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The response (e.g., dose-rate) of an isotropic detector to primary radiation from a
finite plane source may, for points less than a mean-free-path distant, be evaluated as the
sum over an infinite series, This series is derived by expanding the exponential dependence
exp (—uor) as a power series in por and integrating, numerically or analytically, each term over
the source array. If the medium is effectively infinite and homogenecous, the scattering
properties of this medium can be characterized by a point isotropic source buildup factor.
Buildup factor data are often approximated by formulas having simple analytic dependences
on wer and numerical parameters independent of uor. Any such set of parameters can be used
to generate a set of weight functions b, for an infinite series buildup factor representation

exp (o) D ba (—ugr)"/n!

n=0

which can be used with the above primary radiation series solution to give, instead, a
series solution including both primary and scattered radiation. Tables of b.'s (air-dose
buildup only) derived from coefficients of cubic polynomials fitted to the Goldstein-Wilkins
data (NYO-3075) are given for 0 <n <13 at primary photon energies of 0.5, 0.7, 1.0, 1.5, 2.0,
3.5, 5.5, 7.5, and 9.5 Mev in water, Al, Fe, Sn, W, Pb, and U. The method is applied to give:
(1) a comparison with dose-rates measured by a detector separated from a Co-60 rectangular
plaque food irradiator by a layer of steel and a layer of water and (2) dose-rate profiles at

constant heights across a cleared circular area in a Co-60 infinite plane source in air.

1. Introduction

A number of methods for evaluating radiation
fields from distributed sources have been developed
as part of a general program at the National Bureau
of Standards [1, 2]' and other agencies. Some of
these methods, which provide easy and rapid solu-
tions to radiation shielding problems, rely on the
approximate proportionality between dose-rate and
the solid angle subtended by a uniformly radiating
surface. This approximation has been shown to be
quite good if the material interposed between source
and detector is of the order of a mean free path in
thickness [3].

For situations involving much less than a mean
free path of interposed material, as in the case of a
detector separated from a surface deposition of
radioactive material by only a thin roof or a few feet
of air [4, 5], the power-series method developed by
Sievert [6] for circular disk sources has been extended
[7, 8] to include rectangular sources and to take into
account point-source buildup factor data in poly-
nomial form [9].

*Work supported jointly by the Office of Civil Defense (DOD), the Navy
Bureau of Yards and Docks, and the Defense Atomic Support Agency.
1 Figures in brackets indicate the literature references at the end of this paper.
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In addition, it has been reported [10] that buildup
data from a number of other analytic formulations
[11-15] can also readily be transformed for direct
use in a Sievert-type power-series solution. The
present work constitutes a published account of the
material reported in [10] and includes a quantitative
comparison of the buildup data formulations con-
sidered [9, 11-15] for Co-60 gamma rays in aluminum
for zero to ten mean-free-path penetrations, a table
of buildup data transformations, a sample table of
transformed buildup data, and sample calculations
and results.

Besides fallout radiation studies [5], the power
series method is applicable, or has already been ap-
plied [16] to such diverse distributed source studies
as:

(a) Tracer studies involving an elongated rec-
tangle as the initial distribution of radioisotope-
tagged sand in a beach-erosion sand-drift experi-
ment [16],

(b) food irradiator design studies involving plaque
sources [3, 17, 18], and

(¢) calculation of the dose distribution in tissue
adjacent to disk or other shaped radioactive appli-
cators for treatment of malignancies [6, 19]. Also,
buildup data in the form of the series coeflicients
presented here are directly applicable to a method



of barrier shape optimization described by Jain and
Sharma [20] who use, in effect, the first three terms
of this series for their analysis.

2. Buildup Factor: Definition and Discussion

As in references [9] through [15], the source and
detector environment is idealized throughout this
paper as a homogeneous infinite medium, shown
schematically in figure 1. In such an idealized
situation the scattered radiation reaching the de-
tector can be taken into account by means of a
point isotropic (PTI) source buildup factor [21]

Bpri (K, Z, B sl (1)

which depends on the effective atomic number 7
characterizing the medium and the distance r be-
tween the detector and a monoenergetic point
source of photons of energy ? K.

The quantities 1° and D?® in (1) refer to the un-
scattered and the scattered components, respec-
tively, of the radiation received by the detector.
For a given physical situation, 1) and D* (and
hence Bpr ([, Z, 7)) can assume a variety of nu-
merical values depending on what kind of detector
response (e.g., photon number flux [22], energy
current [22] at an interface, energy dissipation in a
medium- or air-equivalent detector, etc.) is used to
describe the radiation field. The buildup factor
data in this work correspond to a detector which
measures radiation fluz in terms of energy dissipation
an air. In this case Bpr(Ey, Z, ), D° and D* in (1)
are the same as the quantities By, [, and [,
defined in [21].

2 Here, and in what follows, the source is considered to be either monoenergetic
or an effectively monoenergetic component of a photon energy distribution over
which the final results must be summed.
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Ficure 1.

The total detector response D to a point isotropic
source is

D=D"4+-D*=D"Bpr(E,, Z, 1)
= (k/4m)[exp (—uor)/7*|Bepri(Ey, Z, 1) (2)

in which u=u(£,, Z)] is the narrow-beam attenua-
tion coefficient [23] at photon energy FE, for the
medium. 'The source strength factor k, for the de-
tector response-type (DD=1,) specified above is

k=nX X pe,(Fy, Z) X (dimensional factors) (3)

where n 1s the total number of photons of energy £
emitted per second by the source, pm(Eo. Z) 1s the
energy absorption coefficient [24] for air® and the
“dimensional factors’ provide the units [e.g., (rads/
hr)/curie] desired in the final answer.

3. Analytic Formulations for By (H, Z, 7)

For applying buildup data to distributed source
problems, the dependence of Bpr(Fy, Z,r) on 7 is
usually approximated by some analytic function.
This not only provides some economy in data tabu-
lation, but the function can be so chosen that its
presence entails little or no additional complication
in the integration

D= (o/4r) fs [exp(—g?)/r*] Bors(Bo, Z, 1)dS (&)

of (2) over a distributed source S with differential
elements dS, as schematized in figure 2. The con-
stant factor in (4)

o=dk/dS (5)

3 Note, however, that example 1 in section 7 requlres an answer in terms of
energy dissipation in water (D= ID) rather thanin air (D=1Ia), so, that u .n (£, H20)
is used in the computz ation in 7.1, rather than u .. (Ho, air) corresponding to the
data in table 3 in section 5.
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Finite plane isotropic source geometry.
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is the source strength per unit of source area or
volume, with £ defined as in (3).

The following functions (a) to (f) have been used
to represent point isotropic source Bpyr (£, Z, 7) data
in order to obtain analytic solutions to (4).

(a) Linear approximation [11] (one parameter):

By (Ey, Z, 1) =1+aur (6)
where
a=(o—Hen) /ben- (7)
(b) Exponential-linear empirical fit [12] (two
parameters):
By (Ko, Z, ) =1+4au,r exp (—bugr). (8)

(¢) Exponential-polynomial fit [13] (one or three
parameters):

Byt (Ey, Z, 1) =exp (4-uor) (br+-1) (9a)
or, for larger thicknesses:
Beri(Ey, Z, r)=exp (+upr) (ar*+br+c).  (9b)
(d) Low order polynomial fit [9, 25] (three
parameters):
Breri(Eo, Z, 1) =14Bipgr +Ba(uor)*+Bs (uor)*.  (10)

(e) Sum-of-exponentials fit [14] (three parameters):
Byri(Ey, Z,7)=A exp (—ayur) +(1—A) exp (—asuyr)
(11)

TABLE 1.

(f) Exponential-linear moments calculation result
[15] (four parameters):

Byeri(Eo, Z,7)=1+por{ A1 By exp [(1—By) uor]

+A:B; exp [(1—Ba)uer]}.  (12)

Table 1 contains data calculated at yor=1, 2,4, 7,
and 10 mean free paths according to approximation
(a) above, empirical fits (b) to (e¢) and direct-result
parameters (f), in addition to earlier calculated
results from NYO-3075, [26] (2), all for “exposure
dose” (air-equivalent detector) in aluminum and
interpolated to 1.25 Mev.

The column headed e, beside each column of
calculated data contains percent deviations from the
recent Berger-Spencer [15] results (f),

B—B (Berger-Spencer)

B (Berger-Spencer) (13)

X 1009,

€r—

and the column headed e, contains percent deviations
from the Goldstein-Wilkins results (g) to which (b),
(d), and (e) were fitted,

B—B (Goldstein-Wilkins)
B (Goldstein-Wilkins)

X1009%,. (14)

€=

As seen in table 1, the Goldstein [11] linear
approximation (a), above, involves neither fitting
nor transport theory calculations. It is very useful
for penetrations up to one or two mean free paths,
and gives results within a factor of two up to ten
mean free paths in aluminum.

