it also mar no t be sui table for a completely irregular termin where som e 
statistical approach would be more appropria. te. In the fOl'lner CH,se, thc problem could b e 
treated as a multiple d iffraction b~' hills or mou ntains havin g hrge rad ii of CLll'va.ture, in which 
lhe ea.rth 's surface could be included , as illustr,1,tcd in figure 23. Also ill this case, th e field 
strength can be ob tained in a unified £orm of multiple res idu e series [Furu tsu, 1956], and part II 
of this paper is devoted to this subj ect. 

The purposes of this paper ar c th e SUl've.\~ of th ese formulas ,wcl the several possible itppli­
cations to the practically important cases, such as the eva.luations of th e effects on the g" ound 
rad io wav e of ,1 rid ge, a cliff , ,wd a bluff at a close line (part I ) or those of several hills or mou l1-
t,lins, titking into itccount th eir curvatures if necessary (part II). 

1 '-rhis wor k was sponsored b~r the Air Force Cambridge Hcsearch Laboratories, Offi ce of Aerospace Hcscarch ( U SA1" ) , Bedford , ~I{assachu sctts. 
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Part 1. Radio Wave Propagation Over Inhomogeneous Spherical Earth 

1. Equation Formulation 

Solving Maxwell 's equation in terms of t he vector po tent ial , A, the equation in the Car­
tes ian coordin ate system (x) = (x, y , z) becom es (the ear th surface is assumed to be flat for the 
t im e b eing) 

\7=(~' ~, ~) . ox oy oz (1.1) 

H ere, the time factor eiwt is omitted and I is the curren t densi ty of the external system . Other 
notations are those ordin arily used . 

In the case of th e vertical dipole exci tation at the arbi tr ary poin t x' , we may first presuppose 
that the hor izon tally polarized Wfwe will no t b e induced by the terrain of the form assumed 
and thus, usin g the z-axis in the ver t ical direction from the ground, pu t 

A(x) = (0, 0, t/; (x, x')), 1c2!J.o1(x ) = (0, 0, o(x-x' )). (1.2 ) 

Thi s presupposit ion will be justifi ed la ter. TIlus, the solu tion can be represen ted by the Green 
fun ction defin ed by t he equation 

[(vk- 2v ) + 1]t/; (x,x ' ) = - o(x-x'). (1.3) 

H ere, the bound ary condi tion on every horizon tal surface made by the medium discontinUl ties 
is found to be the con t inui ty condition of 

(1.4) 

wh ere o!on=o!oz a. nd the en,r th 's suda.ce is flat in t hi s ca.se. 
E ven when the curvature of the ear th 's surface is ta l"en in to accoun t , eq (1.3) is still valid 

in a sm all bu t practically sufficient domain of the ear th 's surface; it is sufficien t to assume, for 
any sm all line elelll ent having the componen ts (dx, ely , clz) , the length cIs given by the metrics 

H ere, t he coordill a.te system is taken so that the ea.rth 's s urface is given by the surface z= a, a 
being the earth 's r adius. Further, the boundary condi tion (1.4) is also valid on the condition 
t ha.t the earth's radius is sufficien tly large as compared with the wavelength. 

In spite of the fact that eqs (1. 3) and (1.4) are valid only in the case where t he medium 
changes with t he z-coordinate bu t not wi th the x, y-coordinates, we are going to treat the case 
where the height and electrical proper t ies of the earth's surface take sp atially discon tinuous 
values, as is illustrated in figure 3. Indeed, frollt t he defini t ion of t/; , i t is readily proven that 
the boundary condi tion (1.4) does no t hold on the ver tical boundary surfaces of medium dis­
continuity. However , as is seen in the following, this fact does no t give any serious effect 
to the result of the assump tion that eq (1.4) also holds on th e vertical boundary surfaces. 

For any continuous functions of t/; ' and t/;", the Green theorem can be given in t he form 
(fi g. 1) 

FIG URE 1. Th e integration domain j or eq (1.5). 
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(1.5) 

H ere, the lef t side is t he volum e in tegral in t he sp ace ~ and 

[f' (8), f " (8)] = - [f it (8), f ' (8)] 

= 1 [f' G z o~ f lt ) - flt (~ o~ f') ] d8. (1. 6) 

H ere, % n is t he inward normal differ en tiation on t he surface 8 of the arbitrary space ~. 
It is especially to b e no ted t hat the lemma (1.5) holds even when lc takes discon tinuous 

valu es across the surfaces con tained in t he space ~, if bo t h of th e functions f' a nd f" satisfy 
the boundary condition of (1.4) on t hese surfaces. 

W e h er e introdu ce the solu tion f m(x, X') of (1.3) for t he smoo th and homogeneous earth 
hav ing th e propagation constan t k",. By t he use of (1. 5) il.l1d also t he boundary condi t ion , 
t he symmetrical r elation of f m(x, x') is readily d erived ; putting f' (X) = f m(x, XI) and f "(x) 
= f m(x,:rz) in (1.5), t he poin ts Xl ~L nd X2 b eing arbi tr ary poill ts in space, a nd taking t he whole 
space for ~, we llave 

0 1' 
(1.7) 

.It is appr opriate Lo b egin wi t h t he s imple te l'nL ill as in fi gure 2. H ere, t he pr op agation 
co nstants k2 a ndlc3 of t he ground ar e assum ed to b e differ en t . 

N owi n t be precedin g Green t heorem (1. 5), let f' (x) = f 32(X4, x) and f" (x) = f z (x, Xl)' H ere 
f 32 is the Green fun ctio n to be obtained , a nd f 2 is t he Gr een fun ction Jor t he homogeneous ground 
of t he elevation z= az a nd or t he propagatio n co ns ta nt lc2. T aking t he space ~ as the whole 
sp ace excep t t he sp ace enclosed by t he s Llrface 83 defin ed in figure 2, and t he poin t Xl b ein g in :::: , 
we Imve (aZ > a3) 

or 
(1.8) 

(1.9) 

wh en the poin t X4 is helow the s urface 83. H ere, it is no ted t hat the in tegrand of t he sUl'face 
in tegral is con tinuous at th e bo undary of t he m edium lc2 a nd t be atmospher e b ecause bot ll 
f 32 a nd f z s hould satisfy t he sam e bo und ary co ndi t ion , a nd th er efor e ther e is no con tribu tion Lo 
th e sLlrface in tegral on t be right side of eqs ( l. 8) and (l.9). 