The point isotropic source butldup factor (“‘exposure dose’ : air-equivalent detector), Ber(Ey,Z), for 1.25-Mev gamma rays

in aluminum evaluated from five different analytic approrimations (a to e) at 0, 1, 2, 4, 7, and 10 mfp, compared with the
corresponding moments-calculated analytic (f) and numerical (g) results

(a) Goldstein [11] 1-parameter | (b) Chilton et al. [12] 2-pa- | (¢) Leshchinskii [13] 1-param-
linear approximation (6) rameter exponential-linear fit eter exponential-linear fit
(Ya)
Bpr1 e* et Br11 € € Bper1 €f €z
por ——
%o % % o
1.00 0 0 1.00 0 0 1. 00
0 2.06 7.9 7.3 1.97 3.1 2.6 1. 80
1 3.01 -1.0 -2.0 3.06 0.7 —0.3 2. 41
2 5.04 —13 —13 5. 69 —-2.2 —-2.2 —18.9
4 8.04 —27 —29 11.0 0 -3.5 —1490
7 11.0 —36 =37 18.3 6.4 4.6 —52100
10
(e) Taylor [14] 3-parameter | (f) Berger-Spencer [15] 4-pa- | (g) Goldstein-Wilkins [26]
(d) Capo [9] 3-parameter poly- sum-of-exponnetials fit (11); rameter exponential-linear moments calculation re-
nomial (cubic) fit (10) Lakey [28] data moments calculation re- sults; Al data in tabulated
sults (12) form only
por Bpr1 ef ' Brrr €5 € Bpr1 Brr1
% % % %%
0 0. 997 —0.3 -0.3 1. 00 0 0 1.00 1. 00
1 1.93 180 0.5 2.10 9.0 9.4 1.91 1.92
2 3.05 0.3 -0.7 3.26 7.2 6.2 3.04 3.07
4 5.81 —0.2 -0.2 5.76 =10 -1.0 5.82 5. 82
7 11.1 0.9 —-2.6 10. 2 -7.3 —-11 11.0 11.4
10 17.6 2.3 0.6 15.7 —8.7 —=10 17.2 17.5

* e;/={[ Bpr1— Bpr1(Berger-Spencer) ]/ Bprr(Berger-Spencer) | X100%,.
** e;=/{[Brr1— Brr1(Goldstein-Wilkins) ]/ Beri(Goldstein-Wilkins) } X100%.
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The two-parameter exponential-linear empirical
fit (b) of Chilton, Holoviak, and Donovan [12] is
surprisingly good for penetrations up to ten mean
free paths. This formulation, similar in form to
the calculated result (f) of Belger and Spencer
[15], can thus provide economical storage and easy
application of buildup data over a wider range of
penetration thicknesses. Reference [12] contains
parametric data for aluminum only, which was the
deciding factor in selecting this as the reference
substance for table 1.

Leshchinskii [13] supplied data, for the reference
situation of Co—60 gammas in aluminum, only for
the one-parameter exponential-linear fit (9a), in-
tended for penetrations of 0 to 10 em (0 to 1.49
mean {ree paths), although for Co—60 gammas in
water he did use the three-parameter fit (9b) for
penetrations of 2 to 70 cm (0.127 to 4.44 mean
free paths). In each case the fit is within about 5
percent up to the specified upper limit and then
departs wildly. However, this formulation does
have the advantage that the exponential dependence
exp (—ugr) is canceled out of the distributed source
integral (4) and it will be seen that the power-series
solution of (4) [8, 10] is, in effect, a generalization
of the Leshchinskii result.

The slight departure of the Capo data (d) from
the condition Bpn (£, 7, r)=1 at ur=0 results
from additional cross fitting as a polynomial in
energy or reciprocal energy, in which it is difficult
to preserve this normalization. This diserepancy
is not large enough to detract from the usefulness
of the data, howevel, and in this specific comparison
(1.25 Mev photons in Al) the departures e, and e,
from calculated data (f) and (g) are seen to be
less, over the given range of uy values, than cor-
responding departures of (a), (b), (¢), and (e).

In addition to the empirically fitted Capo tabula-
tion, B; polynomial coefficients for Co-60 and
Cs-137 gamma rays in concrete (md water werec
directly calculated by Spencer [1] using the moments
method and were punched on IBM cards for use
in further calculations. In [1] the A; coeflicients
in (Al), page 80, are identical with Bi coefficients
if (a) A; refers to the zeroth ILegendre harmonic
(l=0), and (b) A; refers to integral dose data rather
than to the differential energy data indicated by
the dependence on 77; in (Al).

The sum-of-exponentials three-parameter fit (4)
of Taylor [14] is perhaps the most well-known and
widely used buildup factor formulation in current
use [27]. The only published parametric data for
aluminum seem to be those of Lakey [28], and these
were used for the comparison in table 1.

The exponential-linear four-parameter formula (f)
of Berger and Spencer [15] represents direct calcu-
lated results by the moment method [21]. Parametric
data in [15] are tabulated for 0.0341- to 10.22-Mev
gamma-rays in aluminum and concrete, and addi-
tional formulas are supplied for applying these build-
up parameters to such geometries as the isotropic
disk source (on-axis) (md the isotropic spherical

surface source. The buildup data in table 1, obtained
by evaluating (12) using parameters interpolated to
1.25 Mev, agree within 4 percent with the earlier
moments calculation [21] results of Goldstein and
Wilkins [26], (2), to which the formulas (b), (d), and
(e) were fitted.

4. Power-Series Solution for Unscattered
Radiation From a Distributed Source

It has been shown [6, 7] that for finite plane sources
of simple shape, a solution of (4) for ) (i.e., omitting
the factor Bprr (Fy, Z, r) within the integr and) may be
obtained in the form of an infinite series

D' (of4m) 3 gu(geom) - (us)" (15)

which converges quickly when the detector is less
than a mean free path from the source. The dimen-
sionless ¢, (geom) coefficients in (15) depend only on
the shape of the detector-source geometry, and are

derived from a power series expansion of the
exponential in (4)
exp (##o"):z% (—nor)"/n! (16)
n=
such that
¢, (geom) = f (—r/x)"dS/(r*-n!). (17)
JS

The quantity wez, also dimensionless, is the mean-
free-path thickness of material between source and
detector.

Formulas and tables of ¢,(zeom) coeflicients (tables
include values for 0<7.<9) have been generated for
a rectangular source [7] and for a circular disk source
with detector off-axis [8]. As a check, it was noted
[8] that for a detector on-axis over a circular disk
source the series (15) reduces to the familiar exponen-
tial-integral solution, in which the exponential
integrals F(z) are replaced by power series in z.

5. Adaptation of Analytic By (¥, Z, r) For-
mulations to the Distributed Source Power-
Series Solution

In the series solution (15) for the unscattered
component [ in section 4, the material between
source and detector can either be distributed through-
out the intervening space, or can be arranged as one
or more uniform slabs or sheets lying parallel to the
source-plane. In this section, on the other hand,
the source and detector are assumed embedded, as
discussed in section 2, in an infinite homogeneous
medium.
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Replacing the polynomial in the Leshchinskii for-
mula (9b) by a power series we obtain the buildup
factor formulation

Bor(Bo, Z, 1) —exp (4 ugr) % bo(Eo, Z) - (— o)™/
(18)

reported in [10], from which the coefficients® b, (12, Z)
can be used with the series solution (15). The only
change in (15) is the multiplication of each series
term ¢, (geom)-(uwez)® by the additional factor
b, (E,, /) to give the total dose-rate solution

I z bu(Ey, Z) - qu(geom) - (ugz)".
(19)

Equations (18) and (19) are, of course, of little
practical value if an infinite number of b,(/%;, Z) co-
efficients must be fitted and tabulated. However, by
expanding as power-series all exponentials appearing
in the analytic formulations (a) to (f) in section 3,
then equating coefficients of like powers of wyr, a
transformation for generating b,(/,, Z) coefficients
from the parameters of any of these formulations may
be obtained. Table 2 presents these “parasite” trans-
formations, and includes (18) for comparison.

4 The simpler notation b.(Fo,Z), used throughout this work, is equivalent to
8'n (Eo, Z) used in [8] and [10].

The surprisingly simple transformation (e) of
Taylor [14] and Lakey [28] parametric data results
because inclusion of a By (f), Z, 7) of this form into
(4) produces no change in the analytic form of the
integrand. It can also be seen in table 2 that the
Goldstein [11] linear approximation (a) is a special
case of the polynomial fit (d) used by Capo [9], and
that the four-parameter ecalculated result (f) of
Berger and Spencer [15] is identical in analytic form
with the two-parameter empirical fit (b) of Chilton
et al. [12]. The similarities are reflected in the
respective transformations in the last column.

To illustrate the use of table 2, transformation (d)
was used to generate the b, (%, Z) values for 0 <n <13
in table 3 from “dose” (air-equivalent detector)
buildup data for water, Al, Fe, Sn, Pb, W, and U in the
form of B,(£,, Z) polynomial coefficients. The input
B:(I%, Z)’s were taken from reference [9], tables 1B,
4B, 7B, 10C, 13B, 16C, and 18B which in turn were
fitted by least squares to data calculated by Gold-
stein and Wilkins [26] using the moments method.
Of the 15 gamma-ray energies from 0.4 to 9.5 Mev
presented in [9] for reactor “operating’”” and ‘“‘shut-
down” shielding calculations, the 10 energies £,—0.5,
0.7, 1.0, 1.5, 2.0, 2.5, 3.5, 5.5, 7.5, and 9.5 Mev were
arbitrarily selected.

The appearance in table 3 of b,(Ey, Z) { =B,(H,, )
=B(Fy, Z,r)at upr=0} values which are not unity
follows from the discussion of the Capo data in
section 3.

TABLE 2.—Summary of analytic formulations (a to f) for the point isotropic source buildup factor Bpri(Ey, Z) (column )

The power-series formulation, in which the ‘" for number of parameters (column 3) may be replaced by 1, 2, 3, 4, or N, depending on which of the formulations
(a to ) is used for generating the bn(F), Z) coefficients, has been added for comparison. The last column contains the ‘“parasite’” transformations, of which (d)
was used to generate the sample b,(FEo, Z)’s in table 3 from the Capo [9] tables of 8; polynomial coefficients

Formu- Reference Number of | Beri1(Ey, Z, r), point isotropic source | Eq No. bn(Ey, Z); n=0,1,2, . ..
lation parameters
(a) Goldstein [11] 1| I4aur 6) | 1—na
. n
Chilton,Holoviak, o —a3i(™) pi-
(b {Donovan [12] 2 | 14apyr exp (—bugr) ® |1 ;}z}‘lz ( 1) b1
1| exp (duqr) (br+1) (92) | bo=1; b1=—b/py; bn>2=0
© Leshchinskii [13] { >
3 | exp (4-pr) (ar’4-br+-c) (9b) | bo=e; bi=—b/u,; blz)Z'le/ugz;
n>8=
N n<N )
(@) Capo [9] 3or N | X Bi(Ey, Z)(py)? (10) _270 (=D{n!/(n—i)!}B:i(Eo, Z)
i=0 =
© {fogion i 3 | A exp (—amg)+(1—A) exp (—azugr) A1) | AQ4a)n+1—A4)(14a)n
e Lakey [28] : Mg g
noo )
) Berger, Spencer [15] 4 | 14pgr{A1B; exp [— (Bi—1Dpgr] 12 |1-2 i ( 1) {A1B1(B;—1)i-1
+A42B1 exp [~ (Ba—Dpgr]} =il
+AsB2(By—1)i-1}
@
Power This work @ | exp (+u) 2 ba(Ey, Z)-(—pp)n/n! (18) | ba(En, Z)
series n=0
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cients according to transformation (d), table 2.

7] and [8] for rectangular or off-axis disk sources.

TasrLe 3. *Coeflicients b, (Eo, Z) of the power-series buildup factor formulation (18) derived from the Capo [9] B;: polynomial coeffi-

These b, (Eo, Z) coefficients may be used directly in the distributed source series solution (19) with geometry coefficeints ¢, (geom) (17) such as are given in references

bn(Ejo, H0)
Ey(Mev)
0.5 0.7 1.0 1.5 2.0
n
0 1. 0011 (0) 1. 0008 (0) 9.9678 (—1) 9.9480 (—1)
1 6. 4656 (—2) 5.0643 (—2) 9.7950 (—3) 6.6752 (—2)
2 2.3708 (—1) —2.4382 (—1) —6.3441 (—1) —7.1188 (—1)
3 1. 4491 (0) 1.0713 (—1) —9.2998 (—1) —1.3348 (0)
4 3.6313 (0) 1.0932 (0) —8.7105 (—1) —1.7959 (0)
5 6.7143 (0) 2.7040 (0) —4.5177 (—1) —2.0887 (0)
6 1.0629 (1) 4.9293 (0) 1.3372 (-1) —2.2071 (0)
7 1. 5306 (1) 7.7588 (0) 3.4913 (0) —2.1448 (0)
8 2.0675 (1) 1.1182 (1) 3.0268 (0) —1.8955 (0)
9 2.6668 (1) 1. 5189 (1) 4.9461 (0) —1.4529 (0)
10 3.3216 (1) 1.9769 (1) 7.2551 (0) —8.1092 (—1)
11 4.0248 (1) 2.4912 (1) 9.9595 (0) 3.6838 (—2)
12 4.7695 (1) 3.0608 (1) 1.3065 (1) 1. 0966 (0)
13 5. 5489 (1) 3. 6846 (1) 1.6578 (1) 2.3746 (0)
Ey(Mev)
2.5 3.5 5.5 7.5 9.5
n
0 9.9663 (—1) 9.9899 (—1) 1.0022 (0) 1.0042 (0) 1.0054 (0)
1 2.4502 (—1) 3.7542 (—1) 5.2925 (—1) 6.1392 (—1) 6.6696 (—1)
2 —4.6449 (—1) —2.3628 (—1) 4.9890 (—2) 2.1199 (—1) 3.1471 (—1)
3 —1.1293 (0 —8.3515 (—1) —4.3613 (—1) —2.0236 (—1) —5.2252 (—2)
4 —1.7467 (0) —1.4203 (0) —9.2912 (—1) —6.2983 (—1) —4.3481 (—1)
5 —2.3140 (0) —1.9906 (0) —1. 4294 (0) —1.0711 (0) —8.3385 (—1)
6 —2.8287 (0) —2.5453 (0) —1.9372 (0) —1.5270 (0) —1.2503 (0)
7 —3.2881 (0) —3.0834 (0) —2.4529 (0) —1.9981 (0) —1.6849 (0)
8 —3.6895 (0) —3.6040 (0) —2.9767 (0) —2.4851 (0) —2.1387 (0)
9 —4.0302 (0) —4.1060 (0) —3.5090 (0) —2.9888 (0) —2.6124 (0)
10 —4.3077 (0) —4.5885 (0) —4. 0501 (0) —3.5099 (0) —3.1071 (0)
11 —4.5193 (0) —5.0506 (0) —4. 5980 (0) —4.0491 (0) —3.6235 (0)
12 —4.6623 (0) —5.4914 (0) —5.1597 (0) —4.6071 (0) —4.1626 (0)
13 —4.7340 (0) —5.9099 (0) —5.7288 (0) —5.1846 (0) —4.7253 (0)
bu(Eo, Al) Z=13
Eo(Mev)
0.5 0.7 1.0 1.5 2.0
n
0 1.0001 (0) 9.9999 (—1) 9.9819 (—1) 9.9641 (—1) 9.9640 (—1)
1 —1.3070 (—1) —2.5215 (—1) 9.0059 (—2) 2.1928 (—1) 2.7129 (—1)
2 —7.8756 (—1) —1.2030 (0) —5.6633 (—1) —4.0565 (—1) —3.6339 (—1)
3 —9.8747 (—1) —1.8585 (0) —9.6259 (—1) —8.6972 (—1) —9.0190 (—1)
4 —7.4740 (—1) —2.2242 (0) —1.0904 (0) —1.1643 (0) —1.3385 (0)
5 —8.4323 (—2) —2.3060 (0) —9.4128 (—1) —1.2806 (0) —1.6674 (0)
6 1.1545 (0) —2.1097 (0) —5.0695 (—1) —1.2101 (0) —1.8828 (0)
7 2.4430 (0) —1. 6409 (0) 2.2099 (—1) —9.4414 (—1) —1.9791 (0)
8 4.2732 (0) —9. 0553 (—1) 1. 2509 (0) —4.7400 (—1) —1.9505 (0)
9 6.4586 (0) 9.0729 (—2) 2. 5912 (0) 2.0895 (—1) —1.7912 (0)
10 8.9821 (0) 1. 3421 (0) 4.2502 (0) 1.1134 (0) —1.4954 (0)
11 1.1827 (1) 2.8321 (0) 6.2364 (0) 2.2479 (0) —1.0575 (0)
12 1.4976 (1) 4. 5870 (0) 8. 5580 (0) 3.6213 (0) —4.7163 (—1)
13 1.8412 (1) 6. 5691 (0) 1.1224 (1) 5.2421 (0) 2.6792 (-1)
Eo(Mev)
2.5 3.5 5.5 7.5 9.5
n \
0 9.9700 (—1) 9.9849 (—1) 1.0008 (0) 1. 0022 (0) 1.0032 (0)
1 3.2250 (—1) 4.2042 (—1) 5.6586 (—1) 6.5832 (—1) 7.2035 (—1)
2 —2.9618 (—1) —1.3354 (—1) 1.3872 (—1) 3.7355 (—1) 4.4436 (—1)
3 —8.5539 (—1) —6.6191 (—1) —2.8031 (—1) —1.1564 (—2) 1.7550 (—1)
4 —1.3515 (0) —1.1632 (0) —6.9091 (—1) —3.3714 (—1) —8.5906 (—2)
5 —1.7808 (0) —1. 6359 (0) —1.0928 (0) —6.5622 (—1) —3.3960 (—1)
6 —2.1397 (0) —2.0785 (0) —1.4856 (0) —9.6859 (—1) —5.8528 (—1)
7 —2.4251 (0 —2. 4896 (0) —1.8690 (0) —1.2741 (0) —8.2266 (—1)
8 —2.6316 (0) —2.8676 (0) —1.2427 (0) —1.5724 (0) —1. 0515 (0)
9 —2.7573 (0) —3.2110 (0) —2.6069 (0) —1.8635 (0) —1.2714 (0)
10 —2.7981 (0) —3.5183 (0) —2.9598 (0) —2.1471 (0) —1.4821 (0)
11 —2.7501 (0) —3.7882 (0) —3.3026 (0) —2.4230 (0) —1.6834 (0)
12 —2.6098 (0) —4. 0189 (0) —3.6343 (0) —2.6910 (0) —1.8749 (0)
13 —2.3736 (0) —4.2092 (0) —3.9548 (0) —2.9510 (0) —2. 0563 (0)