Just in t he sam e way, by exch,wgin g the roles of t he Gr een fun ction s f 2 a nd f 3, we have 
(a2>a3) 

(l.10) 

These two equation s ar e com plem entary to each other , and , by the m etbod of successive 
substitution, we have the r equired solu tion in series 

f 32(X4, x l )= f 2(X4, XI) + [f 3(X4, 83)' f 2(83, Xl)] 

+ [f Z(X4, 82), f 3(8z, 83), f 2(83, XI)]+ 

FIG URE 2. T he j01'1n oj te1'rain and the integration 
. domain f o1' eqs (1.8) and (j .9). 
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Here, 
[¢t, ¢t' , ,p"]=[[¢t, ,p' ], ,p"] = [,p, W , ,p"]], 

and, on the vertical boundary surface, the boundary condition (1.4) is taken into accoun t. 
On th e other hand, when the points Xl and X4 are located over the different earth media, 

say on the sides of the media kz and k3' respectively, th e term ¢t32(X4, 83) in the bracketed terms of 
(l.8) and (l.9) may be given by 

>/132 (X4, 83)~lh(X4' 83), 

except in the vertical d~main of 83 which is not important for the integral, because ,p2(83, XI) 
rapidly tends to vanish with the distance a2 - Z by the term exp [-i .. Jk~-ki(a2-z)] in the 
ground. 

Thus 

The above result is just t he equation obtained from (1.11) by the omission of terms of' 
higher order than the third in the series. The higher order terms become important only when 
the point X4 or Xl is located in the immediate vicinity of t h e vertical boundary surface. Also 
the surface integral over the vert ical boundary surf'ace can be neglected because of the large 
attenuation of ,p2(83, Xl) in the ground, and so far the presupposition that the horizontally 
polarized wave will not be induced is self-consistent. 

There may be another problem of singularity of solu t ion at the diffracting edge or unique­
ness of solu tion for the form of boundary assumed. But it is known [Born and Wolf, 19591 
t hat, insofar as the field components can be expressed as convergent Fourier integrals, which 
is the si tu ation in our case, they are free from having singulari ties of too high an order, and their 
uniqueness is assured. 

The above result can easily be extended to the general case where there are several bound­
aries of the earth medium discontinuities, as in figure 3. As is illustrated there, we successively 
assume, along the wave path from the point XI to Xn+l , the values k2' k3, k4' ... , kn for the 
propagation constants of the different sections of inhomogeneous earth, and the values a2, 
a3, a4, .. . , an for the radii of the surfaces of the respective sections, and 1'2, 1'3,1'4, ... , 1'" for 
the propagation distances, respectively. Also, the solu tion in this case will be denoted by 
>/In ..... ~(Xn+ l , XI) and Lhus the solution ,pn-l. .... 2(Xn+l , XI) will be the one to be obtained from 
,pn.. . 2(X 7I+I . Xl) by setting k ,,--'7k n_1 and a,,--'7an_l. 

On referring to figure 3, we now set >/I' (x) = >/In ..... 2(Xn+l , x), >/I" (X) = ,pn- I ... .. 2(X, XI) in 
eq (1.5), and tak e, for t he space ~, the whole space excluding the space of the medium k ~ 
and the atmosph ere above i t in the range z<an- l, the point Xl being assumed to be within ~ . 

Then, as in eq (1.8), we have 

Zn+l > an- l 
(1.12) 

or 
(1.13) 

depending on whether the point Xn+l is within or without the space ~ , respectively . 
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Til the same way, by lottin g >/I ' (X ) = >/1", ... , 2(X n+l , x) and >/I" (x) = >/I ,,(x, J l ) m eq (1.5) , we 
h ave 

(1. 14) 

Here s' is the whole upper surface of the m edia kin for which am?an, m = 2, 3, ... , n - 1, 
plus the surface of z= an above the m edia for which am<a", plus the vertical boundary surface 
or t he medium le n, as is illustrated in figure 3, and bo th the points Xl and X,,+I are to b e outside 
the surface s'. 

'VJlen th e solution >/In- I, .. . , 2(Xn+l , XI) is known , we can, by the s uccessive substitution 
of eqs (1.12) and (1. 14) , express the solution >/In,. .. , 2 (Xn+1 , Xl) in a form of seri es similar to 
eq (1.11): 

>/I" ... ., 2(X n+l , Xl) = >/1"- 1, .... 2(X,,+I, XI) + [>/I" (Xn+l , S,,), >/I n- I, .... 2(Sn, Xl)] 

+ [>/1 ,,- 1, .. ., 2(X,,+I, S' ), >/I ,,(S', Sn), >/In- I, .. . , 2 (S", XI)]+ .. . , (1. 15) 
01', in just the same way, 

>/In, .. ,2(X,, +I, XI ) = [>/In (XI/ +I, S,,), >/1"-1, ... ,2(8,, , Xl)] 

+ [>/In (X n+ I, S,,), >/1,,-1, ... , 2(S", S' ) , >/I ,,(S' ,S:,'), >/1,,-1,. . ., 2 (S;/ , Xl) J+ ... , (1.16) 

dep endin g on wh eth er the poin t x n+l is with in or w ithout tho space L, r espectively. Thus, 
eq (J .15) gives a r ecunence formulf1 1'01' >/I n, .. ., 2· 

As in oq (1.11 ), we Cf1 n n eglect the term s of hig her order tha n t he t h ird or second in the 
seri es abuvo excepL for the range inlmediately n ear t he boundary. 

2. Formula of Field Strength in the General Case 

The f1ttenuat ioll coefficient .11 is ll ere definod by 

./, (:1' :r ) - !!l e- ik \ , 
'f' 0 n+l, I - 47rr ' 

wher e >/10 (Xn+1, XI) may be regarded as the solution in free space. Then, on t he assump tion 
that the boundary surfaces between the d ifferen t sections of the inhomogeneous ef1l'th are 
~),ll vertical and parallel with ef1c h other, the r esult of evaluation accordi ng to eq (1.15) l S as 
follows (figure 3) : 

A (zn+ll l'n,1'n - 1. .. , J'2Izl) = L:; (1'/l'n):A(ZIl+ 1 Irn)t,.1'Crn. - l) '", ',, _I 
In. t n- I • . . "' l2 

X T Crn - 2) ' n- I " n- 2 ... T (r3) '4' '3T (r2) '3 ' '2 f t2(Z I, a2)' (2.2) 

H ere, tm stands for the set of roots of the equation 

W' (t) - qmW(t) = 0, (2.3) 
where 

W( - t )= exp (- i27r/3) (7rt /3)?Hm G [3/2), 

(2.4) 

These notations are sim ilar to those of Fock [1946]. 
The factor f ,/ZI, a2) is the ordinarily defined h eig ht-gain fu nction for t he end point XI: 

65S:;14- Ci3- u 

f,z (ZI, a2) = W (t2- YI) /W (t 2), YI = (2/lela)!lel (z l- a2), 
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and the other two kinds of terms that appear lU the preceding formula for attenuation co­
efficient A are as follows: 

A (Zn+d rn) t n =-J (7r/2)k l r n (2/kla)t (tn- q~) - I'/In (.2 n +1> an) exp [- i { (rn/a) (k l (an-a) + (kla/2) ttn) + 7r/4 } ], 

(2.6) 

(2.7) 

am"? an· 

The term A(z,,+dr,,) In depends only on the electrical properties of the nth section through 
qn and tn and on the propagation distance T' n an d the elevation an of the nth section, but does 
not depend on those quantities of other sections. 

On the other hand, the term T(l' ,,) 1m . I " depends on both the mth and nth sections through 
t", and tn and also through qrn and qn, and therefore it serves as the coupling term between the 
two sections. Besides, it depends of course on the height difference between the two sections 
thro ugh the ordinary height-gain function I ln (a n" an) and also through another height-gain 
function./:)am , an) defined by 

(2.8) 

wbich is proportional to the first-order derivative of the ordinary heig ht-gain function. 
There is a clear one-to-one correspondence between the terms of the formula (2 .2) and 

the respective sections of the inhomogeneous earth , i.e. , the heigh t-gain function .lI, (ZI, a2) 
expresses the effect of the elevation of t he point XI from the ground, of course, and the term 
T(T'2 ) 13,1, expresses the effect of propagation along the surface of the section of No.2. In 
the same way, the term T(r3k13 corresponds to the propagation along th e section of K o. 3, 
the term T(r4 )1"I, corresponds to the propagation alon g the section of No.4, and so on, and 
finally, the term A( zn+l lr,,) I corresponds to t he propagation along the nth section, over 
which the point X,,+ I exists. n 

The convergence of the mul tiple series of the attenuation coefficient A is very good 
when the propagation distance of every section of the inhomogeneous ground is sufficiently 
long, and in this case, the first term of the residue series is a sufficiently good approximation. 
This situation is just the Salne as in the ordinary Van del' Pol and Bremmer formula for a 
homogeneous spherical earth. 

On the other hand, the convergence of the series becomes poor when the propagation 
distance over one of the sections is very small. In this case, tbe flat-earth approximation or 
other proper approximation can be suitably used. 

In the extreme case where the width of the one of the sections tends to zero, it will represent 
a ridge on the ground, as in figure 5. In this case, the responsible series in the formula takes 
the asymptotic form as rm tends to zero (fig. 4) , 

X { kl(a l- an)(2/kla) }+ t t -tn }- I (tn_ q~) - 1 exp [- i(rn/a) {k1(an- a)+ (k1a/2)lt,.} ], (a","? an, a t). 

(2.9) 

Om 

rm 

0.9.-

k m 
k,4 

kl 

On 
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Th e above resul t i applicable to the case of diffraction by ridges on sph eri cal earth, as 
i t will be seen in the example of the followin g section. 

Jt may b e remarked that, in th e special case of a,,= a n _ l= ... = a2, the form ula (2 .2) 
reduces to that previously obtain ed for mixed paths o n a smooth earth [Furutsu , 1955] . 

3. A Few Examples of Applications 

Th e s implest appli cation of the foregoin g formula (2 .2) will be to the case of one ridge on 
a sph eri cal ground, where t he elec trical properties on each side of the ridge could b e different, 
as illustr ated in figure 5. By the use of the resul t (2.9) , the attenu ation coefficient A is then 
given by 

(3. 1) 

One of th e immediate applications of this formula will be t he esLilll a tion of the effect 
of a ridge on a spherical smooth earth (fig. 6), and a no t her will be the sil11ihtr estilllH,t ion of the 
effect of a cliff on t he ground radio wave (fi g . 7). Tn the case in whi ch t he propagation distances 
1'4 and 1'2 on bo th s ides of t he ridge (or cliff) arc lon g enough a nd the heigh t h of th e rid ge (or 
cl iff) is low enough, i.e. , 

so th at s im ply the first term of the series would give ;1, good app roxim a.Lion , t hen tbe eff ect of 
t he ridge (or cliff) can be expr essed by Jllul tiplyin g th e field str ength in t he case of sill ooth 
earth by Lhe factor F~~) . H ere, using the no tation t~ a nd tg for the first vnJu es of the set of 
vftlues t4 a nd t2 , 

(3.3) 

Thus, depending on wheLber t ile boundary is a r idge or a cl ifT, the fi eld strength I S glven 
in the form (figs. 6 and 7) 

(3.4) 

respectively. H ere, K a nd K' correspond to Ie a,nd le', respectively, n.nd according to K. A. 
Norton, K a nd b ar c defin ed by 

and 
K = 111 1-1 2- 1/3, - b= 7r/2+ 2 arg (q) , 

p= kJ~(lela) - 1 / 3, lei = w/c. 

H ence p is proportional to the heig h t of th e ridge or cliff. 

(3.5) 

(3.6) 

T he set of graphs in figure 8 shows the numerical values of th e factor PK,K, giving th e effect 
of a r idge on the ground waves, and it is displayed as a fun ction of p, whi ch is proportional to 
the h eight of th e ridge, for a useful ran ge of values of K and b. 

FIGURE 5. T he form of terrain and th e notat'ions f or 
eq (3.1). 
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FIGURE 6. The form of ten'ain Jar eq (3.3) and 
figure 8. 
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FIGURE 8. Ridqe effect on ground radio wave as a fnnction oJ p and b in the case oJ K '= K . 

In the same way, the set of graphs in fi gure 9 shows the numeri cal values of the factor 
F ttK giving the effect of a cliff on the ground wave, and it is also displayed here as a fun ction 
of p for the same range of K and b. 
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F I G VRE 9. Eilect of cliB' on ground radio 1vave as a 
function of p and b in the case of K'= K . 
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4. A Few Examples in Flat-Earth Approximation 

Th e results of eq (3 .4) are not available in the case where th e propagation distance on 
one or both sides of the ridge is very short. Tben th e effect of th e rid ge depends on the propa­
gation distances from th e ridge, so tbe result is no t so simple as the preceding cases . 

In this case, th e effect of th e earth curvature may be n eglected and the flat ear th ap­
proximation is appropriate; th e convergence or ser ies of t be formula (3.1) b ecomes very poor 
in this case. However, ther e is a general rule to overcome this difficulty which will be treated 
in part II. The results in th e flat-ear th approyimat ion are th en obtained as the asymp totic 
forms 1'01' a-'7a:J, i. e., the infini te radius of earth. The formula (3. 1) in the case of a flat earth 
becomes as follows: 

R eferrin g to fi gure 10, it is convenien t first to in trodu ce t he notations that will be used 
later : 

d4= -i(kdk~)2kl r4/2, 

i 5= (z;-a4) .Jkl/2r4e i1r /\ 

i4= (a3 - a4) .Jkl /21'4ei7r /4, 

w r k;Jllc;, - kT, 
k1=-, k;'= i 

c L kU.J1c~-ki, 

FIG VRF. 10. The form of te1'l'ain and the not(!tions fo1' 
eqs (4 ·2) and (4.4) . 
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d2= - i(kl /k;)2klI'Z/2, 

il = (zl - a2) k1/21'2e i7r /\ 

iz= (a3 - a2) ·,/ k] /2rzei7r/\ 

Vert. Pol. 
(n = 2,4) , 

Horiz. Pol. 

x, 
0, 

(4 .1) 



The attenua tion coefficient in this case will conveniently be expressed by A (3) (Z5h , 1'Z [ZI) , 
which means the attenuation for the wave propagation from the point Xl at the height ZI to the 
point X5 at tbe height Z5 across the ridge of t he elevation a3 which exists at the distance 1'2 from 
the point Xl and the distance 1'4 from the point X5• 