* See footnote at end of table.
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TasLe 3. ¥Coeflicients b,(Xy, Z) of the power-series buildup factor formulation (18) derived from the Capo [9] B; polynomial coeffi-
cients according to transformation (d), table 2.—Continued

bn(Eo, Fe) Z=26

Eo(Mev)
0.5 0.7 1.0 L5 2.0
0 1.0025 (0) 9.3280 (—1) 1.0002 (0) 1.0162 (0) 1.0100 (0)
1 1.4156 (—1) 9.3980 (—3) 2.1196 (—1) 3.0483 (—1) 3.6092 (—1)
2 —5.2529 (—1) —6.6107 (—1) —4.1423 (—1) —3.0932 (—1) —2.1516 (—1)
3 —9.9713 (—1) —1.0661 (0) —8.7359 (—1) —8.2351 (—1) —7.1552 (—1)
4 —1.2730 (0) —1.1932 (0) —1.1632 (0) —1.2350 (0) —1.1374 (0)
5 —1.3520 (0) —1.0298 (0) —1.2726 (0) —1.5412 (0) —1.4781 (0)
6 —1.2332 (0) —5.6333 (—1) —1.2028 (0) —1.7393 (0) —1.7348 (0)
7 —9.1560 (—1) 2.1860 (—1) —9.4685 (—1) —1.8266 (0) —1.9048 (0)
8 —3.9830 (—1) 1.3286 (0) —5.0014 (—1) —1.8004 (0) —1.9854 (0)
9 3.1965 (—1) 2.7791 (0) 1.4217 (—1) —1.6581 (0) —1.9738 (0)
10 1.2392 (0) 4. 5827 (0) 9.8487 (—1) —1.3968 (0) —1.8672 (0)
11 2.3612 (0) 6.7518 (0) 2.0328 (0) —1.0139 (0) —1.6629 (0)
12 3.6868 (0) 9.2991 (0) 3.2907 (0) —5.0678 (—1) —1.3582 (0)
13 5.2167 (0) 1.2237 (1) 4.7633 (0) 1.2739 (—1) —9.5027 (—1)
\W(Mev)
2.5 3.5 5.5 7.5 9.5
n \
0 1.0043 (0) 9.9882 (—1) 9.9768 (—1) 9.9931 (—1) 1.0011 (0)
1 4.1631 (—1) 5.1544 (—1) 6. 5356 (—1) 7.3825 (—1) 7.9417 (—1)
2 —1.1129 (—1) 7.8643 (—2) 3.4281 (—1) 5.0375 (—1) 6.0957 (—1)
3 —5.7593 (—1) —3.0075 (—1) 6. 5479 (—2) 2.9451 (—1) 4.4503 (—1)
4 —9.7500 (—1) —6.4792 (—1) —1.7841 (—1) 1.0922 (—1) 2.9831 (—1)
5 —1.3059 (0) —9.3405 (—1) —3.8883 (—1) —5.3419 (—2) 1.6714 (—1)
6 —1.5660 (0) —1.1663 (0) —5.6575 (—1) —1.9471 (—1) 4.9286 (—2)
7 —1.7526 (0) —1. 3429 (0) —7.0913 (—1) —3.1596 (—1) —5.7516 (—2)
8 —1.8633 (0) —1. 4620 (0) —8.1806 (—1) —4.1847 (—1) —1.5652 (—1)
9 —1.8953 (0) —1. 5218 (0) —8.9519 (—1) —5.0353 (—1) —2.4696 (—1)
10 —1.8461 (0) —1. 5205 (0) —9.3780 (—1) —5.7246 (—1) —3.3411 (—1)
11 —1.7131 (0) —1. 4562 (0) —9.4676 (—1) —6.2656 (—1) —4.1921 (—1)
12 —1.4935 (0) —1. 3272 (0) —9.2203 (—1) —6.6712 (—1) —5.0452 (—1)
13 —1.1850 (0) —1.1316 (0) —8.6360 (—1) —6.9545 (—1) —5.9228 (—1)
ba(Eo, Sn) Z=50
\Io(Mev)
0.5 0.7 1.0 1.5 2.0
n
0 1.0021 (0) 1.0023 (0) 1.0014 (0) 1.0008 (0) 1.0007 (0)
1 4.4293 (—1) 4.7107 (—1) 3.8940 (—1) 3.9964 (—1) 4.5973 (—1)
2 —1.3701 (—1) —3.7218 (—2) —1.8271 (—1) —1.5486 (—1) —3.2606 (—2)
3 —7.4062 (—1) —5.2449 (—1) —7.1325 (—1) —6.5999 (0) —4.7447 (—1)
4 —1.3707 (0) —9.9267 (—1) —1.2005 (0) —1.1130 (0) —8.6409 (—1)
5 —2.0301 (0) —1. 4437 (0) —1. 6428 (0) —1.5113 (0) —1.1997 (0)
6 —2.7218 (0) —1.8796 (0) —2.0384 (0) —1.8520 (0) —1.4794 (0)
7 —3.4484 (0) —2.3022 (0) —2.3856 (0) —2.1326 (0) —1.7015 (0)
8 —4.2129 (0) —2.7134 (0) —2. 6827 (0) —2.3503 (0) —1.8642 (0)
9 —5.0181 (0) —3.1153 (0) —2.9280 (0) —2.5023 (0) —1.9657 (0)
10 —5.8668 (0) —3.5097 (0) —3.1199 (0) —2.5861 (0) —2.0042 (0)
11 —6.7620 (0) —3.8986 (0) —3.2566 (0) —2.5988 (0) —1.9779 (0)
12 —7.7063 (0) —4.2839 (0) —3.3363 (0) —2.5378 (0) —1.8850 (0)
13 —8.7028 (0) —4.6676 (0) —3.3576 (0) —2.4004 (0) —1.7237 (0)
\Eo(Mev)
255 3.5 5.5 7.5 9.5
n
0 1.0008 (0) 1.0010 (0) 9.9781 (—1) 9.9514 (—1) 9.9484 (—1)
1 5.1974 (—1) 6.1402 (—1) 7.1884 (—1) 7.8769 (—1) 3.3584 (—1)
2 8.8252 (—2) 2.7747 (—1) 4.7050 (—1) 5.9132 (—1) 6.7805 (—1)
3 —2.9304 (—1) —1.0061 (—2) 2.4198 (—1) 3.8887 (—1) 5.0414 (—1)
4 —6.2853 (—1) —2.4997 (—1) 1.8862 (—2) 1.6318 (—1) 2.9679 (—1)
b —9.0259 (—1) —4.4365 (—1) —1.9888 (—1) —1.0201 (—1) 3.8674 (—2)
6 —1.1296 (0) —5.9248 (—1) —4.3285 (—1) —4,2656 (—1) —2.8753 (—1)
i —1.3039 (0) —6.9785 (—1) —6.9027 (—1) —8.2495 (—1) —6.9916 (—1)
8 —1. 4250 (0) —7.6116 (—1) —9.8197 (—1) —1.3152 (0) —1.2135 (0)
9 —1.4921 (0) —7.8379 (—1) —1. 3188 (0) —1.9146 (0) —1.8480 (0)
10 —1.5048 (0) —7.6713 (—1) —1.7204 (0) —2.6401 (0) —2.6198 (0)
11 —1.4622 (0) —7.1256 (—1) —2.1708 (0) —3.5090 (0) —3. 5463 (0)
12 —1.3639 (0) —6.2149 (—1) —2.7078 (0) —4. 5385 (0) —4. 6449 (0)
13 —1.2093 (0) —4.9529 (—1) —3.3331 (0) —5.7457 (0) —5.9328 (0)