In the special case where both the points Xl and X5 are on the ground, i.e., when z5= a4, 
Zl = a2 or j 5=j1 = 0, 

A (3) (a4 [r;, 1'2 [ a~) = F (d4,j4[dz,jz) = e-(f;+Ji) [0"(,in;j 4 + ,~j2) -i.f;(..Jd4!n4 + ,lcMnz) - 1 

X [,lcl4dz!n4nzc (j4 + i,lc~) G(jz+ i ..Jd~) + (cl4!n4) { 6 (0"4,( ,f;;:d4 +..In:./2) 10"4) 

- g (P4' (j4 + i,r( 4) 1 P4)} + (dzln2){,g (O"z, (,;:n;j4 + ,lnd2) 100z) - rff(pz, (jz+i~) 1 P2 ) }]]. (4.2) 

Here 

c ( 2 )2 z2 n2f '" -xrf '" _ 2 I: (z ,nl z)= hi e + clxe e Ydy, 
""\ 7r z ( n / z)x 

(4.3) 

In the general case of z5~a4 and zl~a2, 

A (3) (z5h , 1'2 [ ZI) = F(d4 ,.f4+j 5[d2,j2+fl) +t {F(d4 ,j4 +j 5[0,j2 - jl ) 

- F(cl4 ,.f4 + f5[0,.fz+jl ) + F(O, f4 - f 5[d2,.f2+. fl ) - F (D ,j4+f sfd2 ,f2+jl) } 

+ t {F(0, j4+'f5[0, j 2+jl) + F(0,j4 - j 5[O,j2-jl) - F (0,f4 +'l 5[0,}2-jl ) - F(O,}4-f5[O,.f2+j l) }. 

(4.4) 

Immediate applications of the formula (4.2) are possible for the effect of a ridge on the 
ground wave, and the effect of a cliff and the effect of a bluff along a coast line, as illustrated 
in figures 11 to 13, some numerical results of which will be displayed in the following. The 
notations that will be used are: 

h : Height of ridge, bluff, or cliff, in meters "-
} : Frequency in megacycles per second 
0" : Conductivity of land in millimho per m eter 

-'-7 7r j . If , 
J. = 900 'V 20" ~ , 

(4.5) 

Case 1. One Ridge on Homogeneous Ground 

The ridge is assullled to have the height h frorn the flat ground and the transmitting and 
r eceiving points to be at the distance 1'2 and 1'1 from the ridge on opposite s ides, as illustrated in 
figure II. 

The two curves in figures 14 (a), (b) represent respectively th e attenua tion coefficien t 
and the phase delay in the case of a homogeneous earth. Here, the abscissa is the Sommerfeld 
numerical distance for the whole propagation distance. On the other hand, th e curves in 

,--r h 
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FIGURE 11. T he f orm of ridge and the notati ons f or 
figures 15 (a ) and (b) . 
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fi gures 15 (a), (b ) r epl'esen t the same at tenua t ion coefficien t and the phase deli1Y in th e case 
wh ere on e ridge is present between the tr ansmi t ter and receiver. H er e, the param eter cl is the 
num eri cal di s tan ce on on e side of th e ridge, and Y is th e numerical height introduced in eq 
(4.5) whi ch is propor tion al to the h eight of t lte ridge. 

Case 2. A Bluff at Coast Line 

The bluff is assum ed to hav e the heigh t h along a coast lin e, and t he tra nsmi t ter a nd re­
ceiv er to be at the disti1nce 1'1 on th e sea side i1 nd 1'2 on the land side from the coast line, as 
illustr ated in figm·e 12. The sea is ass umed to be a perfec tly conducting plan e, while t be hwd 
bas the finite conductivity (1 . 

Th e curves in figures 16 (a), (b) represent the vi11ues of th e a t tenua tion coefficien t i1nd the 
phase delay in the case wh ere th er e is no bluff at i1ll at a coast lin e. The i1bscissa S is t he Som­
m erfeld numerical distance for th e propaga tion distan ce on th e sea side m easured in la nd con­
ductivity, and the p aram eter L is the num erical distance on the land side. 

On the other h and, figures 17 (a), (b) show the valu es in the Ci1se wh ere th ere is i1 bluff 
at the coast line. H ere Y is again the num eri cal height proportion al to the h eight of th e bluff. 

Case 3 . A Cliff 

Th e cliff is ass um ed to have th e heigh t h on the flat ground , a nd th e transmitter and r e­
ceiver to b e i1t the distance 'i'[ on the lower side i1nd 1'2 on the hi gher side, as illustr ated in 
fi gure 13. 

The curves in fi gure 18 display the corresponding values in t his case. 
Tn case 1, rid ge diffri1ction, th e m agnitud e A of t he a t tenuation coefficien t decreases wi th 

t he heigh t h of th e ridge in most cases, but for t he large tr ansmission dis ta nces of D» 1 it 
ceases to decrease at som e heig ht a nd t hen tends to gr adually in crease wit h th e heigh t. This 
fac t m ay be in ter preted by no ticing th a t the diffraction loss by the ridge is ra t her smi1ller th fW 
the transmiss ion loss alon g the dissipative ground i1 t Im·ge tmnsmiss ion dista nces; a ridge could 
give i1U obstacle-gain even on a flat ear t h. 

In case 2, wher e the r adio w,w es propaga,te i1cross a coast line having a bluff, the r ate or 
change of the r elative phase wi th t he dis tance 1'[ (wh ich is propor t ional to t he n UIlJ erical distance 
S in figure 17) from th e coast line b ecom es larger as t he heigh t of the bluff increases and is som e­
times much more thi1n t lll'tt withou t t he bluff. 

Besides the subj ects just ment ion ecl , i t is i1lso possible to evaluate t he difl'mcted wave 
by a ridge of finit e thi ckn ess, as illustrated in figure 19. 

In smnmary of par t I, it lll ay b e r em arked that t he general formul a (2.2) for t he attenu­
ation coefficien t, g iven in th e residue seri es, takes t he unified form independently of th e number 
of sections of t he inhomogeneous earth, but the correspondin g formul a in the flat ear t h i1pproxi­
m ation is probably more difficul t to derive a,nd would take i1 more complici1ted form. Equi1tion 
(4. 2) or (4.4) is an example of th e li1 t ter for t wo sect ions. Practi cally , the case of three sections 
will be the limi tation in which th e Hat ear th i1pproximation is possible, unless some special 
assumptions about th e propagation distances ar e made. Also, t he effect of 1"efl ec t ing waves 
from the boundaries of discontinuities on the tr ansmi tted waves ar e completely n eglected 
h er e. But they are generally believed to be very small in most cases. In lact, t he r esult 
h as been proven to b e exact at least for th e trapped wave (or surfi1ce wave) mode [Furutsu, 
1959b). 

-- f -
LAND 

h , 

FIG URE 12. Th e faT In of coast line and the notations 
for flg mes 17 (a) and (b) . 
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F I GURE 13. T he form of cliff and the notati ons for 
fig1l1·e 18. 
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F I GUR E 14. Th e attenuation coefficient (a) and the 
phase delay (b) in the case of a homogeneo us earth . 
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FIGURE 15. A n example of the attenuation coe./ficient (a) and the phase delay (b ) in the case oj one 1·idge pl·esent 

Fart II. Multiple Diffraction of Electromagnetic Wave by Surfaces Having 
Finite Radii of Curvature 

1. Statement of Problem and the Result in the Simplest Case of One Diffracting Surface 

Many au tllors have discussed t he diffraction of electromagnetic waves by a s ingle obj ect 
such as sphere, cylinder , paraboloid, ellipsoid, plane, etc. However, there are many difficulties 
when trying to calculate the diffraction loss by actual mountains or hills, because they usually 
can not b e seen as a single smoo th diffracting obstacle, but more 01' less have irregulari t ies. 
Strictly speaking, the actual diffraction of radio waves by mounta ins is a problem in mul t iple 
difl'raction. Bu t i t is, of course, impossible to derive the formula of diffraction loss for such 
compl icated obstacles, and differen t mod els have usually been adopted for t he dift"racting 
mountains according to the differen t range of frequency. However , if we could assume that 
every diffracting mountain has a smoo th surface whose radius of curvature is sufficiently 
large as compared with the wavelength , the problem can be treated on fairly general conditions, 
and we can get t he resul t in a unified form , independen t of the number of diffracting moun tains. 
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FIGURE 17. An example of the c01-responding attenllation coe.fJic ient (a) and th e plwse delay (b ) in the case of a 
blu.f! pTesent. 

In th e simplest case o.f' one difrrH cLing surface, t ll e result can be deduced from t he ordin ary 
Van del' Pol and Bremmer formula for diffraction by a large spherical surface. Referring to 
figure 20, the aLtenuation coefficient A, which is the ntLio of the field strength to that in free 
space, is given by 
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FIGU RE 19. T he form of Tidqe having fin ite t.hckn ess . 

FIGUR E 20. Th e spherical di.Dj'acting s1l1Jace and the 
notations for eq (1.1) . 
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Here tis are the roots of 

and 
i ,(y) = W (ts-y)/W (t s), 

~r lcl '"tlc~- lcUlc~, Ver t. P ol. 
iq= (lc l a/2)JiX '-? -O . 

\.. '\ lc'2- k j/lc l , HOI'lZ , Pol. 

For y» I , the height gain function .t~ (y) takes th e asymp totic form 

i s(Y)"-'y- '4 exp r - i( jy1o_ tsY''''+ ty-V,t;+7r/4) l/W (t s), 

(1.2) 

(1.3) 

(1 .4) 

where the argument of the exponen tial function is expanded wi th r espect to ts and the terms 
involving powers higher than 2 rtr e neglected. Thus, when the heights of either 0 1' both the 
transmitter an d receiver take sufficien tly large values as YI, Yz» 1, the attenuation coeffi cien t 
A of (1.1) takes the following forms: 

52 



--------------------------------

A"-'exp [- i( lc 1a/3) (rda) 3] 2, ':;;: -/1'/'-:; L; (t,-q2) - IW (i s) - I X exp [- i { 0(lc1a/2) 1/3ts + rr/2 } li s (Y2) , 
s 

(l. 5) 

Case 2: Yl» l , Y2» 1 

(l.6) 

]n case 2, the seri es is convergent for tbe whole range of e. On the oth er h and, in case 1, 
the seri es diverges for negative valu es of 0, a nd hence it must b e a nalytically continued , as will 
b e shown later. Thus t he fLllalyticrtlly co ntinued fun ction A of 0 is regular 011 th e whol e range 
of 0, jncluding n egative values. However , in case 2, if tbe square term of l ; wer e neglected in 
the expon ential fun ctio n, the fun ction A of e would have a pole at 0= 0, even though i t is 
analyti.ca.lly co nt inu ed . Thus t he squa re term of t; canno t b e neglected in case 2. 

The convergence of seri es of t hese formul as is good for large diffraction angles. B u t, 
otherwise, it becom es poor. However, t her e is som e gen eral rule to overcome this poor co n­
vergencc, as will b e trea ted in t be followin g secLion. 

Since the above ("es ulLs ha.ve b een developed accordin g 1,0 Lh e orig in al Van del' Pol and 
Bremmer formula. g iv en ill resie! ue sC'l"ies, they co uld b e valid only when both Lh e tl"<LllsmitLcr 
alld r eceiver nre not rar Jrom lhe Surrllce , <lncl i t is noL immedillLely d emo w heth er they arc 
al so valid even whell cllicubting the field rar f["Om lh e surfllee. 

But it ca n be provcn [Furutsu, 1956; ·Wai.L lwd C'o nda, ]9591 tlHLt the rcsults (1. 5) and 
(1.6) arc correct even when th e tmn mitter lind rccciv(,1" nr(' a L g r('a t di s tlUl ccs from th e dif­
fraction surface as compltred with lh e r/ldius of cu rvature, if W(' r ein terpret 1'1 ( ~..j2ahl ) lwd 
T2( ~ , 12ahz) as th (' leng lhs of Ul e parts of" wave p a th from th e LOLnsmitler a nd r eceiver to lhe 
first conlacting poin ts on the difl'mcl i ng sm face , r es peclively, as ill us lraLed in fi gure 20. The 
importa nt pInt 01' th e mounta in surf /lce which decisively contribu tes to the diffracLing waves 
is th e ve ry small par t or the surf"a ce in t he vic ini ty o f" wave paLh, and the OtllC!" par t is not 
import~ml , prov ided th a.l lh e mdius of cur vature of surface is sufficiently hu·gc as comp<tl"eci 
with tb e wtlVclength. 

On the other hand, in this sm llH part of the diffracting surJltee, the su r!'lLC'e co u1d b e ex­
pressed as a surface or second degree h aving some fini te radiLl s of curvature such as a sphere, 
cylinder, paraboloid , etc., and therdore it follows that we could solve th e IVlwe eq utlLion 
eX~"lCtly in the range of the importan t part of th e diffracting surface. In flleL, lbe Green fUllc­
t ion usually happens to be the same in this small rn.nge, independently o f" l he kinc/s or sUl"fac('s 
adopted , provid ed thlLt the radius or curvature of the diffl"l1 cting sudaces is defin ed along U: c 
wave path. 