*See footnote at end of table.
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TasrLe 3. *Cocflicients by (Eo, Z) of the power-series butldup factor formulation (18) derived from the Capo [9] B;i polynomial coeffi~
cients according to transformation (d), table 2.—Continued

bn(Eo, W) Z=74

Ey(Mev)
0.5 0.7 1.0 1.5 2.0
n
0 1.0086 (0) 1.0089 (0) 1.0032 (0) 9.9925 (—1) 9.9840 (—1)
1 7.3645 (—1) 7.1129 (—1) 5.6840 (—1) 5.2793 (—1) 5.6382 (—1)
2 4.3004 (—1) 3.9926 (—1) —1.1129 (—1) 3.9821 (—2) 1.2485 (—1)
3 8. 5826 (—2) 6.7224 (—2) —3.7041 (—1) —4.6593 (—1) —3.2002 (—1)
4 —2.9946 (—1) —2.9038 (—1) —8.7895 (—1) —9.9020 (—1) —7.7231 (—1)
5 —7.2925 (—1) —6.7911 (—1) —1.4166 (0) —1.5338 (0) —1.2335 (0)
6 —1.2069 (0) —1.1880 (0) —1.9855 (0) —2.0977 (0) —1.7052 (0)
7 —1.7358 (0) —1.5723 (0) —2.5880 (0) —2.6827 (0) —2.1888 (0)
8 —2.3194 (0) —2. 0878 (0) —3.2264 (0) —3.2897 (0) —2.6859 (0)
9 —2.9610 (0) —2.6567 (0) —3.9028 (0) —3.9195 (0) —3.1979 (0)
10 —3.6640 (0) —3.2846 (0) —4.6195 (0) —4.5729 (0) —3.7265 (0)
11 —4.4317 (0) —3.9770 (0) —5.3788 (0) —5.2510 (0) —4.2740 (0)
12 —5.2677 (0) —4.7396 (0) —6.1829 (0) —5.9545 (0) —4.8390 (0)
13 —6.1752 (0) —5.5767 (0) —7.0341 (0) —6.6842 (0) —5.4261 (0)
Ey(Mev)
2.5 8.5 5.5 7.6 9.5
n \\
0 9.9844 (—1) 9.9910 (—1) 9.9375 (—1) 9.8630 (—1) 9.8003 (—1)
1 6.1013 (—1) 6.8979 (—1) 7.6125 (—1) 7.8912 (—1) 7.9744 (—1)
2 2.2914 (—1) 4.0578 (—1) 5.3024 (—1) 5.6254 (—1) 5.6596 (—1)
&) —1.4706 (vl) 1.4271 (—1) 2.8324 (—1) 2.8009 (—1) 2.5718 (—1)
4 —5.2100 (— —1.0380 (—1) 2.7784 (—3) —8.4723 (—2) —1.5728 (—1)
5 —8.9521 ( 1) —3.3811 (—1) —3.2861 (—1) —5.5836 (—1) —7.0582 (—1)
6 —1.2722 (0) —5.6459 (—1) —7.2839 (—1) —1.1673 (0) —1.4168 (0)
7 —1. 6545 (0) —7.8762 (—1) —1.2140 (0) —1.9381 (0) —2.3187 (0)
8 —2.0446 (0) —1.0116 (0) —1.8030 (0) —2.8971 (0) —3.4398 (0)
9 —2.4452 (0) —1.2408 (0) —2.5128 (0) —4.0708 (0) —4.8086 (0)
10 —2.8585 (0) —1.4797 (0) —3.3608 (0) —5.4858 (0) —6.4533 (0)
11 —3.2873 (0) —1.7326 (0) —4.3646 (0) —7.1685 (0) —8.4026 (0)
12 —3.7341 (0) —2.0039 (0) —5.5416 (0) —9.1453 (0) —1.0685 (1)
13 —4.2013 (0) —2.2979 (0) —6.9093 (0) —1.1443 (1) —1.3328 (1)
b.(Eo, Pb) Z=82
Eo(Mev)
0.5 0.7 1.0 il 2.0
n \
0 9.9993 (—1) 1.0087 (0) 1.0159 (0) 1.017L (0) 1.0109 (0)
1 7.5580 (—1) 7.1782 (— 1) 6.7548 (—1) 6.3718 (—1) 6.2940 (—1)
2 4.7600 (—1) 3.9601 (— 3.1164 (— 2.4664 (—1) 2.4906 (—1)
3 1.5697 (—1) 4.0094 (— 2) —7.5640 (— 2) —1.5563 (—1) —1.3025 (—1)
4 —2.0485 (—1) —3.5310 ( —4.9597 ( 1) —5.7075 (—1) —5.0870 (—1)
5 —6.1301 (—1) —7.8673 ( 1) —9.4455 (—1) —9.9981 (—1) —8.8649 (—1)
6 —1.0711 (0) —1.2639 (0) —1.4262 (0) —1.4439 (0) —1.2638 (0)
7 —1.5826 (0) —1.7879 (0) —1.9433 (0) —1.9042 (0) —1.6407 (0)
8 —2.1512 (0) —2.3618 (0) —2.4982 (0) —2.3818 (0) —2.0175 (0)
9 —2.7804 (0) —2.9887 (0) —3.0934 (0) —2.8177 (0) —2.3944 (0)
10 —3.4737 (0) —3.6718 (0) —3.7314 (0) —3.3931 (0) —2.7714 (0)
11 —4.2347 (0) —4.4144 (0) —4.4144 (0) —3.9291 (0) —3.1488 (0)
12 —5.0669 (0) —5.2194 (0) —5.1449 (0) —4.4869 (0) —3.5267 (0)
13 —5.9709 (0) —6.0901 (0) —5.9253 (0) —5.0674 (0) —3.9054 (0)
YD(MW)
2.5 3.5 5.5 7.5 9.5
" \
0 1.0026 (0) 9.9132 (—1) 1.0012 (0) 9.9279 (—1) 9.6581 (—1)
1 6.4235 (—1) 6.9948 (—1) 8.0216 (—1) 8.0445 (—1) 8.0326 (—1)
2 2.9304 (—1) 4.2933 (—1) 6.1069 (—1) 5.8826 (—1) 5.9791 (
3 —4. 5410 (—2) 1.7884 (—1) 4.1282 (—1) 3.2014 (—1) 3.2578 (—
4 —3.7250 (—1) —5.4018 (—2) 1.9459 (—1) —2.4004 (—2) —3.7126 (
5 —6. 8858 (—1) —2.7128 (—1) —5.7996 (—2) —4.6826 (—1) —5.1480 (—1)
6 —9.9345 (—1) —4.5468 (—1) —3.5890 (—1) —1.0367 (0) —1.1312 (0)
7 —1.2870 (0) —6.6715 (—1) —7.2210 (—1) —1.7535 (0) —1.9104 (0)
8 —1. 5603 (0) —8.4981 (—1) —1.1616 (0) —2.6426 (0) —2.8763 (0)
9 —1.8401 (0) —1.0250 (0) —1.6913 (0) —3.7282 (0) —4.0529 (0)
10 —2.0994 (0) —1.1947 (0) —2.3252 (0) —5.0344 (0) —5.4642 (0)
11 —2.3472 (0) —1.3611 (0) —3.0774 (0) —6. 5852 (0) —7.1342 (0)
12 —2. 5833 (0) —1.5260 (0) —3.9617 (0) —8.4047 (0) —9.0869 (0)
13 —2.8077 (0) —1.6916 (0) —4.9921 (0) —1.0517 (1) —1.1346 (1)