2. Methods for the Case of Poor Convergence 

FOl" kinds of series such as (1.5) and (l. 6) , there are som e ge neral rules to overcome th e 
difficul ty wh en the convergence or series is poor. T aking into lLccount 

[ (t - q2)W(t ) ] 
Rest~" W' (t )- qW(t ) = ] , (2. 1) 

we h ave for the arbitrary series ~sa(ts) 
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1 r (t - q2) W et ) 
~ a(t,)=~ 27ri Jcs W' (t)- qW(t ) a(t)dt , (2.2) 

where 0 , is the infinitesimal contour integration path around th e 8th pole. 
Hence, if the integrand thus formulated does not h ave any pole besides th e poles ts's, as 

in case 1 of eq (l. 5) , th e sum of the contour paths is equivalent to th e contour path 0 around 
the set of poles, as illustrated in figure 21. Further, if the in tegrand tends to zero sufficiently 
r apidly at infinity, we can deform it to th e path 0 1+ 0 2 in figure 21; these paths are proven 
to be tbe best paths for numerical integration in the meaning that tbe integrand decreases 
most rapidly on these paths. Furthermore, in th e case of (1. 5) th e integral converges for 
negative valu es of 0, even when th e original series diverged. Thus 

(2.4) 

On the other h and, however , if th e integrand has extr a poles, such as those of the func­
tion H' (t), besides the n ecessary poles of t s, the foregoing method canno t be used, and anoth er 
in tegrand must be sough t. 

From tI le Wronskj~l,n identity, we see that. 

{ qv(ts)-v' (t s) } W ets) = 1, v( - t ) =~ -Ji { e-i 7r /6t1 /zHl% G t3/2)+ei7r/6tl /ZH lY3 G t3/2) } . (2.5) 

H ence, in principle, we could multiply th e in tegrand by this fun ction to any power we wish ed . 
For example, by multiplying it once, eq (2 .2) is replaced by 

"'" () _ - 1 "'" I ( V' (t ) - qv(t ) \ ( 2)W Z() ()d 
L.....J a t s - 2""' L.....J W' (t)- W (t» ) t - q tat t. s 7r~ s . c, q . 

(2.6) 

Thus, even if the old integnmd bad the undesirable extrn. poles of the function BT(t) , 
the new integrand would not h ave them. Thus we h ave the contour integ-ratiou path 0 and , 
further , the path (\+02 if the in tegrand decreases sufficiently rapidly at infinity. This 
situa tion actually occurs in the series of (l.6) . 

H ere th e question may occur whether i t is possible to multiply the integrand by the 
square of the fun ction (2 .5) and to deform th e integration path to tlw path 0 1+02 • The 
answer is no, because, though the integrand has no extra pole besides ts, it di verges at infinity 
ou the Wfly deforming the path from the 0 to the pa th ("t + Oz. Hence, generally, there exists 
only one integrand for whi ch the in tegration path 0 1 + (12 is available. 

Usually th e Kirchhoff approximation terms appeitr itS th e leading terms of these in tegrals, 
and are obtained from the flsymptotic forms of the in tegmnds for large magnitudes of t; for 
in stan ce, 

- 1 { v' (t ) - qv(t ) 'I 1 
27ri W' (t ) - qW(t ) ) ~ - 47r (2.7) 

on th e path ('] or ~Ll1y path of (0, coe - ill) in the range 7r> f3 > 7r/3, and i t tend s Lo zero as /t/-? co 
on th e path ('2. 

t- PLANE 
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FIGURE 21. Th e infinitesimal contoll?' path C s and 
th e integration paths C1 and Cz j ar eqs (2'/3) and 
(2·4)· 



Using these asymptot ic fo rms in the integrHnd 0(' A for case 2, iL becomes 

with 

The result o f exact evaluation takes the form 

H ere, the numerical values of the fun ction G(O have been calculated by Logan [1959] 
('or a surface of p er('ect conductor, and by ' '\Tait and Conda [1959] for I), wide m nge of surface 
impedance, Tt may be remmkecl th,),t Lhe corresponding numeric:lI in tegmtion meUlOd for 
Lhe case of poor conve rgence has bee n used more previously by Fock [] 946] and Rice [1954] , 

3 , General Formula for Diffraction by Two or More Surfaces 

As illustrated in fi gures 22 and 23, we Il OW co nsider the general case wh ere t li e waves 
propagate over several mountains with t he subscrip ts 2, 3, , , " n along the wave p ath 
frol11 the point XI to XI/+l, and t he r adii of curvature (along the wave pa th) az, a3, , , " 
a l1 , and the propagation co nstants fe2, le3, , , " le l/, respectively, Th e diffmction angles 
of the r espective moun tains will be denoted by Oz, 03, , , " 011, and t hus dm = a rnO", (m = 2, 
3, , , " n) will b e tlt e distance of that par t of t he wave path co ntacting tbe mth mountain , 

Now, on the assump tion t hat the whole Wtwe path li es in a pla ne profile, the result o[ 
evaluation gives the fo11owi ng expl'e sion 1'01' the attenuation coeffi cien t A whi ch are :i ust 
t he generali zations of (1.5) and (1. 6) , Using t he no tation l rn for t he set of roots of eq (1.2) 
in the case of q= q,., they are [Furu tsu, ]956]: 

Case 1: 

A = { (1',,+1. n+ dn+ ' , , + 1'32 + dz+ f'21) / le ;,- I1'n+1. "1' ,,, n-1 "f'3z1'zd 1/2 

X :L; T (r n+I,l1) O, /n T(~ I/) In " T(~3) /3T (rn) /3 , I Z T( ~z) /Z T(r21) /2 , 0, (3, 1) 
to", " t3,t, 

Case 2: (a2 /r21) 3/4(le l a2)- 1/4?:,1 , 

(am/l'm, m±1)3/4(le1am) - 1/·1 « 1 

(aZ/r32) 314 (klaz) - 1/4 « 1, 

(3~m~n) 

A = {(r n+l, n+dn+ ' , , + r32 + d2) / ler - 21' n+I ,,,1'n,n_1 

X :L; T(rn+ l ,n)o ' / n T( ~ n) In ' 
t n . . OJ f3 J l2 

r 
's 

F I GU RE 22 , Th e jorm oj di.O'1'I1ct7'na sllrjaces and the 
notations jor eq (3 . l). 
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FIGl:RE 23, Th e fonn of terra in and the nolations jar 

cq (3 .2) . 



Case 3: (a2 /r21)3/4(k1a2)-1I4?:.1, (a ,,/rn+l ,n)3/4 (k1a,,)-1/4?:.1 

(am/rm,m±1)3 /4(klam)-1 /~«1 (3:S; m :=:;n-l) 

A = {(dn + rn,n-l + ... + d3 + r32 + d2) /k~-3rn,n_lrn_ 1 ,n-2 . 

X ~ T(~n,Zn+l) 'n T (rn,n- l) tn' 'n-I T(~n- l) ',,_I 
tn, .. , t3, t2 

Here, rm, n is the distance between the mth and nth mountains and 

(:3.4) 

In case 1, both the transmitter and receiver are sufficiently apart from the diffracting 
mountains (fig. 22). The formula (3 .1) in this case consists oJ two kinds of terms, one of 
which, T(~m) 'm' depends only on the diffraction angl e, the surface impedance and the radius 
of curvature of the mth moun tain, but does no t depend on those quantities of other diffracting 
mountains. 

On the other hand, the other kind of term T(rrn,n) 'm ' 'n depends on the radii of curvature 

of the mth and nth mountains and their electrical properties through tin and t Il and also t he 
propagation distance between them, but does not depend on other quantities. Therefore, it 
serves as the coupling term between the mth and nth mountains. There is no other kind 
of term. 