*See footnote at end of table,
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TasrLe 3. *Coefficients b, (¥, Z) of the power-series buildup factor formulation (18) derived from the Capo [9] B; polynomial coeffi-
cients according to transformation (d), table 2.—Continued

bn(Eo, U) Z=92

Fy(Mev)
0.5 0.7 1.0 1.5 2.0

" \
0 1.0107 (0) 1. 0087 (0) 1.0061 (0) 1.0033 ( 0) 1.0017 (0)
1 8.3176 2—1) 7.8986 (—1) 7.4124 (—1) 6.9250 (—1) 6.7550 (—1)
% 6.2417 (—1) 5.4367 (—1) 4. 5187 (—1) 3.6412 (—1) 3.3996 (—1)
3 3.8503 (—1) 2.6744 (—1) 1.3578 (— 1.6510 (—2) —6.1238 (—3)
4 1.1141 (—1) —4. 1481 (—)) —2.0928 (— —3.5196 (—1) —3.6398 (—1)
5 —1.9961 (—1) —3.8575 (—1) —5.8558 (— —7.4292 (—1) —8.4503 (—1)
6 —5.5096 (—1) —7.6800 (—1) —9.9522 (— ) —1.1580 (0) —1.1199 (0)
7 —9.4557 (—1) —1.1909 (0) —1.4406 (0) —1.5989 (0) —1.5204 (0)
8 —1.3864 (0) —1.6571 (0) —1.9239 (0) —2.0671 (0) —1.9376 (0)
9 —1.8763 (0) —2.1692 (0) —2.4473 (0) —2. 5644 (0) —2.3726 (0)
10 —2.4182 (0) —2.7299 (0) —3.0131 (0) —3.0923 (0) —2.8268 (0)
11 —3.0151 (0) —3.3419 (0) —3.6236 (0) —3. 6526 (0) —3.3013 (0)
12 —3.6699 (0) —4.0078 (0) 4.2809 (0) —4.2467 (0) —3.7974 (0)
13 ‘ —4.3854 (0) —4.7301 (0) —4.9874 (0) —4.8764 (0) —4.3163 (0)

AN [ ‘

N\ _Eo(Mev) |
2.5 3.5 | 5.5 7.8 9.5

Ny

n \
0 ‘ 1.0010 (0) | 9. 0775 (=1) 9 (=1) 9.8163 (—1)
1 6.8131 (—1) 8.3551 (—1) 8 (-1) 8.0789 (—1)
2 l 3.6080 (—1) 6.8739 (—1) 6.4374 (—1) 5.9135 (—1)
3 3.8355 (—2) 5.4509 (—1) 4.2402 (—1) 3.1040 (—1)
4 l 2.8712 (—1) 4.0033 (—1) 1.4889 (—1) —5.6604 (—2)
5 —6. 1672 (—1) 8 2.4481 (—1) —1.9951 (—1) —5.3128 (—1)
6 —9.5156 (—1) —4, 5812 (—1) 7.0266 (—2) —6.3902 (—1) —1.1353 (0)
7 —1.2927 (0) —6.7804 (—1) —1.3165 (—1) —1.1875 (0) —1.8902 (0)
8 —1.6413 (0) —8.9653 (—1) —3.6916 (—1) —1.8628 (0) —2.8176 (0)
9 —1.9985 (0) -1 1155 (0) —6.5058 (—1) —2., 6828 (0) —3.9393 (0)
10 —2.365 —1. 336¢ —9.8419 (—1) —3. 6653 (0) —5.2767 (0)
11 42 —1. —1.3783 (0) —4. 8282 (0) —6.8516 (0)
12 —3.1321 (0) —1 —1.8412 (0) —6. 1893 (0) —8.6856 (0)
13 —3.5344 (0) -2 —2,3811 (0) —7.7665 (0) —1.0800 (1)

*The figures in parentheses in tables 3, 4, and 5 indicate the power of 10 by which the adjacent entry is to be multiplied;

e.g., 6.4656 (—2)=0.064656.

6. Utility and Limitations of the Power-
Series Method

With respect to use of the infinite series (19),
gamma-ray distributed source problems fall into
three classes:

(a) In the region 0< uz=0. 01, as is often the case
in an air medium [29], all terms in (19) may be
neglected except for the zeroth term (o/47) gy (geom).
This term is the complete solution for pure inverse
square law attenuation as assumed by Meredith
[29], and depends only on relative rather than abso-
lute dimensions of the detector-source oeometry

(b) In the region 0.01Spr 1.0 the series (19)
has its greatest usefulness either with or without
1nclus1on of scattered mdmtylon by b, Z) coef-
ficients. This will be demonstrated in the numerical
examples in section 7.

(¢) In the region 1. Osmz<oo, as 1s the case in
fallout shelter calculations, the series (19) is usually
not useful, and recourse must be made to other
available methods [1, 2].

It is interesting to note that the speed of con-
vergence of (19) is usually enhanced over that for
(15), rather than the converse. A possible explana-

tion for this enhancement (with no attempt at a
proof) is offered as follows:

In an absorbing and scattering medium the
point-source buildup factor Ber (£, Z, ) is bounded,

roughly, by the limits

1 < Beri (o, Z, 7')S exp (4 uor). (20)
The lower bound, BPTI(EO, ,7)=1, corresponding to
pure absorption (Dx40 in eq (1)) would lead to
buildup coefficients all equal to unity, i.e.,

bu(Eo, Z)=1 (21)

in which case (19) would be identical with (15).
The upper approximate bound, Bew(Fo,Z, 7)
=exp(-+ ), corresponding to a pure scatterer (pho-
tons may be scattered, but never absorbed or degrad-
ed in energy) is the same as simple lnvelse-square-law
attenuation, such that the point-source eq (2) would
reduce to

N=0N132]

D= (k/4x)/[r?. (22)

This buildup-factor behavior can be applied to (19)
by setting all except the zeroth buildup coefficient

equal to zero, i.e.,
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bo(Eo, Z):l

b.>1(Ey, Z)=0, =il 2, 8 (23)
Hence, in the intermediate region indicated in (20)

we might expect the observed enhancement.

7. Numerical Examples

7.1. Example 1. Rectangular Co-60 Source, Strati-
fied Barrier of Steel and Water. Comparison
With Expzsriment

There exist little experimental data in the moder-
ate-penetration region 0.01§u0x$1.0, discussed in
(b) of the preceding section, for simple geometries
amenable to direct analysis using (19). However,
in connection with food irradiator design studies [17]
data have been published for the more complicated
situation of a two-layer barrier. Here, Donovan
[30] measured the dose-rate received by a detector
separated from a rectangular Co-60 source by a 3-
in. layer of water and varying thicknesses of steel
cladding as shown in figure 3. These results are
over the range 0.589<yz(water-steel)<1.225,
hence they provide an excellent check on (19) up to
the upper limit of its usefulness as discussed in (b)
of the preceding section.

The agreement between theory (infinite homo-
geneous medium) and experiment (layered inhomo-
geneous medium) in the following example must be
considered somewhat fortuitous, although the posi-
tion of the detector within the water phantom tends
to minimize boundary effects. Since interest has
been expressed in adapting eq (19) for use in nuclear
engineering curricula, this example is presented in
great detail, particularly in the steps involving
dimensional analysis.

a. Situation

A 6-in. thick water-equivalent slab phantom is
separated by an airgap of 2.5 in. from a 50-in. wide
by 57-in. long rectangular plaque Co—60 source.
This source, with a uniform activity of 1 curie per
cm? of area, is encased in steel cladding of uniform
thickness.

b. Problem

Find the dose-rate (rads [31] in H,O) in the center
of the phantom as the thickness of steel cladding is
varied from 0.097 in. to 0.679 in.  Use the simplifying
approximations:

(1) To take into account the finite thickness of
the source (Co, Z=27), include half the source
thickness in the thickness of steel (Fe, Z=26) repre-
senting “cladding thickness” in the calculation, as
was done in an alternative analytical study of this
problem [3].

(2) Assume that the Co-60 nuclides emit two
1.25-Mev photons per disintegration, rather than a
1.17 Mev and a 1.33 Mev photon as is actually the
case.
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Ficure 3. Donovan [30] food irradiator rectangular source
geometry treated in example 1.

(3) Kalos ([21], page 796) has shown that for a
composite barrier consisting of a layer of high-Z
material followed by a layer of low-Z material, the
resulting buildup factor shows a smooth rise from the
value for pure high-Z material toward that for pure
low-Z material, the rate of approach depending on
the source energy. Indeed, substitution of the linear
approximation (6) for Bpy (K, Z,r) in  Kalos’
empirical eq [21], (26.4) gives the linear connecting
form

B (Ko, Zy, Zo, r1-F1)

- ,UO(Z1>7'1 L
= MO(Z,)I“I +MO(ZQ) o BPTI(EO; AI, 7"1>
wo(Zy)rs : BPTI<EO, ZQ, ) (24)

wo(Zy) i+ (Zs)72

in which Z;, 7 refer to one layer of the barrier and
Zs, 1 refer to the other layer of the barrier. Since
the buildup for iron and for water are not greatly
different [32] over the penetration range in this
problem, the approximate combinatorial form (24)
will be used.

c. Plan of Attack

Evaluate the dose rate (rads in H,O/hr) using (19)
assuming the medium (a) to be all water:

D(H,0)= (o/41r)>ii‘_,b,l(1 .25 Mev, H;0) - ¢,(geom) - (uoz)™

n=0
(19a)
and (b) to be all steel:

D(F(‘):(U/flr)i:b"(l.?ii Mev, Fe) - ¢,(geom) - (uez)”
n=0
(19b)

in which (19a) and (19b) differ only in the values of
the buildup factor coefficients b,(#y, Z). Then use
(24) to obtain a dose rate between these upper and
lower bounds by weighting the results from (19a)
and (19b) by the fractions of mean-free-path distance
traversed by the primary photons in each material:

D={ (,Uuif)H?o/(#ox) totar } D(H,0)

+ { (.U*O:r')Fe/(MOI> to(nl} D(I(‘C). (25)



d. Source Strength Constant (o/47)

For an answer from (19) in units of rads/hr per
curie/cm?® of source strength, the factor (o/47) is

(0/47m)=1.7005><16° > N (photons of energy £,/disin-
tegration) X £, (Mev/photon) X {u,,(Ey, Z)/p} (cm?/g)
(26)

in which the numerical constant 1.7005>}10° is
obtained from the dimensional factors

1.7005 <10°= (1/47) (steradians™!) X 3.71 X 10
{ (disintegrations/sec)/curie} X 1.6 X 1078 {rads/
Mev/2)} X3.6X10° (sec/hr) (27)

For the problem stated above the numerical values
of the other constants in (26) are

N=2 photons/disintegration
Fy=1.25 Mev/photon, and
wen(1.25 Mev, H,0)/p=0.0296 cm?/o.?

Substitution of these values in (26) gives a source
strength constant (¢/47) of

(o/4m)=1.258 10"

for values of D(H,O) and D(Fe) from (19a) and (19h)
in"units of {rads (H,O)/hr}/{curies/em?} .

e. Buildup Factor Coefficients b, (%), Z)

Since reference [9] and hence table 3 of this work
do not contain data at 1.25 Mev, some interpolation
is required to obtain the b,(F/,, Z) series coeflicients
needed in (19a) and (19b). This interpolation is
conveniently performed on the “untransformed”
8L, 7Z) polynomial coeflicients, from which any
number of b,(Fy, Z) series coeflicients may be gener-
ated using (d), table 2. Table 4 contains poly-
nomial coefficients:

(a) B.(1.25 Mev, H,0) interpolated from [25]
table 2, and

(b) B:(1.25 Mev, Fe) interpolated from [9], table
B

-

{

5 Interpolated from [24], table 2.
U"l[‘hu coefficients in [25] as in [9] were fitted to the calculated results in NYO-
3075(26].

TaBre 4. Polynomial buildup factor coefficients Bi(¥,, Z)
used as input data tn examples 1 and 2

i B:i(1.25 Mev, H20)* | B:(1.25 Mev, Fe)**
0 1.00 (0) 1.013 (0)

1 9.00 (—1) 7.455 (—1)

2 | 1.40 (—1) | 6.055 (—2)

3 | —3.90 (—3) ’ —5.320 (—4)

*Interpolated from reference [25], table 2.
**Interpolated from reference [9], table 7B.
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Corresponding values of 6,(1.25 Mev, H,0) and
6,(1.25 Mev, Fe), computed using the numbers in
table 4 as input values for formula (d), table 2, are
given in table 5 for 0 <n <30 and are ready for use
in (19a) and (19b).

TAaBLE 5.  Buildup factor and geometry data used in example

1, series solutions (19a) and (19b).

The b,(E, Z) coefficients, of which b,(1.25 Mev, H20) were also used in example
2, eq (19¢), were derived from table 4 using transformation (d), table 2. The
qr(geom) geometry coefficients were obtained from [7], table 3 (and unpublished
higher coefficients from formulas (57) and (58), as

gn(Donovan geom) =4¢,(a,b)

using a=(w/2)/h=>5, b=(1/2)/h=>5 and the factor of four to apply the detector-
over-corner data to Donovan’s centered-detector geometry. For h=5.5 in.,
these @ and b values imply plaque dimensions of 55 by 55 in., rather than
Donovan’s 50 by 57 in. However, the solid angles subtended in each case differ
by less than 1 percent.

n ba(1.25 Mev, H20) | ba(1.25 Mev, Fe) qn(geom)
0 1.000 (0) 1.013 (0) 1.090 (1)
1 1.000 (—1) 2.670 (—1) —2.953 (1)
2 —5.200 (—1) —3.574 (—1) 5 p
3 —8.366 (—1) —8.575 (—1) —6.

4 =g 264N (=1) —1.230 (0) 70k,

5 —4.660 (—1) —1.472 (0) —7.022 (1)
6 2.680 (—1) —1.580 (0) 5.878 (1)
7 1.399 (0) —1.551 (0) —4.388 (1)
8 2.950 (0) —1.382 (0) 2.959 (1)
9 4.946 (0) —1.069 (0) —1.822 (1)
10 7.408 (0) —6.100 (—1) 1. 0

11 1.036 (1) —8.200 (—4) —5. 4¢

12 1.383 (1) 7.613 (—1) 2, 6:

13 1.783 (1) 1. 680 (0) —1. 2

14 2.240 (1) 2.757 (0) 5.2

15 2.755 (1) 3.998 (0) -2,

16 3.330 (1) 5.404 (0) 8. 3¢

17 3.969 (1) —3.0¢

18 4.673 (1) 1.0

19 5.445 (1) -3.

20 6.288 (1) 1

21 7.167 (1) -3.

22 8.192 (1) 1. 0

23 9.258 (1) -2,

24 1. 040 (2) 7.8

25 1.163 (2) =4

2 1.294 (2) | 5.

27 1.434 (2) | —1.2

28 1. 583 (2) 2

29 1.741 (2) —6.

30 1.908 (2) i

f. Geometry Coefficients ¢,(geom)

The parameters describing Donovan’s experi-

mental geometry, as shown in figure 3 are:
w=plaque width=>50 in.
l=plaque length=57 in.
h=distance (height) of detector above plaque center

2.5 in. airgap-+3 in. water

B in.

|
it

In the notation of [7] the geometry coeflicients
for this centered-detector situation could be cal-
culated exactly as

¢.(Donovan geometry)=4q,(a, b) (28)



where ¢,(a, b) are corner-position rectangular-source
geometry coefficients and

a=(w/2)[h=(50/2)/5.5=4.5454

b=(1/2)/h=(57/2)/5.5="5.1818 (29)

However, ¢,(a, b) values for a=5, b=>5 are already
available in [7] for 0<#<9 and in unpublished
form _for 0<n<35. We can use these tabulated
coefficients and avoid a two-way interpolation, or an
exact calculation of ¢,(zeom) coefficients from
formulas in [7], by the following arcument:

It has been noted [1-3] that geometry effects scale
approximately as the solid angle, 27 subtended by
the source from the detector for barrier thicknesses
of the order of one mean-free-path. Hence, since
the solid angle corresponding to the already tabu-
lated coefficients differs from the solid angle in
Donovan’s geometry by less than a percent, i.e.,

Q(a=5, b=>5)/2 (a=4.5454, b="5.1818)
=4po(5, 5)/4po(4.5254, 5.1818)
=5.170 steradians/5.132 steradians

—1.007 (30)

the available coefficients for a=5, b=5 are used
according to (19) and are given as the last column
of table 5 for 0<n<30.

g. Penstration Thickness u

The last‘fzu'tor, (moz)", in each series term of (19a)
and (19b) is for this problem simply the »’th power
of the barrier thickness in mean free paths (abbrevi-
ated mfp). If this thickness is given in inches
the thickness in mfp is ‘ ’

pot (fp) =u(Ly, Z)(em?/g) X p(g/cm?)
X2.54 (em/in.)Xa(in.) (31)
where u (£, 7) is the narrow-beam attenuation

coefficient [23] as used in (2) and p is the density of
the medium.

For 1.25 Mev gammas in water we see that
por(mfp)/z(in.) =0.0634 (cm?/g)
X1.00 (g/em?)X2.54 (em/in.)
=0.161 mfp/(in. of water) (32)
and similarly for iron that
oz (mfp)/z(in.) =0.0533 (cm?/g)

K 7.83 (g/em?®) X 2.54 (em/in.)
=1.66 mfp/(in. of steel). (33)

_7'This solid angle, 2, is identical with the tabulated quantity pe(geom) in [7
{i.0., pola, b)) and (8] (F.c., po (8, 1)} puecomy i 171
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Thus, for example,

3 in. water=3 in.><0.161 mfp/in.=0.483 mfp,
and

0.097 in. steel=0.097 in.><1.06 mfp/in.=0.103 mfp.

h. Numerical Results, D° and D

Donovan’s measured values of D for 3 in. of water
preceded by various thicknesses of steel [30] are
shown in figure 4, with his estimated =+ 3 percent
uncertainty indicated [33].

Before evaluating the total dose D according to
(19a), (19b), and (25), it is of some interest to first
evaluate the unscattered component 7° according
to (15). We can then note the effect of buildup as
characterized by the 6,(£;, Z) coefficients. In-
serting the data from the preceding sections (d),
(f), and (g) in (15), sums for a variety of uez values
vield 7° (curve (a) in fig. 4) which 1s independent
of the kind of medium and the photon energy
except for the source strength factor o/47. Indeed,
except for the factor o/47 the data for curve (a) are
already tabulated in [7], table 4.