This fact fac ili tates the understanding of th is formula considerably; there is a clear one­
to-one correspondence between the terms in the formula and the respective parts of the wave 
path: for instance, T(rzl ) 10.0 corresponds to the wave path from the point XI to the second 
difl'racting surface, t he tel~11 T( 6) 10 corresponds to the wave path along the sam e diffracting 
surface, and T(T32) '3, '2 correspon ds-to the propagation in fr ee space from t he second to the 

th ird diffracting surface, etc. 
As already stated, th is formula is essentially th e genemlization of tIl e formula (1.6) for 

one diffracting surface which was derived from the original Van del' Pol and Bremmer formula 
on the restrictive condit ion that both the transmitter and the receiver are not so far from the 
diffracting surface as compared with the radius of curvature. But here i t is derived from this 
general formula as the special case of one diffracting surface, on the more general condition. 

In case 2, one of either transmitter or receiver, say the point XI, is on or neal' the diffracting 
surface (fig. 23). The only difference from that of case 1 is in the last two terms; they were 
replaced here by the term T(~2 , ZI) '2' an d the others are just the same. Here, }'m( z, am) is the 
ordinarily defined heigh t-gain function. Again , the sp ecial case of this formula agrees wi th (1.5) . 

In case 3, both the transm it ter and receiver are on or near the respective diffractin g 
surfaces . The change to be made in the preceding formulas is so evident t hat it might not 
be n ecessary to mention i t here expli citly. 

Sometimes it may be necessary to take into accoun t the contribu t ions of the waves which 
are reflected from the surfaces between the diffracting mountains. YIathematically speaking, 
these reflecting points on the surfaces are just the phase station ary points of the integrand, 
and we could get t he result from these formulas by multiplying the reflectioll coefficients of 
the surfaces and also adjusting the difl'raction angles so that they correspond to the reflected 
wave paths. 

4. Summation of the Series 

Finally, t here remains the problem of convergence of t he formulas (3 .1) to (3 .3) . Th ere 
are two kinds of seri es in the above formulas; one is of the form 

~ T (rnz+I,,,,) '",+1, 1m T(~m) 'm 1'(rm, "'-1) 'm' 'm - I' (4. 1) 
tm 
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and its convergence is pOOl' wnen ~'" is neal' or smaller than 1. Now the treatment for t he case 
of pOOl' convergence is xactly the same as in section 2. Using the same method , we haye 
the result 

(4.2) 

H ere, on referring to eq (2 .9) , 

and ~:n depends on the preceding and succeedin g diffracting surfaces through tm±l, and thus 
it serves as the only coupling variable between the diffractin g surfaces. 

When the diffraction angle of the mth surface is sm all a nd/or til e l'adi us of curvature is 
sufficien tly small , th e second correction term becomes very s mall in most cases and can be 
neglected as compared wi th t he first leading term; in the case of ~I/" 17",«1 t he series (4.1) takes 
the simple form 

""-'T(l' ) 1'(1' ) .:t(<1'((t - t' )1 ei,,/ol) Ie' /(11 + J/' ) ~-. 1Il + 1. , lf" l lft+ l 'O m,m - l O,ltn_ 12 ) C; m C;m 17 m "' I r m+ J,m l m,m - 1, 
tm 

~m« l , 

2 2J '" 2 (;(z)= ,_ eZ p - t cit. 
",7r z 

.' 

(4.3a) 

Ano ther spec il1 l case is the case in 
are sufficiently h1rge, as ~"'± I / 17m± l» 1. 
can b e neglected: 

wh ich t he diffraction angles of the m± lth moun tains 
I t follows then t hat ~;nl17tn« l find thus ~;n in (4.2) 

,, - 1'( . ) J'( , ) . '?(f, I?) 1/ 3 Ji'(t ) ~----1 - lm + l , lnlm+ I'O . I m,II1-10,lllt _ l \~ Clam .:..J <; m. 7J m,QIll' 
1m 

(4.31) 

Similarly, on t he cO lldi l ion or ~ml17"'» ] and U17 I'2- ] (t~m) , 

Here, t he function A1(~m, am) is introduced for later co nven ien ce. 
The other kind of series is 

L:,T(1'32 )/s, I,T(h , ZI) t2,,-,T(1'32)13, O~T(~2- ~~ ' ZI)12, (4.4) 
I, 12 

which always occurs with the heig ht-gain function of receiver or transmitter. Us ing the same 
method as in section 2, i t takes the form , on tbe condition that ~hl» 1 (l~2) and ~2/172'2 - 1, 

r Ie lie' 2 7 2/ le2 1: - • 1:» I 1'\ 2- 1( 1 2, ~ CI t. o. 
lc l /lc~= 1 

\.. "'!k~- lc;/lcl' Hori7.. Pol. 

(4.5) 

Here, Z l is the height of the point XI from t he surface, a nd the funct ion .!J(~) hn,s been numeri ­
cally calculated by Logan [1959] for the case o[ a perfect co nductor CLnd by VVait ,mel Correia 
[1959] [or a wide r ange of smface impedance. 

Special appli cations of th e supplemen tal for mulas will be as follows: 

Case 1: (n'2m'22) . 
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This is the case where the diffraction angle of every diffracting surface is sufficiently large. 
On using (4.3c) in the formula (3.1), the attenuat ion co efficien t A takes the form 

A = {(rn+I,n+ cln+ ... + 1'32 + cl2 + 1'21 )/k't - I1' n+I ,n 1'n. n- I" . 1'321'21 } 1 / 2 

XM(~n, a n)M(~n_I' an- I) . . . M(~2' a2), (4.6a) 

or, when either or both transmitter or receiver is on or near the diffracting surface, the formulas 
(3.2) flnd (3.3) , respectively, give on using (4.5), 

A = {1'n+!. n+ cln+ . .. + 1'32 + cl2) /k~ - 21'n+ I , n1'n, n- I ... 1'43r32 p/2 

XM(~n, an) ... jl1( ~3 , a3)g(~2)j(Z I ' a2), (4.6b) 

A = { (cln+ 1'n, n- I + . . . +r32 + cl2) /k~ -31' n. n- I ... 1'43r3d l / 2 

X j(Zn+l, an)g(~n)M(~n- I' an- I) ... M(~3, a3)g(6)j(ZI, a2). (4.oc) 

These results j llSt correspond to t he so-called multiplication rule in diffraction. 
Another application that may be of interest will be that in which one of the diffracting 

surfaces does not serve as a diffracting obstacle but simply as a reflecting surface, as in fi gure 24. 
In this case the coupling between the preceding and succeeding surfaces becomes very serious. 
From the leading term of formula (4.3a) we have 

Case 2: ~m/TJ ",« - l 

When this result is substituted in (3.1), (3.2), and (3.3), they indicate what would happen if 
there were no diffracting surface at all between the m ± 1 th difl'racting surfaces: the phase terms of 
8", {r"" m'f' I/ (1''''+I . ",+ 1'",. "'- I) }(klam±I/2)' /3tm±1 are respectively combin ed with the terms of 
l'(~m± l) 'm±1 to give th e new diffraction angles 8;n±1 due to the omission of the mth surface (fig. 
24) . The correction to the leading term can be proven to give the reflected wave from the 
mth surface. 