Next we can evaluate D(H.,O) and D(Fe) from
(19a) and (19b) using the same set of summations
as for )° (curve (a), above) except that each series
term is multiplied by the appropriate buildup
factor coefficient b,(%,, 7Z) from table 5. These
sums D(H,0) and D(Fe) (for Donovan’s geometry
embedded in infinite media of water and steel,
respectively) are displayed as curves (b) and (c)
in figure 4. The circled numbers are a qualitative
indication of the convergence rate of (19) and are,
for the indicated calculated points, the number of
the series term (n-41, including the zeroth term)
beyond which the partial sum remains within 0.1
percent of the sum up to n=30.

Weighting D(H.,O) and D(Fe) (curves (b) and (¢))
according to (25) we obtain ), the hybrid curve
(d), our desired result.

The calculated values of I in curve (d) can now
be compared absolutely with Donovan’s measured
values, since the method is free of any arbitrary
normalization. Agreement is seen to be within
Donovan’s 3 percent estimated uncertainty.

The results of a more approximate but simpler
analysis by Moote [3] are shown as curve (e). In
this analysis, which gives an excellent fit to the data
in the neighborhood of wz=1, the dose rate D is
given as the simple product of:

(a) The source strength constant o/4,

(b) the solid angle @, indicated in figure 3, sub-

tended by the source from the detector,

(¢) the exponential integral £(uz) for the total

barrier thickness wyz, and

(d) the plane isotropic source buildup factor,

Bpri (£, Ho0,u0z), for the dose rate at a
distance wz from an infinite plane source
in water.
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Ficure 4. Results for the Donovan food irradiator rectangular source geomelry (example 1).

Donovan’s experimental points [30, 33] are compared with the theoretical results:

(a) The dose-rate component 1) due to primaries (eq 15).

(b) The total dose-rate D(H20) ussuming an all-water medium (eq 19a).

(¢) The total dose-rate D(Fe) assuming an all-iron medium (eq 19b).

(d) A weighted average, D, of curves (b) and (c¢) according to (25).

(e) The total dose-rate, 1), (uwnhng to the solid-angle exponential-integral approximation used by Moote [3].

7.2. Example 2. Dose-Rate Profiles Across a Cleared
_CirAcular Area in a Co—60 Infinite Plane Source
in Air

Along the axis of a circular disk source, analytic
solutions for the flux in terms of exponential integrals
and the buildup formulations [9, 11-15] are well
known. However, off-azis solutions including build-
up data have not, to the author’s knowledge, yet ap-
peared in the literature. The power-series solution
(19) does apply to this situation, as will be illus-
trated in this example.

a. Situation

A circular area 600 ft in diameter has been cleared
in an infinite plane isotropic source of 1 curie/ft* of
Co—60. The surrounding medium is air (no ground-
air interface is taken into account).

b. Problem

Find dose-rate profiles, relative to the undisturbed
infinite plane source, at heights 3 ft (0.00626 mfp),
30 ft (0.0626 mfp) and 300 ft (0.626 mfp) above the
plane of the source. Buildup data for air are not
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available in parametric form [9, 11-15], but water
buildup data can be used to oood approximation

1, 2].

c. Plan of Attack

Evaluate the dose-rates (rads/hr in air) at h=3,
30, and 300 ft above the infinite plane source [2o,
34] using B,(&,, Z) coefficients from the polynomial
buildup formula (10) according to

Dy (h ) - (0'/4‘"') 27r[E1 (Hoh)
+exp (—uoh) {Bi1+B:128;
aF (52+ QBa)Moh +B; (Moh) ’ } ]

in which Ei(uoh) is the ordinary exponential integral
[35] and values 8;(1.25 Mev, H,0) are already given
in table 4. Then, using the derived values' b, (1 25
Mev, H,0O) from table 5 evaluate dose-rate proﬁles
across a 600-ft diam disk source with the same source
strength constant (¢/47) according to (19)

(34)

Dosx(p, ) :(0/470};“0 b, (1.25 Mev, H;0)

: Qn(p) h) : (#Oh>n (190)



where ¢,(p,h) geometry coefficients are available in
[8] for 0<p<10 disk radii and 0.1<A<10 disk radii,
and in unpublished form for 0.01<A<0.1. In this
problem, /4 assumes the values 0.01, 0.1, and 1.0 disk
radii while the penetration thickness uh assumes the
corresponding values 0.00626, 0.0626, and 0.626 mfp
oiven 1n the problem.

d. Numerical Results

Evaluation of (34) using the source strength con-
stant o/47=12.24 (rads in air/hr)/(curies/ft*)® gives
infinite- pl(me dose-rates Dpri(h) of 423.7, 247.6, and
78.83 (rads in air/hr)/(curies/ft?) for the heluhts 3,
30, and 300 ft, respectlvely as indicated by the hori-
zontal lines in ﬁgure 5. Summation of (19¢) for these
three heights and a number of p-values gives the
dose-rate proﬁles Dpisk(p, h) also shown in ﬁo ure 5
The circled numbers, as in example 1, indicate the
required number of series terms for couvergonce to
within 0.1 percent of the stable value.

Subtraction of DDISK(p, h) from Dprr(h) gives the
desired profiles shown in figure 6, normalized to 100
percent for each infinite pLLne source result Dprr(h),
as specified in the problem.

§ This value of o/4x is equivalent to the Clarke and Buchanan ([34], table]1)
value of 14.0 (roentgens/hr)/(curies/ft2) for Co-60.
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Fraure 5. Geometry and intermediate results for example 2.

Thesolid,dashed and dotted horizontal lines are infinite-plane-source total dose-
rates Drri(h) calculated using (34) for detector heights h=3, 30, and 300 ft
respectively. The corresponding total dose-rate profiles Dpisk(p,h) over a
300-ft radius disk source were calculated using (19¢).
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Ficure 6. Relative dose-rate profiles at heights 3, 30, and 300 ft
above a 300-ft radius cleared circular area in an infinite plane
Co—60 source in an infinite air medium (example 2).

These profiles were obtained by subtracting the disk-source profiles Dpisk(p,h)
in figure 5 from the corresponding infinite plane source dose-rates Deri(h),
dividing by Dpri(h) and multiplying by 100 percent.

Caution must be taken in applying these results to
the study of radiation fields from fallout deposition
on the ground, since the ground-air interface has
been shown by theoretical [36] and experimental [37,
38] studies to affect the scattered component by as
much as a factor of three. Qualitatively, this would
have the greatest effect on the h=3 ft profile in
figure 5, “squaring the shoulders” of the curve and
depressing the tails on either side. In figure 6 the
3-ft profile would more closely resemble a “square
well,” but the 30-ft and 300-ft profiles would not be
appreciably changed.

8. Discussion

The power-series formulation for buildup data is
seen to have two main limitations:

(a) Convergence of the primary-flux series (15),
and hence the total-flux series (19) is poor for
combinations of thick barriers (uzZ 1) and detector-
source separations much less than the source dimen-
sions (i.e., @, b>>1 or h<<1). In such cases the
geometry closely resembles the infinite plane source
geometry for which the series (15) for D° becomes,
in the limit, the series representation ((5), [35]) for
the exponentlal integral F(ugz). The latter series
converges absolutely for 0<pgx<ew, but for 1<
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qn(zeom) coeflicients needed for example 2,

per<_ the convergence rate is rather slow for prac-
tical use. In these situations it is more economical
to revert to numerical integration, or to use an
infinite plane source analytical formulation, such as
(34) in example 2, as a close approximation.

(b) Boundary effects such as the density-interface
effect [36-38] are neglected, but this limitation is
inherent in any buildup factor formulation. Prob-
lems in which such effects are important are best
treated by Monte Carlo techniques at present [36].

On the other hand, the series formulation provides
some advantages:

(a) The three-way separation variables [(1) unique
properties of the medium—=b,(#,,7), (2) geometry—
¢» (geom) and (3) barrier thickness—uqz| gives both
economy of data tabulation and flexibility of ap-
plication. A given set of buildup data can be applied
to a variety of distributed source geometries, or
vice versa, and at the same time the barrier thickness
wor can be varied in a trivial fashion.

(b) In some simple idealized geometries the series
(19) can provide exact answers, especially in the
region of small barrier thickness (uz<1). These
answers, in addition to available experimental data,
can then be used to check the validity of simpler
engineering-type approximate methods (e.g., [3]) in
this region.

The auther thanks R. 1. Bach for computing
table 3, R. J. Herbold for computing the additional
and
M. J. Berger for his interest and helpful criticisms
regarding this effort.
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