In the same way, when the convergence of the double series 

is poor with respect to both tm and t rn+I' we have the leading term (fig. 25) 

which is valid for TJ rn «l, TJ m+I«1. Here, 

FIr. URE 24. The sit1wti on i n the case of eq (4 .7) . 

58 

T R 

m m+1 

FIGI.;RE 25 . Tr. e for111 s of d'i.fFracting surfaces for eqs 
(4-8) and (4 .9) . 



I 
> 
I 
I 

I 

r 

f3m= { ~m- (k l1'm, 'In- I) - 1(k la",/2) 1/3 (k1arn -d2) 1/3 t",_ I } / ry "" 

!:m= { 'Yf3",+ f3m+1 } [(r", +2, m+l + 1'",+1, 'In) (rm+l,m+l'm,m- I)/l'm+l,m(r",+2,m+ l + 1'",+ I,m+1'm,m- l) )1 /2, 

')'== { 1'm+2, m+ lfm, m-l/(rm -+ 1, m+ rm, m- t ) (rm+2, m+l + 1"1fI + 1,1n) } 112 , etc., 

Th e resul t of (4.9) con esp onds to (4.3fl ) and can b e applied to Lhe forJ11 ulfls (3 .1 ) , (3. 2), and 
(3 .3) for the condi Lions ~m«l, ~m+I«1. 

vVh en ~m-drym-l» l and ~m+2/ry m+2» 1 , t he terms of t",_1 a nd tm+2 in (4. 10) can b e neglected 
as in (4 .3b) . a nd it follows that 

(4.11) 

For t he case in wll ich (4. 11) ca ll be used , the coupli ng b eLween the mLh and m + lth SUl'­

faces and t he oLher surfa ces is 10sL, and th us Lh e:v b ehav e in depend ently jn Lhe for mulas (3 .1 ) , 
(3.2), a nd (3. :3) for t he att ellua t io n coeffi cien L.It. 

5 . Diffraction by Two Ridges 

The special case of n = 3 a nd ~2, ~3«1 , 1'01' which (4.9) fi nd (4. 11) are valid , cOlTes po nd Lo 
t he case of Lwo-r idge difl'rac Lion, as illus traLed in fi gure 26 . A sLnt ighL applicaLio n gives t he 
r esult 

Here 

!:2= { (82+ 83) 1'21 + 831'32} ,'kI1'43/2 (1'32+1'21) (7'43+1'32+ 1'21) , 

!:3= { (82+ 83) r43+821'32} ·Jkl1'2 1/2 (1'43+1'32) (1'43+ 1'32+1'21), 

(5.1) 

Equ ~1 t i on (5. 1) corresponds to the F r esnel integr al in Lhe case or a sin gle ri dge . lnd eed , 
letting 1'32 0, it follows that 

!:3= !:2= (83+ 82) , Ic lr HI'21/2(1'43+ r 21) , 

and thus, according to t he den nition of ()(z, ·n) in (4.10) a nd (fCz) i n (4. :3IL) , eq (5.1 ) b ecom es 

(5.3) 

Equation (5. 1) is given in term s of the fun ction r5" (a , b/a ) whose precise an aly t ical t relLtmen t 
has been studied in ano ther p ap er [Fur uts u, 1955] a nd also in t he appell d ix of Lhi s paper , th e 
resul ts of whi ch ar e briefl y descri b ed for conven ience of comp u ta t ion. .l t is a JlltLny-val ued 
func tion and the following r ela tions ar e convenien tly available for (5. 1) : 

6'(a , b/a) = 2eb2 6 (a) -IJ' (a ,- b/a) , au> O, bu :S O, 

=-IJ ( - a, b/( - a)) , an :S O, bu> O. 

H er e au and b u are the real parts of a and b, r espec tively . 

F I GU RE 26. T wo j'idges and the notati ons Jar eqs 
(5.1) and (5.2) . 

59 

x, 

(5.4) 

x. 



:\fodel exp erimen ts for two-ridge diffraction have been tried by D eck er and his colleagues 
at the N ational Bureau of Standards. The r esults of comparison of the theory and the pre­
liminary experimen ts are shown in figure 27 . H ere the theoretical values were ob tained by 
the use of a high-speed computer . Th e agreemen t is surprisingly good. 
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F I GU RE; 27. A jew co m parisons oj experimental and theoretical values j or diffract'ion loss j or a double kmfe-edge 
path. 

a, Kn ife edges at variable heights with transmitter and the two edges in line. 
b. Kn Ue ed ges at equal variable lleights, frequency 24.21 Gc/s. 
c. F irst knife edge fi xed , second variable in height, frequency 24.14 Ge/s . 
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The result (5. 1) was obtained in eq (12.2.15) of the reference [Furutsu , 1956]. Rcccntly 

an equivalent formula was also derived by Milling ton et al. [1962], and the comparisons with 
Lh e empirical methods of Bullington and Epstein-Peterson were discussed. 

The au thor exprcsses his cordi'Ll thanks to J. R. Wait for his useful discussions and also 
to M . T. Deckcr 1'01' kindly s howing the data of his laboratory experim cnLs on two-ridge 
d iffraction. 

Appendix 

From the defLnit ioll of 6(z) in eq (4.3a), 

2 - """"7 2 2 i' · 8'(:z) = e' -6(z) , 6 (z)=- e' e- l-dt. 
-,I; . 0 

(A.l ) 

:Herc 

'" (5 (z) = L: en, 
n= l 

(A.2) 

For Izl» l and larg(z) 1 < 3-n-/4 , t (z) takcs th e asymptotic 1'01'111 

'" 
(n z )"'-'L: gn, 121 » ], larg (z) I<371-/4, (A.3) 

n = l 

(A.4) 

In th esfun e way, from (4.10), 

2( a) . 2 . - """"7 t (a, b/a) =; LlIl - l 7j ea-H - eO- ( ; (a) + t (a, b/a). (A .5) 

Hcre 6 (a) is th e slune funcLion as in (A.1 ) and 

2 a 
6 (0, b/a) =; tfLn- 1 b' (A.6) 

The function 6 (a, b/a) can be exp1wded in the absolu tely convergent scri cs of 

'" 0' (a , b/a)= L: h". (A.7) 
n= l 

Hcrr. 

(A. S) 

For la2+ b2 I I» 1 and la/bl< l and IfLrg(a) I, larg (b) 1 <3 7l'/4 , thc fun ction 6' (a, b/a ) 
takes the asymptotic form 
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Here 

(A.IO) 

For the case of lalb I > 1, the following relation is applicable: 

I! (a, bla) =0'(a) r$'(b)-0'(b,alb). (A.ll ) 
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